• Keine Ergebnisse gefunden

Impact of atmospheric aerosols on solar energy production - Dust outbreak in West Africa

N/A
N/A
Protected

Academic year: 2022

Aktie "Impact of atmospheric aerosols on solar energy production - Dust outbreak in West Africa"

Copied!
1
0
0

Wird geladen.... (Jetzt Volltext ansehen)

Volltext

(1)

EMS Annual Meeting Abstracts Vol. 15, EMS2018-88, 2018

© Author(s) 2018. CC Attribution 4.0 License.

Impact of atmospheric aerosols on solar energy production - Dust outbreak in West Africa

Ina Neher (1,2), Tina Buchmann (3), Susanne Crewell (2), and Stefanie Meilinger (1)

(1) International Center for sustainable development, University of Applied Science Bonn-Rhein-Sieg, Grantham-Allee 20, 53757 Sankt Augustin, Germany (ina.neher@h-brs.de), (2) Institute of Geophysics and Meteorology, University of Cologne, Albertus-Magnus-Platz, 50923 Köln, Germany, (3) Institute of Environmental Physics, Heidelberg University, Grabengasse 1, 69117 Heidelberg, Germany

Solar energy plants are one of the key options to serve the rising global energy need with low environmental impact. Aerosols reduce global solar radiation due to absorption and scattering and therewith solar energy yields.

Depending on the aerosol composition and size distribution they reduce the direct component of the solar radiation and modify the direction of the diffuse component compared to standard atmospheric conditions without aerosols.

The aerosol characteristics are highly variable due to changing meteorological conditions influencing aerosol microphysical processes and transport. In addition variable land surface conditions act as the source region.

Especially extreme events like dust outbreaks can cause high variations in aerosol optical properties over a whole region. By being a region with a lack in conventional energy production and prone to high solar radiation, West Africa shows high potential for the development of solar energy systems. However, dust outbreaks occur frequently in the Sahel zone and affect the whole region for several days. Their effect on energy production and therewith on storage dimension and network development needs to be considered for the development of an energy system with a considerable share of solar power.

This study aims to identify the effect of atmospheric aerosols during a dust outbreak in March 2006 for two solar energy technologies, namely a photovoltaic (PV) and a parabolic through (PT) power plant. Here we focus on West Africa, where six stations with available meteorological data are located (Agoufou (15.3 N, 1.5 W), Banizoumbou (13.5 N, 2.7 E), Dakar (14.4 N, 17 W), Djougou (9.8 N, 1.6 E), Niamey (13.5 N, 2.1 E) and Maine-Soroa (13.2 N, 12 E)). Guided by observations a model chain is used to determine potential PV and PT power yields. The atmospheric aerosol composition is defined by using the desert scenario of the Optical Properties of Aerosols and Clouds (OPAC) library. During the identified dust outbreak between the 6th and 17th of March 2006 aerosol optical properties and water vapor from the aerosol robotic network (AERONET, http://aeronet.gsfc.nasa.gov/) are used as an input for radiative transfer (libRadtran) and subsequent solar power calculations (PV and PT). To investigate the impact of the dust outbreak on top of the background conditions for each location, predominantly cloud free days are selected and the daily reduction of solar power yields due to aerosols is determined over total 2006 with our model calculations.

This presentation will introduce the modeling chain to assess PV and PT power yields for different stations in West Africa and address their relative dependence on aerosol conditions with a focus on a twelve days dust outbreak.

Referenzen

ÄHNLICHE DOKUMENTE

When the raw data is examined, the moving panel achieved an average of 99.35 milliam- peres of electrical current produced with the maximum and minimum output being 157.72 and 0.0

With this unique data set we analyzed the impact of aerosols on photovoltaic and parabolic trough power plants with the energy meteorological model chain Sol- PaRT for all clear days

Depending on aerosol size distribu- tion they reduce the direct component of the solar radiation and modify the direction of the diffuse component compared to standard

Clouds are moving on a short term timescale and have a high influence on the available solar radiation, as they absorb, reflect and scatter parts of the incoming light.2 However,

In the present study we present a model, which couples atmospheric impacts from clouds on radiation out- puts and their influence on PV yields to analyze the impact of clouds on

The purpose of this study is to assess the impact of climate change on solar and wind energy potential over Africa under low end (RCP2.6) and high end (RCP8.5) emission scenarios

In examining the potential role of solar enerqy conversion as a gobal energy option the author has been led to issues which ultimately require the tools of systems analysis in

Combining solar thermal and wood heating system is a special case, since the gain factor for the wood heating system, which is higher than that for the solar system, is reduced in