• Keine Ergebnisse gefunden

Higgs boson discovery & properties

N/A
N/A
Protected

Academic year: 2022

Aktie "Higgs boson discovery & properties"

Copied!
50
0
0

Wird geladen.... (Jetzt Volltext ansehen)

Volltext

(1)

Priv. Doz. Dr. Roger Wolf

http://ekpwww.physik.uni-karlsruhe.de/~rwolf/

INSTITUTE OF EXPERIMENTAL PARTICLE PHYSICS (IEKP) – PHYSICS FACULTY

Roger Wolf 17. July 2019

1/36

Higgs boson discovery & properties

(2)

Priv. Doz. Dr. Roger Wolf

http://ekpwww.physik.uni-karlsruhe.de/~rwolf/

INSTITUTE OF EXPERIMENTAL PARTICLE PHYSICS (IEKP) – PHYSICS FACULTY

1961:

Spontaneous symmetry breaking in super conductivity.

1962:

Higgs mechanism in particle physics.

1964:

Formulation of electroweak SM.

1967:

Proof of renormalizability.

1971:

Discovery of charm, and bottom.

1974-77:

1983:

1995:

2000:

2012:

Nobel prize to Peter Higgs and Francois Englert.

2013:

First formulation of a unification of electromagnetic and weak force.

Discovery of W and Z.

Discovery of top.

Discovery of .

Discovery of Higgs boson.

Historical context

2/36

(3)

Priv. Doz. Dr. Roger Wolf

http://ekpwww.physik.uni-karlsruhe.de/~rwolf/

INSTITUTE OF EXPERIMENTAL PARTICLE PHYSICS (IEKP) – PHYSICS FACULTY

1961:

Spontaneous symmetry breaking in super conductivity.

1962:

Higgs mechanism in particle physics.

1964:

Formulation of electroweak SM.

1967:

Proof of renormalizability.

1971:

Discovery of charm, and bottom.

1974-77:

1983:

1995:

2000:

2012:

Nobel prize to Peter Higgs and Francois Englert.

2013:

First formulation of a unification of electromagnetic and weak force.

Discovery of W and Z.

Discovery of top.

Discovery of .

Discovery of Higgs boson.

Historical context

2/36

(4)

Priv. Doz. Dr. Roger Wolf

http://ekpwww.physik.uni-karlsruhe.de/~rwolf/

INSTITUTE OF EXPERIMENTAL PARTICLE PHYSICS (IEKP) – PHYSICS FACULTY

1961:

Spontaneous symmetry breaking in super conductivity.

1962:

Higgs mechanism in particle physics.

1964:

Formulation of electroweak SM.

1967:

Proof of renormalizability.

1971:

Discovery of charm, and bottom.

1974-77:

1983:

1995:

2000:

2012:

Nobel prize to Peter Higgs and Francois Englert.

2013:

First formulation of a unification of electromagnetic and weak force.

Discovery of W and Z.

Discovery of top.

Discovery of .

Discovery of Higgs boson.

Historical context

Indirect constraints from LEP

2/36

(5)

Priv. Doz. Dr. Roger Wolf

http://ekpwww.physik.uni-karlsruhe.de/~rwolf/

INSTITUTE OF EXPERIMENTAL PARTICLE PHYSICS (IEKP) – PHYSICS FACULTY

Final word from LEP

1961:

Spontaneous symmetry breaking in super conductivity.

1962:

Higgs mechanism in particle physics.

1964:

Formulation of electroweak SM.

1967:

Proof of renormalizability.

1971:

Discovery of charm, and bottom.

1974-77:

1983:

1995:

2000:

2012:

Nobel prize to Peter Higgs and Francois Englert.

2013:

First formulation of a unification of electromagnetic and weak force.

Discovery of W and Z.

Discovery of top.

Discovery of .

Discovery of Higgs boson.

Historical context

Indirect constraints from LEP

2/36

(6)

Priv. Doz. Dr. Roger Wolf

http://ekpwww.physik.uni-karlsruhe.de/~rwolf/

INSTITUTE OF EXPERIMENTAL PARTICLE PHYSICS (IEKP) – PHYSICS FACULTY

Final word from LEP

1961:

Spontaneous symmetry breaking in super conductivity.

1962:

Higgs mechanism in particle physics.

1964:

Formulation of electroweak SM.

1967:

Proof of renormalizability.

