• Keine Ergebnisse gefunden

Intro duction

N/A
N/A
Protected

Academic year: 2022

Aktie "Intro duction"

Copied!
14
0
0

Wird geladen.... (Jetzt Volltext ansehen)

Volltext

(1)

X

X

R

X

2 3

0

0

0

0

1

0 2

2

2

2

2 1

2

0

2

empiricalprocess

12 3

1

2

3

( +1)2

+ + 2

2

2

0

(1+ ) 2

[ ]

=1

;

t

t t

t

t

t

t t t

t

s t t s s

t

D =

t

s t s k t k

D

D=

N

Nt

s

s

t

t X ;t

X x F x f xX :::

F x P X x f x F x

X

X ;t

X G Y Y;t

: X b ; t ;

: b L t t ;

D ; L

;t

: r t EX X b b L t t

L t dL t d u u du

: F x;t

N

X x F x ;

X ;t

: F x P X x

Abstract.

Z

1

1. Intro duction.

Z

Z

Z

Z

1

Z

LiudasGiraitis andDonatasSurgailis

Heidelb erg University,ImNeuenheimerFeld294,69120Heidelb erg,Germany

Research supp ortedbytheAlexander vonHumb oldt-Foundation

Institute ofMathematicsandInformatics,2600Vilnius,Lithuania

Acentrallimittheoremforthenormalizedempiricalpro cess,basedona(non-Gaussian)moving

averagesequence withlongmemory,isestablished,generalizing theresultsofDehlingandTaqqu

(1989). Thepro ofisbased onthe(App ell)expansion

( )= ( )+ ( ) +

oftheindicatorfunction,where ( )= [ ]isthemarginaldistributionfunction, ( )= ( ),and

thecovarianceof theremaindertermdecays fasterthanthecovariance of . Asaconsequence ,thelimit

distributionof M-functionalsandU-statistics based onsuch longmemoryobservationsis obtained.

Statisticalinference forlongmemorytimeseries hasgainedconsiderable attentioninrecent years; see

e.g. Beran (1991),Dehlingand Taqqu(1989), KoulandMukherdjee (1993)and thecomprehensive survey

byBeran(1992)foradditionalreferences. MostofthestudiesdealwithGaussianobservations ,or

(eventually) withinstanteneous functionals = ( ) ofa Gaussianlongmemoryseries , using

well-developp edtechniques ofHermiteexpansions(Major(1981)).

AnaturalgeneralizationofGaussianlongmemoryseriesconstitutelinear(ormovingaverage)pro cesse s

(11) =

withhyp erb olicallydecayingco ecients

(12) = ()

wherethemainparameter (0 1)characterizesthedecayrateofthe"memory", ()isaslowlyvarying

at innity function, and is an iid sequence with zero mean and variance 1. In particular, (1.1)

includes the case of (non-Gaussian) fractional ARMA pro cesses (see Granger and Joyeux (1980)). More

generally,condition(1.2)canb e replacedbythehyp erb olicdecayconditionofthecovariance

(13) () = = = ()

where () ()isaslowlyvaryingat innityfunction, = ( (1 + )) .

Themainobject ofthispap eristhestudyoftheasymptoticsofthe

(14) ( ) =

1

( ) ( )

where isthelinearpro cess of(1.1)-(1.2),and

(15) ( ) = [ ]

(2)

D

2

0

Theorem 1.

R

Z

0 1

Z Z Z

X

X

n o

8 9

X D

0 0 0

0

1

0

0

0

3 3

0

D

0

2 2 2

1

0 1

0 0

( +1) 2

1 2 1

=1

2

=1

2

0

1

[ ]

=1

2

0

t

D D D

D

D D =

N

=

N

t;s

D

N

N

t;s

N

iu

n

N

N D

N

Nt

s

s

t

D D 01 1 2

2 01 1 2 )

D

2

j j j j 0j 0 j

j 0 j j j

0

j 0 j

j j j j 2

j j 1 1

2 01 1 2 )

p

2 01 1 2

1 2 2

1 X

; ; g g x;t

x;t ; ;

Z t ;t ;

EZ t Z s t s t s :

c x y dxdy uu du;

d d LN N :

r t s c o d

r t s O d :

u Ee

C> ;>

: u C u ; u :

E < ; n n D ; n D <

: d Nt F x;t x;t ; ; c f x Z t x;t ; ; ;

f x F x

F x

f x

: S t H H X ;

H L F ;EH X : X ;t

H fractional Brownian motion

Assume that the characteristic function of the "noise" in (1.1) satises the

followingcondition: thereexistconstants such that

Moreover, assume that moments for all where is estimated in

Remark1below. Then

where is the marginalprobabilitydensity.

stationarityoftheobservation pro cess (1.1). Ourmainresult (Theorem1b elow)is ageneralizationof

DehlingandTaqqu(1989),Theorem1.1,whoconsideredthecaseofinstanteneousfunctionalsofaGaussian

sequence.

