• Keine Ergebnisse gefunden

Statistical Analysis of Long Term Trends in Atmospheric CO2 Concentration at Baseline Stations

N/A
N/A
Protected

Academic year: 2022

Aktie "Statistical Analysis of Long Term Trends in Atmospheric CO2 Concentration at Baseline Stations"

Copied!
39
0
0

Wird geladen.... (Jetzt Volltext ansehen)

Volltext

(1)

W O R K I N G P A P E R

mAl"ISi3CAL ANALYSIS O F LONG TERU TRENDS IN A T W O S P ~ C

CO,

CONCENTRATIONS

AT

BASELINE

STATIONS

M. Ya. Antonovsky

ZM.

Bukhshtaber A.A. Zubenko

December 1980 WP-08-122

I n t e r n a t i o n a l I n s t i t u t e tor Agpliad Systems Analysis

(2)

STATBIXCAL ANALYSIS OF LONG TERM TRENDS

IN

ATMOSPHERIC

CO,

CONCENTRATIONS

AT

BASEWUE STATIONS

M.Ya. A n t o n o v s k y KM. B u k h s h t a b e r A.A. Z u b e n k o

December 1988 WP-88-122

W o r k i n g P a p e r s are interim r e p o r t s o n work of t h e International I n s t i t u t e f o r Applied Systems Analysis a n d h a v e r e c e i v e d only limited review. Views or opinions e x p r e s s e d h e r e i n d o not n e c e s s a r i l y r e p r e s e n t t h o s e of t h e Institute or of its National Member Organizations.

INTERNATIONAL INSTITUTE FOR APPLIED SYSTEMS ANALYSIS A-2361 Laxenburg, Austria

(3)

Foreword

Carbon dioxide i s one of s e v e r a l greenhouse g a s e s t h a t can modify t h e e a r t h ' s h e a t balance by absorbing outgoing radiation from t h e e a r t h ' s s u r f a c e , t h e r e b y in- creasing t h e amount of h e a t retained by t h e atmosphere (the so-called greenhouse effect). Changes in C02 are t h e r e f o r e of considerable importance.

In t h i s p a p e r , t h e long-term t r e n d s are assessed at f o u r baseline stations

-

Mauna Loa (Hawaii), Barrow (Alaska), American Samoa and South Pole. The a u t h o r s conclude t h a t a parabolic model provides t h e b e s t f i t f o r t h e observed rates of CO, concentration growth o v e r t h e l a s t 20-30 years.

I welcome P r o f . Antonovsky's initiative in tackling t h i s v e r y important prob- lem.

Bo R. Dijijs

Leader, Environment Program

(4)

STATISIJCAL ANALYSIS OF LONG

TERM

TRENDS IN ATMOSPHERIC CO, CONCENTRATIONS

AT

BASEUNE

SPATIONS

M.Ya. Antonovsky,

EM.

Bukhshtaber* a n d A.A. Zubenko*

1.

MTRODUCTION

An assessment of possible f u t u r e climatic changes r e q u i r e s a knowledge of t r e n d s in C0, concentrations in t h e atmosphere. Trend analysis i s difficult because of annual, seasonal and daily fluctuations in C02 concentrations. In t h i s p a p e r we use algorithms t o remove t h e periodic components. Then we assess long-term t r e n d s at f o u r baseline monitoring stations.

2. DATA

SET

The d a t a set consisted of NOAA/GMCC time-series of C0, concentrations o v e r t h e period 1968-82. These d a t a included mean-monthly C02 concentrations f o r a s e t of stations (see Table I ) , but we a r e mainly interested in t h e f o u r monitoring sta- tions: Bar-row, Alaska (1973-82), Mauna-Loa, Hawaii (1974-82), American Samoa (1976-82) and South Pole (1975-82). All f o u r stations a r e located at a n approxi- mately similar longitude of 170". The t o t a l number of d a t a i s 400. These d a t a w e r e obtained on t a p e from t h e Carbon Dioxide Information Center, Oak Ridge National Laboratory, USA. The t a p e also included mean weekly d a t a f o r 1968-82 (11397 readings), and hourly d a t a f o r Mauna-Loa f o r t h e y e a r s 1958-86 (C0, concentra- tions and meteorological observations of p r e s s u r e , temperature, r e l a t i v e humidi- ty.. .) (254208 d a t a points).

*

All-Union Research I n s t i t u t e o f Physiotechnical and Radiotechnical Measurements, USSR.

(5)

Table 1: Coordinates of s t a t i o n s of d a t e b a s e demonstrations (network of s t a t i o n s NOAA/GMCC)

S t a t i o n Amsterdam Is.

Ascension Is.

St.Croix Is.