1971:

Discovery of charm, and bottom.

1974-77:

1983:

1995:

2000:

2012:

Nobel prize to Peter Higgs and Francois Englert.

2013:

First formulation of a unification of electromagnetic and weak force.

Discovery of W and Z.

Discovery of top.

Discovery of .

Discovery of Higgs boson.

Historical context

Indirect constraints from LEP

Final word from Tevatron

2/36

(7)

Priv. Doz. Dr. Roger Wolf

http://ekpwww.physik.uni-karlsruhe.de/~rwolf/

INSTITUTE OF EXPERIMENTAL PARTICLE PHYSICS (IEKP) – PHYSICS FACULTY 3/36

Direct Higgs boson searches today …

Higgs Boson...

(8)
(9)
(10)
(11)

Priv. Doz. Dr. Roger Wolf

http://ekpwww.physik.uni-karlsruhe.de/~rwolf/

INSTITUTE OF EXPERIMENTAL PARTICLE PHYSICS (IEKP) – PHYSICS FACULTY 5/36

LEP result (2000)

p-value

Tevatron result (2012)

(12)
(13)

Priv. Doz. Dr. Roger Wolf

http://ekpwww.physik.uni-karlsruhe.de/~rwolf/

INSTITUTE OF EXPERIMENTAL PARTICLE PHYSICS (IEKP) – PHYSICS FACULTY 7/36

The challenge

100 10 1 0.1 0.01 0.001

Rate in Hz(*)

(*) for . Higgs

top vector boson

(14)
(15)
(16)
(17)
(18)
(19)
(20)

Priv. Doz. Dr. Roger Wolf

http://ekpwww.physik.uni-karlsruhe.de/~rwolf/

INSTITUTE OF EXPERIMENTAL PARTICLE PHYSICS (IEKP) – PHYSICS FACULTY 11/36

decay

Clear signature, high mass resolution, extremely small (

→ similar to

):

SM expectation:

PLB 744 (2015) 184

Limit (95% CL):

( )

(*)

(*) on 7+8TeV

Parametric

background model

+14 further exclusive categories

(21)

Priv. Doz. Dr. Roger Wolf

http://ekpwww.physik.uni-karlsruhe.de/~rwolf/

INSTITUTE OF EXPERIMENTAL PARTICLE PHYSICS (IEKP) – PHYSICS FACULTY 11/36

decay

Clear signature, high mass resolution, extremely small (

→ similar to

):

SM expectation:

PLB 744 (2015) 184

Limit (95% CL):

( )

(*)

(*) on 7+8TeV

Parametric

background model

+14 further exclusive categories

(22)

Priv. Doz. Dr. Roger Wolf

http://ekpwww.physik.uni-karlsruhe.de/~rwolf/

INSTITUTE OF EXPERIMENTAL PARTICLE PHYSICS (IEKP) – PHYSICS FACULTY 11/36

decay

Clear signature, high mass resolution, extremely small (

→ similar to

):

SM expectation:

PLB 744 (2015) 184

Limit (95% CL):

( )

(*)

(*) on 7+8TeV

Parametric

background model

+14 further exclusive categories

Non-universal coupling to leptons!

(23)
(24)
(25)

Priv. Doz. Dr. Roger Wolf

http://ekpwww.physik.uni-karlsruhe.de/~rwolf/

INSTITUTE OF EXPERIMENTAL PARTICLE PHYSICS (IEKP) – PHYSICS FACULTY 14/36

Compatibility

EPJ C 74 (2014) 3076 JHEP 01 (2014) 096 JHEP 05 (2014) 104

PRD 89 (2014) 092007 EPJ C 75 (2015) 212

Coupling across production modes or decay channels:

Event categories :

Nuisance parameters:

16 MB binary file of stat. model (~145 MB in human readable form).

Overall coupling consistency:

EPJ C 75 (2015) 212

EPJ C 74 (2014) 3076

Second close-by resonance in ?

(26)

Priv. Doz. Dr. Roger Wolf

http://ekpwww.physik.uni-karlsruhe.de/~rwolf/

INSTITUTE OF EXPERIMENTAL PARTICLE PHYSICS (IEKP) – PHYSICS FACULTY 15/36

Mass & decay width

From high resolution channels:

&

EPJ C 74 (2014) 3076PRD 89 (2014) 092007

From “naive” line shape analysis

From “naive” line shape analysis

Expectation from SM:

PRD 92 (2015) 012004

compatible within .