Intro ducethe(two-parameterSkorokho d)space = ([ + ] [0 1])ofrealfunctions = ( ),

( ) [ + ] [0 1],with thesup-top ology,and write = forweakconvergence of randomelements

in (seeDehlingandTaqqu(1989)fordetails).

The () [0 1]isa(continuous)Gaussian pro cess withzero meanand

thecovariance

() ( ) = 1

2

+

Put

= (1+ )

and

= ( )

Thenitiswell-knownthat

( ) = ( + (1))

and

( ) = ( )

( )=

0 0

(16) ( ) (1+ )

( ) 9 ( )

(17) [ ] ( ); ( ) [ + ] [0 1] = ( ) (); ( ) [ + ] [0 1]

( )= ( )

Theorem 1can b e applied to obtainthe limitdistributionof various estimatorsof parameters of the

marginaldistribution ( )oflongmemorymovingaveragesequences (1.1)(see Sect. 2). Condition(1.6)is

aratherweaksmo othnessconditiononthedistributionofthe"noise";hovewer,itguaranteestheexistence

andinnitedierentiabilityofthedensity ( ).

Theempiricalpro cess (1.4)isaparticularcase ofsumsofmoregeneral "instanteneous" functionalsof

theform:

(18) (; ) = ( )

() ( ) ( )=0 Limitdistributionof (1.8)forlongmemorylinearpro cesse s of(1.1)-

(1.2)wasstudied bySurgailis(1981,1983),AvramandTaqqu(1987),GiraitisandSurgailis(1989). There,

it was found that, at least for "nice"analytic functions (), this distribution is basicallythe same as if

(3)

0

R

R

R

1 R

1

1

1

0

0

D X

X

Z

Z

Z

X

0 0

1

0 2

0 0

0 0

f 2 g ) f

p

2 g

=0

=0

( )

0

( )

0 0

( )

2

0

1

1 [ ]

=1

([01]) t

k

k k

k k

k k

k

z x z X

k

k

k k

k

k

k

k

k

k

k

k

t t

N Nt

s s

;

D Appellrank

Appell polynomials

not

biorthogonalsystem

: H x a A x =k

A x A x F ;k ;

: z A x=k e =Ee :

a

a EH X H y dF y ;

: a EH X Q X H y Q y f y dy ;

: Q y f y =f y k ; ;:::

L F A y F k

H

H y x y x F x ; y ;

a x

: a x H y x f y dy f x;

: X x F x f xX :::

: d X t ; c Z t t ;

corresp ondingtotheexpansion

(19) ( ) = ( ) !

in ( )= ( ; ) 0 withthegeneratingfunction

(110) ( ) ! =

Hovewer,thefact that App ellp olynomialsare orthogonal ingeneral makes theconvergenceof (1.9)a

verydicultproblemandrestrictstheuseofitbasicallytoanalyticfunctionsonly(seeGiraitisandSurgailis

(1986)). Inthelattercase,theco ecients aregivenby

= ( ) = ( ) ( )

whichcanb eformallyintegratedbyparts, giving

(111) = ( 1 ) ( ) ( ) = ( 1 ) ( ) ( ) ( )

wherethefunctions

(112) ( ) := ( ) ( ); =0 1

forma in ( )totheApp ellsystem ( ; ); 0(seeGiraitisandSurgailis(1986),

Daletskii (1991) ). The ab ove facts help ed us recently to extend the Dobrushin-Major-Taqqu theory to

non-smo oth functionals () of the linear long memory pro cess (1.1)-(1.2), of arbitraryApp ell rank (see

GiraitisandSurgailis(1994)). Inthecaseofthe(centered ) indicatorfunction

( ; ) = ( ) ( )

thecorresp ondingApp ellco ecient ( ) = 0,while

(113) ( ) = ( ; ) ( ) = ( )

whichisnotidenticallyzero. Thisargumentexplainstheleadingtermofthe(App ell)expansion

(114) ( ) ( ) = ( ) +

andtheformofthelimitempiricalpro cess in(1.7),as

(115) ; [0 1] = (); [0 1] ;

seeDavydov(1970)andGoro detskii(1976).

The main step in the pro of of Theorem 1is the following "weak uniform reduction principle" (c.f.

Theorem3.1ofDehlingand Taqqu(1989)).

(4)

d

2

0

0 R

R

d

R

R

2

2 0

0 0

0 0

1

jj!1

0 0 j j

2

X

3

b R

Z

b

Z

b

b

Y

b

Y Y

1

=1

3

1 2 1

1 2 1 2 1 2

1 2

1 1 2 1 2

1 2

0

1 2 2

n N

x N

n

j

j j

t t

t

iux

k

t

k

t

t

iuX

j

j

iu

j

J j

J

j

J

j j

i i

1

R

2. Pro ofsof Theorems1and2

R

Lemma A.