Azors Islands B a r r o w Cold Bay Cape Meares Cosmos

Falkland Islands Guam Is.

Key Biscane Kumukahi Mould Bay Mauna Kea Mauna Loa Niwot Ridge Palmer Point S i x S e y c h e l l e s American Samoa Ammundsen Scott

"Charly" Ocean

"M" Ocean

Notation AMS

ASC AVI AZR BRW CBA CMO COS FLK G MI KEY KUM MBC M KO MLO NWR P S A PSM SEY S M O SPO STC STM

Longitude 77"E 14OW 64"N 27" W 156"W 162"W 124"W 75"W 60°W 144"E 80°W 158"W 119"W 155"W 155"W 105"W 64"W 1 1 O 0 W 55"E 170" W 24"W

2"E

Altitude 37"s

7 " s 17"N 38"N 71°N 55"N 45"N 1 2 " s 5 2 " s 13"N 25"N 22"N 76"N 20°N 19"N 40°N 6 4 " s 47"s 4"s 1 4 " s 89"s

66"N

Region Indian Ocean S. Atlantic C a r r i b e a n S e a N. Atlantic Alaska Alaska Oregon P e r u S. Atlantic N. Pacific Florida Hawaii Canada Hawaii Hawaii Colorado Antarctic Montana Indian Ocean S. Pacific Antartic N. Atlantic N. Atlantic

(6)

3. METHOD

W e assume t h a t time s e r i e s of monthly values c a n b e r e p r e s e n t e d in t h e follow- ing form:

w h e r e Co i s a t y p i c a l c o n c e n t r a t i o n f o r a given s t a t i o n , C1 i s t h e y e a r l y variation, C2 i s t h e monthly v a r i a t i o n a n d E i s a random fluctuation a s s o c i a t e d with o t h e r fac- t o r s . Equation (1) allows u s t o analyze s e a s o n a l v a r i a t i o n s a n d long-term t r e n d s . To minimize b i a s w e u s e medians r a t h e r t h a n mean values (Huber, 1981).

The p r o c e d u r e i s as follows ( s e e F i g u r e 1):

1. The medians f o r e a c h y e a r are calculated a n d t h e r e s u l t s are s u b t r a c t e d from t h e y e a r l y d a t a . The mcdians themselves are added t o C1, which f o r t h e f i r s t i t e r a t i o n i s assumed t o b e equal t o z e r o .

2. In t h e year-month matrix, medians f o r e a c h month are calculated and t h e r e s u l t s s u b t r a c t e d from t h e data f o r t h e c o r r e s p o n d i n g month. The monthly C2 i s assumed t o b e equal t o z e r o f o r t h e f i r s t i t e r a t i o n .

3. The computed median of y e a r l y e f f e c t s i s s u b t r a c t e d from e a c h y e a r l y C1 and added t o i t s computed value f o r t h e f i r s t i t e r a t i o n .

4. The computed median of monthly e f f e c t s i s s u b t r a c t e d from e a c h monthly C2 a n d added t o i t s computed value f o r t h e f i r s t i t e r a t i o n .

5. This p r o c e s s continues until c h a n g e s in t h e deviation of r e s i d u a l s are less t h a n 1 X of t h e r e s i d u a l s in t h e previous i t e r a t i o n . The deviation is measured by t h e sum of a b s o l u t e values of residuals.

(7)

W e assume t h a t t h e changes of monthly e f f e c t s are a reflection of biospheric seasonal cycling and t h a t fluctuations are caused by local C02 sources. A s p e c t r a l analysis i s used t o study t h e s t r e n g t h s of t h e s e f a c t o r s .

4. RESULTS

4.1. Spectral analysis

A s p e c t r a l analysis of t e n y e a r s of monthly values f o r t h e Barrow s t a t i o n is given in Figure 2. The amplitude of harmonica with given frequency are p r e s e n t e d h e r e f o r e a c h frequency point at t h e abscissa-axis ( t h e module of d i s c r e t e Fourie transformation at a given point). The abscissa point 1/120 c o r r e s p o n d s t o t h e period of oscillation once in 120 months lw

=

l / T ( . This harmonic i s c h a r a c t e r i s t i c of t h e t r e n d , i.e., t h e harmonic is equal t o t h e period of observation.

In Figure 2, t h e r e a l s o e x i s t harmonics with periods equal t o 1 2 , 6, 4 and 3 months. The s u b t r a c t i o n of y e a r l y e f f e c t s from t h e mean monthly concentrations (Figure 3) r e s u l t e d in t h e e x t r a c t i o n of t h e harmonic with t h e 120 month period, i.e, t h e t r e n d component. T h e r e f o r e , t h e long-term t r e n d s in C02 concentrations a r e c h a r a c t e r i z e d by t h e y e a r l y effect.