(27)
(28)
(29)
(30)
(31)

Priv. Doz. Dr. Roger Wolf

http://ekpwww.physik.uni-karlsruhe.de/~rwolf/

INSTITUTE OF EXPERIMENTAL PARTICLE PHYSICS (IEKP) – PHYSICS FACULTY 20/36

Coupling estimates

Determine couplings from production mode & decay channel:

Direct measurement not possible, since appear in nominator and denominator of BR:

Coupling to gluon can be or effective

(*)

.

Coupling to can be effective or a mixture of .

(32)

Priv. Doz. Dr. Roger Wolf

http://ekpwww.physik.uni-karlsruhe.de/~rwolf/

INSTITUTE OF EXPERIMENTAL PARTICLE PHYSICS (IEKP) – PHYSICS FACULTY 21/36

Narrow width approximation

Assume , which is well justified by and .

For each production mode and decay channel collect and express as sum of individual .

i.e. put propagating particle on shell.

Propagator: for .

Calculate cross section as .

, .

Example to the left:

(33)

Priv. Doz. Dr. Roger Wolf

http://ekpwww.physik.uni-karlsruhe.de/~rwolf/

INSTITUTE OF EXPERIMENTAL PARTICLE PHYSICS (IEKP) – PHYSICS FACULTY 22/36

Example: vector boson vs. fermion coupling

Cross section :

Cross section :

Cross section :

resolves sign ambiguities

due to interference term.

(34)
(35)

Priv. Doz. Dr. Roger Wolf

http://ekpwww.physik.uni-karlsruhe.de/~rwolf/

INSTITUTE OF EXPERIMENTAL PARTICLE PHYSICS (IEKP) – PHYSICS FACULTY 24/36

Simplified template cross section (STXS)

Define common phasespace regions based on pseudo-observable objects and quantities:

Convention facilitates combination of final states and across experiments.

Kinematic bins help to reduce influence of theory uncertainties (e.g. in or ) on measurement.

Efficiency larger for larger

Bin

central

Bin

Data point

Unfolding w/ central Unfolding w/

Unfolding w/

– before unfolding –

– after unfolding –

(36)

Priv. Doz. Dr. Roger Wolf

http://ekpwww.physik.uni-karlsruhe.de/~rwolf/

INSTITUTE OF EXPERIMENTAL PARTICLE PHYSICS (IEKP) – PHYSICS FACULTY 25/36

Simplified template cross section (STXS)

Defined for analysis of LHC Run-2 data by LHC HXSWG:

(37)

Priv. Doz. Dr. Roger Wolf

http://ekpwww.physik.uni-karlsruhe.de/~rwolf/

INSTITUTE OF EXPERIMENTAL PARTICLE PHYSICS (IEKP) – PHYSICS FACULTY 26/36

Template vs. fiducial cross section

Fiducial cross section:

Obey detector acceptance and stick to measurable quantities.

E.g. Higgs production in association w/ two jets w/

. Simplified template cross

section (STXS):

E.g. Higgs production in VBF & gluon fusion.

(38)

http://ekpwww.physik.uni-karlsruhe.de/~rwolf/

(39)

Priv. Doz. Dr. Roger Wolf

http://ekpwww.physik.uni-karlsruhe.de/~rwolf/

28/36

Signal extraction

Signal derived from maximum likelihood fit to NN output of each event category.

Within plot transition btw. Find most-signal

Pure background categories help to constrain backgrounds in signal categories.

CMS-PAS-HIG-18-032

(40)

Priv. Doz. Dr. Roger Wolf

http://ekpwww.physik.uni-karlsruhe.de/~rwolf/

29/36

NN inputs

Use one NN for each final state and separated btw. 2016 & 2017 (→ 8 NNs):

21(19) 18(13) 17(16) 16(12) Variables in use:

(41)

Priv. Doz. Dr. Roger Wolf

http://ekpwww.physik.uni-karlsruhe.de/~rwolf/

30/36

NN inputs

Use one NN for each final state and seperated btw. 2016 & 2017 (→ 8 NNs):

Making sure that input variables are well described by our model exploiting goodness-of-fit (GoF) test in 1d…

(42)

Priv. Doz. Dr. Roger Wolf

http://ekpwww.physik.uni-karlsruhe.de/~rwolf/

30/36

NN inputs

Making sure that input variables are well described by our model exploiting goodness-of-fit (GoF) test in 1d… & 2d.