R

R

Z

0

!1

2

2

j j j j 1

j j j j 1

2

j j j j

f 2 6 g j j 1

j j j j j j j j

f g f g2

j j

: P d X x F x f xX > CN :

f x ;x X ;X

: f x ;x f x f x r t f x f x o r t t

x ;x

g u e g xdx g g x; x d

k

: u f u du <

: u f u ;u du du < :

f x

f x ;x t

: f u Ee ub ; u ;

u Ee

: u <C= u

J j b k < J < :

f u ub C ub C u ;

b ; b l

: J > k ; i ; ;

For any ,

and

In particular, the marginal probabilitydensity isinnitely dierentiable, and the bivariateprobability

density existsand isjointly continuous in forany suciently large .

Proof.

(116) maxsup ( ( ) ( )+ ( ) ) (1+ )

The pro of ofTheorem 2 uses the chainingargumentof Dehlingand Taqqu(1989),together with the

followingasymptoticsofthejoint(bivariate)probabilitydensity ( )of( ):

(117) ( ) = ( ) ( )+ () ( ) ( )+ ( ()) ( )

uniformly in (see Lemma C b elow). In turn, the pro of of (1.17) uses the factorization of

thecorresp onding bivariatecharacteristic functiondueto theindep endence of thenoise variables, andthe

asymptotics(1.2).

Therestofthepap erisorganizedasfollows. Sect. 2isgiventothepro ofofTheorems1and2andthe

auxiliaryLemmasA,B,C,andD.Sect. 3discusses applicationstothelimitdistributionofsomestatistical

functionalsbased ontheempiricaldistributionfunction.

Write ( )= ( ) for the Fourier transform of a real function = ( ) ( 1),

whenever itiswell-dened.

0

(21) ( )

(22) limsup ( )

( )

( )

Thecharacteristicfunction

(23) ( )= = ( )

where ( )= satises

(24) ( ) (1+ ) ;

see(1.6). Cho ose : =0 suchthat +1 Then

( ) ( ) (1+ ) (1+ )

whichproves(2.1).

Toprove(2.2),let b e tworealsequences such that

(25) +1 =12

(5)

2

R

Z

R

k

1 1

1

1 i

i

i

j

j

c Z

Z

Lemma B. Z

R

R

k X

Z

Y

Q

Y Y

Y

Y Y

Z

0

b

1 2 3

b

b

b

X X

Y 2

2

0 0

0 0 j j

0 j j

0

0

0 1

0

0 0

j j j j

2 Assume that,forsome ,

Then

Proof.

j j

j j

i

i

i k

j

j j

i

j J

j j i

J

j j

J

j

j j j j

J

J

i i

i

i J

j j j j t j

i

n

n

n

n

n n

m

J m m

j J k

j k

j J

f 2 j j j jg

f 2 j j j jg

j j j j 1

j j j j j j

j j 0

j j j j j j

j j j j j j

! j j ! 1

j j j j

j j

2

j j 1

j j j j 1

1 2

0

1 1

j j j j

1 1 2

2 1 2

1 2

2

=1

1 1 2 2 1 2

1 2 1 1 2 2

1 1 2 1 1 2 2 1 2

2 1

1 1 2 1 1

2 1 2

1 2

2

=1

1 2

2

=1

1 2 0

1 2 0

0

+

0 +2

( +2)

+2

1

+2

( )

1 =

( )

J j b > b ;

:

J j b < b ;

:

k ;i ; :

: u ;u u u b u b du du < :

u ;u u b u b ; J ;i ;

u ;u C u b u b C u u ;

b =b < >

u ;u C u C u ;

u ;u :

u ;u u ;u C u ;

b b b b b t ; k t >

J ;J J >k ; i ; ; t >t :

t >t

n

E < :

: x f x dx < :

f C

: uf u x f x u

g g L

x f x x f x

m

: f u

m

ub b u ;

= :

(26)

= :

(27)

and 0 =12 Then

(28) 8( ) := ( + )

Indeed,put8( )= ( + ) andassume =12arenite. Then,similarlyasinthe

pro ofof(2.1),

8 ( ) (1+ + ) (1+ + )

where = andmax 1 ,forsome 0. Therefore

8 ( ) (1+ ) = (1+ )

andasimilarestimateholds for8 ( ) Hence

8( ) 8( ) (1+ )

whichproves(2.8).

Now, take = and = . As 0( ) for any 0 there exists 0 such

that dened in(2.6),(2.7),resp ec tively,satisfy +1 =12 forany Moreover,the

corresp ondingestimatesholduniformlyin , hence(2.2)followsfrom(2.8).

(29) (1+ ) ( )

As () ( )(see LemmaA),and

(210) ( ) = ( ) ( )

( ()standsfortheFouriertransformof ()),itsucestoshowthatthelefthandsideof(2.10)isin ( ).

Indeed,thisimpliestheb oundedness of ( ) andtherefore theintegrabilityof (1+ ) ( ).

The -th derivativeofthecharacteristic function(2.3)can b ewrittenas

(211) ( ) = ( ) 8 ( )

(6)

+

2

2

2 2

2

c

c

j

j

j

k

Z

k

R

R

R R

R

k Z k

Z Z

Z

Lemma C. R

1

1

1

P

0 1

Q

Y

b

X X Y Y

b b b

Z

b

b

b b b b b

Z

b

Z

b

Z

b

b

Z

b

Thereexists such that,uniformlyin

Proof.

2

2 n

0 0

0 0

j j j j

0

0

0 0 0 0

0 0 1

0 0

0 0 0 0

j j

0 0

1 0 0 0 0

+

+

+ +

+

3

( )

0

(1) 2

0

( +2) 3

1 +2 = +2

: 2 : =1

2

3

( +2) ( +1) ( +2)

2

1 2

1 2 1 2 1 2

1 2

1 2

2

1 2 1 2 1 2 1 2 1 2

3

2 3

j j j

m

j J j

J

j J

j

n;m

J

n

k k

n n

J n n

jk j

k

jk

j

n n n

t

D

t

t

ixu

t

t t

t

D

t

k k

t

k D

u t t

D

ixu

t

D D

2 2 j j

2 2

j j

j j j j

j j j j j jj j

j j j j j j j j

j j

j j j j

j j

2

0

0 0

j j j j

j j j j j j j j !1

j j

j j

k j J ;k ; k m; m= k

u ub :

n m C C

J ; J m

: u C u :

u E k ; u uE ;

f u C u b ub

C u :

uf u n f u uf u

C u :

> x ;x ;

: : f x ;x f x f x r t f x f x Ot :

p x ;x

: p x ;x e p u du;

: p u ;u f u ;u f u f u r t u u f u f u :

>

: p u u >t du O t :

k D =

f u u >t du t u f u du Ct Ot t

>

: p u Ot

e p u u t du t t O t :

overallvectors =( : ) = = = ! !; nally,

8 ( ) = ( )

Similarlyasinthepro ofof LemmaA, forany andany onecan ndaconstant =

such that,uniformlyin = ,

(212) 8 ( ) (1+ )

Furthermore,as ( ) ( 2) ( ) hence,according to(2.11),(2.12),

( ) (1+ )

(1+ )

Consequently,

( ( )) = ( +2) ( )+ ( )

(1+ )

Thisprovesthelemma,according to(2.10)andtheargumentab ove.

0

(213) ( ) ( ) ( )+ () ( ) ( ) = ( )

Write ( )forthelefthandsideof(2.13). Then

(214) ( ) = (2 ) ( )

where

(215) ( ) = ( ) ( ) ( ) ( ) ( ) ( )

AccordingtoLemmaA,forany 0,

(216) ( ) ( ) = ( )

Indeed,cho ose ( + ) ,then

( ) ( ) ( ) = ( ) ( )

by(2.2),and asimilarestimateisvalidforthetwoothertermsontherighthandsideof(2.15).

Itremainstoshowthatthere exists 0suchthat

(217) sup ( ) = ( );

indeed,

( ) ( ) = ( )

(7)

0 Z

Z

Z

Z

Z

1 2 3

1 2 3

2

2

2 2

b

Y Y Y Y

b b

Y Y Y Y

b b b

Y Y X

X

X

2 3

X 2

0 0

2

0 0

0 0 0

0 0 0

0 0 0 0 0 0

0

0 0 0

0 0 0 0

0 0

0

0

jj

0 0 0 0

0

0 0

0

0

jj

0 0 0 0

0 0

0

0

0 0

jj j0 j

0 t

j

j t j

J J J

j

j t j

J J J

t

i

i

i

i

D

D

i

i

i

i

i

i

j t

j t j j t j

t j

D

t

x

j t

D D

j t j

t

t

j>t ;t j>t

j t j

1 2 1 2 1 2 3

1 2 1 2

1 2 3

1

2

2

2

3 1 2

1 2 1 2 1 2 3

1 2 3

1

1 2 3

1 2

2 3

1 2 3

3

3

3

3 3

1 2

3

1

1

1 2 1 2

2

2

2

5

1 2

1 2 2 0

1

1

5 3

3

1 2

3

3 3

1 2

1 2 1 2

1 1 1 1

1 1 1 1

f 2 j j g

f 2 j 0 j g

n [

0 0

0 0 0

j j j j

0

0 0 1

j j

j 0 j j 0 j

j j j j

j 0 j j 0 j

j j j j

j j j j

j 0

j j j j j j j

j 0 j j j j j

j j 2

j j j j

0 f g0

f u ;u u b u b ::: ::: ::: a a a ;

f u f u u b u b ::: ::: ::: a a a ;

J j j t ;

J j j t t ;

J J J :

f u ;u f u f u a a a a a a

a a a a a a a a a a a a :

a ; a ;i ; ; ;

a a Ot ; i ; ;

:

a a a u u r t O t ;

:

u t :

b b b b ;

b ; b ;

a a u b u b u b u b ;

u t ; j t ; > ;

u b C t

b D = > D y y

y y Cy C x E

a a O t O t ;

i i

u t j J

u b u b O t ;

< < D t

: a a a Q u ;u ;

Q u ;u u b ;u b

( ) = ( + ) = =:

and,similarly,

( ) ( ) = ( ) ( ) = =:

where

= :

= :

=

We have

( ) ( ) ( ) =

= ( ) + ( ) + ( )

Hence, (2.17)followsfrom 1 1 =12 3 and

= ( ) =12

(218)

= ()+ ( )

(219)

uniformlyin

Usingtheinequality

1 1onehas

( + ) ( ) ( )

where, for and sucientlysmall 0

in viewof the asymptotics (1.2) of , and the inequality ( +1) 2 . Therefore, as ( + )

( ) ( ) with =2sup ( ) 2 ,weobtain

= ( ) = ( )

oreq. (2.18)for =1;thecase =2isanalogous.