(43)

Priv. Doz. Dr. Roger Wolf

http://ekpwww.physik.uni-karlsruhe.de/~rwolf/

INSTITUTE OF EXPERIMENTAL PARTICLE PHYSICS (IEKP) – PHYSICS FACULTY 31/36

“Unboxing” the NN

Decipher what the NN is doing using a Taylor expansion of the full NN output function.

Impact analysis like on LEP likelihood, but here on NN output function.

Comput. Softw. Big Sci. 2 (2018) 5

Relative size of number indicates how sensitive the NN output is on the given input.

Note that all values >0 are allowed.

(44)

Priv. Doz. Dr. Roger Wolf

http://ekpwww.physik.uni-karlsruhe.de/~rwolf/

INSTITUTE OF EXPERIMENTAL PARTICLE PHYSICS (IEKP) – PHYSICS FACULTY 31/36

“Unboxing” the NN

Decipher what the NN is doing using a Taylor expansion of the full NN output function.

Impact analysis like on LEP likelihood, but here on NN output function.

Comput. Softw. Big Sci. 2 (2018) 5

Relative size of number indicates how sensitive the NN output is on the given input.

Note that all values >0 are allowed.

Also this can be done in 2d.

And that way one can learn a lot about the NN task and how it is solved.

(45)

http://ekpwww.physik.uni-karlsruhe.de/~rwolf/

32/36

How well can the NN do?

Confusion matrix tells how well the NN can identify each individual process:

(46)

Priv. Doz. Dr. Roger Wolf

http://ekpwww.physik.uni-karlsruhe.de/~rwolf/

INSTITUTE OF EXPERIMENTAL PARTICLE PHYSICS (IEKP) – PHYSICS FACULTY 33/36

STXS classification

After classification of ggH and qqH events are split into STXS bins, based on selection requirements on theory-related quantities after reconstruction:

CMS-PAS-HIG-18-032

(47)

Priv. Doz. Dr. Roger Wolf

http://ekpwww.physik.uni-karlsruhe.de/~rwolf/

34/36

Results (inclusive)

Inclusive signal (sorted by log(S/(S+B))) Signal strength: (top) split by final state and (bottom) inclusive

Clear signal seen, though a bit on the low side, compared to other Higgs decay modes.

CMS-PAS-HIG-18-032

(48)

Priv. Doz. Dr. Roger Wolf

http://ekpwww.physik.uni-karlsruhe.de/~rwolf/

35/36

Results (STXS)

More differential measurement in 9 predefined STXS bins:

Correlation matrix

(49)

Priv. Doz. Dr. Roger Wolf

http://ekpwww.physik.uni-karlsruhe.de/~rwolf/

INSTITUTE OF EXPERIMENTAL PARTICLE PHYSICS (IEKP) – PHYSICS FACULTY 36/36

Summary

Higgs boson fully established. Properties unique and so far as expected by SM.

Higgs mechanism indeed realized in nature! Last missing piece → self-coupling.

THE Higgs boson or just A Higgs Boson?

Look for deviations in coupling structure → prime measurement.

Differential taking kinematic properties of production and decay into account → STXS.

Quantify deviations via generic effective field operator expansion→ EFT.

Look for more Higgs bosons in a more complex Higgs sector → prime searches.

(50)

Referenzen

ÄHNLICHE DOKUMENTE

Eine Kraft von Körper A auf Körper B geht immer mit einer gleichgroßen aber entgegengesetzten Kraft von Körper B auf Körper A einher:... INSTITUTE OF EXPERIMENTAL PARTICLE

INSTITUTE OF EXPERIMENTAL PARTICLE PHYSICS (IEKP) – PHYSICS FACULTY 10/35.. SM

[r]

– cross section for each process depending on parameters of particle and material properties. – propagation rules for particles in materials and fields – treatment

recorded events are reconstructed: “detector hits” → physical objects like electrons, muons, photons, hadrons, jets, missing energy … need to know

● The Lagrange density is covariant under global phase transformations with an according transformation rule:. ( Global Phase Transformation local

hardware Trigger and on-line selection identify „interesting“ events with particles in the sensitive area of the detector. (events not selected

INSTITUTE OF EXPERIMENTAL PARTICLE PHYSICS (IEKP) – PHYSICS