Itremainstoprove (2.19). Notethat and imply

+ = ( )

where0 . Therefore,for sucientlylarge ,thelefthandside of(2.19)canb ereprese ntedas

(220) = exp ( ) 1

where

( ) := ( )

(8)

2

R

1 0j t0j

t

1 2

1 2

2 2

2

1 2

Z Z

Z Z

2 3

0 1

0

X X

1

0 X

1

X

X

0 1

2

0

0 j j j j

0

j j j j j j

j j j j j j j j

j j

j j

j j

j j j j

0

0

0

00

00

00

0 0

00

0 0 0 0 0 0

jj

0 0

j0 j

0 0

0

0 0

0

j j 0

0 0

0 0

0 0

0

0 0 1 2

0 0

(3)

1 2

0 0

(3)

1 2 1

2

2 1 2

2

1 2 1 2 1 2

1 1 2

2

2

1

2 1

2

2

2 2

1

2 3

2

3 2 3

1 2

2 +3

1 2

( )

1 2

2

1 2

1 2

3

=1

x y

xy

xy

v v

j t j

ub u b

j t j j t j j t j

t

j t

j t j

t j t

j t j

j j

t j j

t j

i

j t t j

D

j j

t j

D

t

D

Q u ;u

t

t

D

N

n

j

j j

x;y

x y

x y

x;y

x; ;y x; ;y ;

;

x y x y :

v ;v x y dxdy

z z

u b ;u b x y z dxdy

u u b b O u b u b u b u b :

Q u ;u r t u u i i ;

i O u u b b b b ;

i O u u u u b b b b :

u t ;i ;

i O t b O t ;

i Ot b b O t

>

Q u ;u O t r t Ot

u ; u t

e Q u ;u OQ u ;u

u u r t O t :

: S n x X x F x f xX :

( ) := log

( + )

( ) ( )

iswell-denedandtwice continuoslydierentiableinaneighb orho o dof( )=0 . Notethat

( 0)= (0 )= ( 0)= (0 )=0

(0 0)= (0)= 1,and

( + ) = (log ) ( + )

Hence

( ) = (log ) ( + )

and,as(log ) ( )isb oundedinaneighb orho o dof =0,

( ) = (log ) (0)+( + )(log ) ( )

= + ( ) + ( )

Consequently,

( ) = () + +

where

= +

= ( + ) +

Here, as =12,so

= ( max ) = ( )

and

= ( ) = ( )

provided 0issucientlysmall. Inparticular,

( ) = ( ()) = ( )

uniformlyin ,whichimplies

1 = ( )+ ( ( ))

= ()+ ( )

By(2.20),thisproves(2.19)and thelemma,to o.

Put

(221) ( ; ) = ( ) ( )+ ( )

(9)

+ 0

R

R

R R

2

2 R

1

R

R

1 0

0

0 0

0 0

0

0 0

0

0

0

0

0

0 0 X

X

Z

Z

Z Z

Z Z

Z Z Z Z

Z

Z

N N

N N N

n

j

j

N

n

t;s

t

t

t t

D

t

t

A A

y

x 2

2

1+

=1

2

=1

0

1 2 1 2 1 2

1 2 1 2 1 2 1 2

0

1 2 1 2 1 2

1 2 1 2

1 3

2 3

+

+

3 2

1

0

0 0

0

0

j j j jj j

0 0

f 2 j j

j j j j g n

j j j j j j

j j j j

where isa nitemeasureon .

Proof.

d ES n x;y

n

N

x;y;

S n x;y S n x S n y

H X ;

H z H z x;y y< z x F x;y f x f y z:

ES n x;y t s ;

t t x;y EH X H X :

f z H z dz ;

f z H z dz ;

t

: t H z H z p z ;z dz dz ;

p z ;z f z ;z f z f z r t f z f z

t t>t

: t Ct H z H z p z ;z dz dz ;

D D> >

it A z ;z p z ;z

z z A A :

i t ::: ::: i t i t :

: H z x;y x<z y F x;y z f z dz;

: i t H z z dz C x;y;

( ; ) [ ]

()

We have

( ; ) = ( ; ) ( ; )

= ( )

where

( )= ( ; )= ( ) ( )+( ( ) ( ))

Therefore

( ; ) = ( )

where

()= (; )= ( ) ( )

Usingtherelations

( ) ( ) = 0

( ) ( ) = 0

onecan represe ntthecovariance ()as

(222) () = ( ) ( ) ( )

where

( )= ( ) ( ) ( )+ () ( ) ( );

c.f. (2.13). Assume islargeenough( ). Then,accordingtoLemmaCand (2.22),

(223) () ( ) ( ) ( )

where =( + )(1 ) 0,provided 0ischosen sucientlysmall.

Let us estimate the last integral, denoted by (). Put = ( ) : ( ) (1+

) (1+ ) ; = Then

() = + =: ()+ ()

Usingtheestimate

(224) ( ; ) ( )+ ( )+ ( )

we obtain

(225) () ( )(1 + ) [ ]

(10)

R

R

R R

R R

R

R

R

3 3

3 3

3

3

3

3

3

3

3

Proofof Theorem 2.

Z Z Z Z

Z Z

Z Z

Z Z

Z

Z

Z

Z Z

X

Z

2 3

0 1

0 0

0

0 0 0 0

0

3

0

0

0

0 0

0 0

0 0 0 0

0 0

01 0

0

0 0 0

A A

t

n n

t

n n

t

n

t

n

n

A

n

n

A

n

n

D

N N

N n

t;s

D

D

x

x N

N

D

3 3 3

1 2 1

1 2 1 2 +

+ 1 2 1 2 1 2

2

1 1

2

1 2

1 2 1 1

2 +1

1 2

2 +1

+ +

+

2 +1

2 +1

2 +1

0 2 +4

0

0

2 2 2

=1

2 2

1

3 2

j j j j j j j j j j

j j j j j j 2

0

j jj j j j j j

j j j j

j jj j j j

j j j j j j

j j j j

j j j j

j j j j j j j j

j j 1

j j

1

j 0 j

0

01

j j 2

j j

A z dz F A z dz f x dx z z dz

p z ;z z z ; z ;z A ;

n =

i t p H z H z z z dz dz

p H z z dz dz

p z ;z H z z dz dz

f z f z H z z dz:

: i t x;y;

A f z f z z dz

F A f z f z z dz

f x dx z f z f z z dz

E <

t>t

: t t x;y;

t t t

d ES n x;y x;y d t s

x;y n=N =N L N ;

> D

x x x ;x

x F x f y dy ; x ;

: P d S n x > <CN n=N n=N

( ) := (1+ ) + ( ) (1+ ) + ( ) (1+ )

isanite measureon ,accordingtoLemmaB.

Next,as

( ) (1+ ) (1+ ) ( )

with =[3(1 ) ]+1,we obtain

() ( ) ( )(1+ ) (1+ )

( )(1+ )

2 ( ) ( )(1+ )

(4 ( )+2 ( )) ( )(1+ )

Hence, by(2.24),

(226) () [ ]

where

( ) := (4 ( )+2 ( ))(1 + )

+ ( ) (4 ( )+2 ( ))(1 + )

+ ( ) (4 ( )+2 ( ))(1 + )

isanite measure,to o,provided (see LemmaB).Combining(2.25)and(2.26),we obtain

thatforallsucientlylarge

(227) ( ) [ ]

where ()isanite measure,indep endent of . Thesame b oundclearlyholds for0 ,to o,which

canb e shownbythesameargumentasin(2.25),(2.26). Consequently,

( ; ) [ ]

const [ ]( ) ( )

whichprovestherequiredestimate,provided 0ischosensucientlysmall( 1 ).

Let3( )= ( ),where ( )= (( ])isthemeasure ofLemmaD.Then

3( ) ( )+ ( )

andtheargumentofDehlingandTaqqu(1989),Lemma3.2,applieswithsmallchanges,yieldingtheestimate

(228) sup ( ; ) ( )+( )

(11)

R

R

3

3

1

01 0

0

0

! 1

6

0

1

01

0

0 0

0

0

P

Z Z Z

e

e

Z

b

X

e b

Z

b e

e

P

e

e e

0

1 2

j j 1 61

6

j 0 j j

j j j j

2

2 2 1 !

0 0 0

3

0

0

j j j

t t s s t

D =

t

N

D

D D =

D = D =

j j

j

N

N

j

j N

N N

N

N

j

j

N

( +1) 2

0 +

+

0

0

1

0 1

0

( +1) 2

( +1) 2

+

( +1) 2

0

0 0 0 0

0

0

0

=1

1

=1

1

Z

3. Applicationsto M-estimatorsandU-statistics

Z

Z R R R

1 ProofofTheorem1

Remark1.

Remark2.

Remark3.

M-estimators.

n D

n D

; <D =

D = D ; = < D<

Y GX ; j N G X ;j

X b b L t t L

L t ; t> l ;l

L t =L t l :

d L N N

c x y dxdy g u g u du;

g u u l u u l u<

X X ; j ;

X ;j

E X E X xf x dx

: :

N

X

x dF x ;

:

F x N X x

X ;:::;X

ofDehlingand Taqqu(1989).

followsfromthe"weakuniformreductionprinciple"(Theorem2)andtheconvergence

(1.8)(c.f. DehlingandTaqqu(1989)).

Fromthepro ofsof LemmasCandD,one canobtainthefollowingestimateof theorder ( )

ofnite"noise"momentsinTheorem1:

( )

9 if0 1 3

(5+3 ) (1 ) if13 1.

Theorems1and2canb egeneralizedfortheempiricalpro cess basedon"nonlinear"observations

= ( ) 1 , where () isa measurable function, and is a linearmovingaverage

pro cess of(1.1)-(1.2).

Theorem1anditspro ofremainvalid,withunimp ortantchanges,foratwo-sidedmovingaverage

= ,where = () and ()variesslowlyat ,sothatthereisaslowlyvarying

function () 0andtwoconstants suchthatthere existthelimits

lim ( ) () =

Insuch acase,(1.7)holdswith = ( ) and

= (1+ ) ( )

where ( ):= if 0;= if 0.

Consider themo del

= +

where satisfytheconditionsofTheorem 1,and isunknownparameter. Let ():

b e acontinuousfunctionsuch that

0( ):= ( ) = ( + )= ( ) ( + )

iswell-denedand1-1inaneighb orho o d 2 and

(31) 0( ) = 0

TheM-estimate of isdened by

0 = 1

( )

= ( ) ( )

(32)

where ( ) = ( ) is the empirical distribution function based on the observations

.

(12)

k 1

Theorem 3.

R

R R

R R

R

R R

R R

R R

0 0

0 0

0 0

0 0

0 0

0

0

0

0

0

0 0

0

0 0

0 0

0

0

1 6

0 ) N

1

) !1

0 0 0 0 0

0

0 0 0 0

0

2 0 )

0 0 0

) 0 0

N

0 0 0 0 0 0

1

0 0

0

1 1 2

0

0

1 1 2

1 1 2

0

0

1 1

1

=1

0

1 2

1

=1

1

1

1 2 1 2

1

=1

1 0 1

1

0 0 0

0

1 1 2

0

1 1 2

0 0

N

=

D N

N

N

N

N

=

D N

N

=

D

N

N N

N N

N N

j

j P

=

D N

N

j j

N

N

=

D

N N

=

D N

N

j

j P

N N N

N

=

D

N

N

=

D

N P

N j j

b

b

b

Z

b 2

e e

3

Z

0

b

1

e

e

Z

2

e e

3 Z

2

e e

3

Z

e

X

e e

P

Z

b 2

e e

3 Z

e b

X

Z

e

Z

Z

0

b

1

e

Z

0

b

1

b

0

b

1 0

b 1

X

Assume, in addition, that has bounded variation and .

Then

Remark3.

Proofof Theorem 3.

weaklyconsistent

U-statistics.

xf x dx

: Nd c ; :

N

: N :

: x d Nd c F F x Nd c x x dF x ;

F x F x

x d Nd F F x Nd F F x d x

f x d x d X o

:

f x F x f x c d X Z

x d Nd c F x F x f x d x c d X o

Z f x d x Z f x d x ;

:

Z ;

x x dF x x f x f x dx :

Nd c Nd c o ;

: U h h X ;:::;X

() 0( ) = ( ) ( ) = 0

(33) ( ) = (0 1)

Theab ove resultimplies,inparticular,thattheasymptoticeciencyofanM-estimatedo esnot

dep end on itskernel (), which is insharp contrast with theiid case. This dierence was rst noted by

Beran(1991,1992)inthecase ofGaussianfunctionals.

M-estimatorsoftheslop eparameterinlinearregressionmo delswithlongmemorymovingaverageerrors

arediscussed inGiraitis,KoulandSurgailis(1994).

It isnotdicult tocheck that,undertheconditionsof thetheorem,the estimate

existsforallsucientlylarge ,andis ,i.e.

(34) = ( )

Accordingto(3.1)and(3.2),

(35) 0 = ( ) ( )( ) + ( ) ( ) ( )

where ( )= ( ). AccordingtoTheorem2,

( ) ( )( ) = ( )( + ) ( )

= ( + ) ( ) + (1)

(36)

uniformlyin 2,where ( )= ( )= ( ). Consequently,as = ,from(3.4)

andthecontinuityof theintegralontherighthand sideof(3.6)in ,

( ) ( ( ) ( )) = ( + ) ( ) + (1)

= ( + ) ( ) = ( ) ( )

(37)

where (0 1). Next,rewrite thesecondintegralontherighthandsideofin(3.5)as

( ) ( ) ( ) = ( ) ( + ) ( ) = 0( ) 0( )

Usingthe fact that 0()is continuouslydierentiableat together withthe meanvaluetheorem andthe

convergence(3.4),weobtain

0( ) 0( ) = 0( )+ (1)

ortherelation(3.3),inviewof (3.5),(3.7).

ConsidertheU-statistic

(38) ( ) = ( )

(13)

k R

R

0

0

D

0 0

P

Z

8 9 8

Z

9

!

6 6

1

8 2

)

1

1 2 1 2

[ ]

[01]

1 1 1

N

k

p p q

n k

k

N Nt

;

k

D

k k k

k

R R

Theorem4

R

References

15

86

7

17

50

25(1)

15(3)

29

22

1 h

j N;p ;:::;k j j p q

h

h x ;x ;:::;x dF x x ;:::;x :

d U h t c hx ;:::;x f x :::f x dx :::dx Z t t :

Let haveboundedtotal variationand bedegenerate ,i.e.

Then

Ann.

Probab.

J.Amer. Statist. Assoc.

Statist. Sci.

Ann. Statist.

ZeitschriftWahr. verw. Geb.

Func. Anal. Appl.

Theory Probab. Appl.

DependenceinProbabilityandStatistics

LithuanianJ.Math.

Preprint

TheoryProbab. Appl.

J.TineSeriesAnal.

: is ameasurable function, invariantunder p ermutations of itsarguments,and the sum is

taken over all integers 1 = 1 ; = ( = ). Using Theorem 1and the argument of

Dehlingand Taqqu(1989),Corollary2,onehas

. ()

( ) ( ) = 0 ( )

( );0 1 = ( ) ( ) ( ) ( ( )) ;0 1

Arcones,M.A.and Yu,B.(1993). Empiricalpro cesses underlongrangedep endence , Preprint.

Avram, F. and Taqqu, M.S. (1987). Generalized p owers of strongly dep endent random variables.

(1987),767-775.

Beran, J.(1991). M-estimators forlo cationfor Gaussian andrelated pro cesses with slowlydecaying serial

correlations. ,704-708.

Beran,J.(1992). Statisticalmetho dsfordatawithlongrangedep endence. ,404-427.

Dehling,H. and Taqqu,M.S.(1989). The empiricalpro cess of somelong-range dep endentsequences with

anapplicationtoU-statistics. ,1767-1783.

Dobrushin, R.L. and Major, P. (1979). Non-central limittheorems for non-linear functionals of Gaussian

elds. ,27-52.

Daletskii,Yu. L.(1991). Abiorthogonalanalogof Hermitep olynomialsandtheinverse Fouriertransform

withresp ect toanon-Gaussianmeasure. ,136-140.

Davydov, Yu. A. (1970). An invariance principlefor random pro cesses, ,

487-498.

Giraitis, L.and Surgailis, D.(1986). Multivariate App ell p olynomials and the central limittheorem. In:

Eb erlein,E.andTaqqu,M.S.(eds.), ,Birkhauser,Boston,pp. 27-51.

Giraitis, L. and Surgailis, D. (1989). A limit theorem for p olynomials of linear pro cess with long range

dep endence . ,290-311.

Giraitis,L.andSurgailis,D.(1994). Non-centrallimittheoremfornon-smo othfunctionalsoflongmemory

moving averages and App ell p olynomials, Preprint. L.Giraitis, H.Koul, D.Surgailis (1994). Asymptotic

normalityofregressionestimatorswithlongmemoryerrors. .

Goro detskii,V.V.(1977). Ontheconvergencetosemi-stableGaussianpro cesse s, ,

498-508.

Granger,C.W.J.and Joyeux,R. (1980). An intro duction tolongmemorytimeseries andfractionaldier-

encing. ,15-30.

(14)

14

95

23

22

50

Probab. Th. Rel. F.

MultipleWiener- Itointegrals

Soviet Math. Doklady

Lithuanian J.Math.

Z.Wahrsch. verw. Geb.

,153-164.

Koul, H.L.and Mukherdjee, K. (1993). Asymptoticsof R-,MD- and LAD-estimatorsinlinear regression

mo delswithlongrangedep endent errors, ,535-553.

Major,P.(1981). ,Springer,New York.

Surgailis,D.(1981),Convergenceofsumsofnon-linearfunctionsofmovingaveragestoself-similarpro cesses,

,247-250.

Surgailis,D.(1982). Zonesofattractionofself-similarmultipleintegrals, ,185-201.

Taqqu,M.S.(1979). Convergenceofiterated pro cesse s ofarbitraryHermiterank,

,53-83.

Referenzen

ÄHNLICHE DOKUMENTE

The evidence on long memory (in terms of rescaled range and fractional differencing) is somewhat stronger altough not very compelling. Keywords: Energy commodities,

Applying the formalism of generalized iteration, iteration sem- igroups and iterative roots we attempt to characterize a method to find out if such a natural interpolation for a

On the other hand, the Matrix-Tree theorem (The- orem 2.12, or [Zeilbe85, Section 4], or [Verstr12, Theorem 1]) expresses the number of spanning trees of a graph as a determinant 2..

conditions, including stationary processes with short and long memory as well1. as processes with changing

This in- volves multiresolution analysis, the continuous and discrete wavelet transforma- tion, construction of wavelet bases, shrinkage, thresholding, and some well-known results

of spline smoothing to correlated errors (also see [40.54]). Multi-phase regression is discussed for instance in monographs by Csorgo and Horvath [16). Brodsky and Darkhovsky

Which L seems to be appropriate this time? Compare the smoothing weights w i of this iterated Daniell smoother to the ones of the simple Daniell smoother you chose in task c),

a) First of all, generate a classification tree using the methods from rpart. We let rpart perform a cost-complexity-analysis to find an optimal cp-value by cross-validating a