The amplitude spectrum of t h e monthly e f f e c t s (Figure 5) and residuals (Fig- u r e s 4 a n d 7) show t h e precision of t h e expansion. By t h e c r i t e r i a of t h e maximum entropy, i t a l s o shows t h a t t h e monthly e f f e c t s contain all evident harmonics (with periods of 12, 6 , 4 and 3 months). A comparison of t h e monthly spectrum f o r dif- f e r e n t stations confirms t h e conclusion of previous studies (see, f o r example, Gemon et al., 1986) r e g a r d i n g t h e growth of amplitudes of seasonal oscillations in t h e direction from south to n o r t h , as w e l l as t h e opposite p h a s e of oscillations f o r t h e n o r t h e r n and s o u t h e r n hemispheres. This f a c t suggests t h a t t h e monthly ef- f e c t s r e f l e c t t h e seasonal biosphere cycle, t h e behavior of t h e residuals r e f l e c t t h e local s o u r c e s and sins of C02.

(8)

Consideration of t h e amplitude spectrum of t h e time-series for various sta- tions (see, f o r example, Figures 3 and 6) shows t h a t t h e signal with maximal ampli- tude always h a s a 12-month period. A l l stations have a 6-month harmonic, and most stations h a v e clear 4- and 3-month harmonics.

4.2. L o n g i t u d i n a l p a t t e r n s

The behavior of

C,

in expansion (1) (Figure 8 ) shows t h e tendency of a d e c r e a s e in value in t h e d i r e c t i o n from n o r t h to south (Figure 10). However, devi- ations from t h i s tendency h a v e been observed in some cases. I t would a p p e a r t h a t remote stations have t h e lowest values f o r a given latitude and, t h e r e f o r e , provide a n opportunity to consider

C,

as a background level of COZ concentration.

The similarity in behavior of t h e y e a r l y e f f e c t s (Figure 9) f o r d i f f e r e n t sta- tions allow t h e construction of a global model of COZ changes based o n d a t a from a single station.

In c o n t r a s t t o t h e algorithms of t h e time-series analysis, t h e algorithm of t h e two-factor analysis (Tukey, 1977) h a s a p r o p e r t y of statistically s t a b l e expansion into background t r e n d s a n d seasonal components of concentration variations.

4.3. Long-term t r e n d s at Mauna-Lou

An analysis of long-term t r e n d s in annual values of y e a r l y e f f e c t s w a s done on t h e longest time-series (1958-87) for t h e Mauna-Loa Observatory. Evaluation of such t r e n d s h a s been considered in a number of r e s e a r c h e s (Keeling, 1984, 1987;

Gemon et al., 1986; Pearman and Hyson, 1981, and Antonovsky, 1986). F o r t h i s pur- pose, Pearman and Hyson (1981) f o r example, used a cubic spline approximation with a 1 - y e a r time s t e p .

I t i s worth mentioning t h a t t h e presentation of a long-term s e r i e s of observa- tions as some spline i s a way of smoothing of experimental d a t a t h a t are slowly changing. More precisely, let zi

-

mean monthly concentrations in month

(9)

zi , i = l , .

..

,n

.

In t h e c l a s s

c2

of twice differentiated functions u(t ) l e t us consider two functionals:

t h e functional of t h e least s q u a r e method, and

t h e Sobolian functional. I t s minimization c o r r e s p o n d s t o choosing t h e most smoothly changing function a. H e r e ti i s on t h e time a x i s corresponding to t h e month z .

I t i s found t h a t t h e cubic spline u O ( t ) of t h e d a t a (ti , z i ) gives t h e minimum of t h e functional

i-e., u o l ( t )

=

arg min F ( u ) u E C ~

Thus, in Pearman and Hyson (1981), a combination of quasiparametric and extremal a p p r o a c h e s to t h e construction of a t r e n d is used.

The non-linear r e g r e s s i o n ( f o r functions of a s h a p e ml e x p a2t

+

m3) BMDP3R gives t h e following b e s t approximations:

The RMS deviation of t h e approximation from t h e observed c u r v e is 0.9. The r e s u l t s are shown in Figure 11. An inflexion point on t h e r e s i d u a l s c u r v e (Figure 1 2 ) suggests t h a t a piecewise approximation with two exponents might give a b e t t e r r e s u l t . The inflexion point coincides, approximately. to t h e y e a r 1969. A non- l i n e a r r e g r e s s i o n which was done f o r t h e periods 1958-1969 and 1970-1987 r e s p e c - tively, gives:

(10)

A polynomial regression BMDP5R gives t h e b e s t approximation of all c u r v e s of t h e form a l t 3

+

a 2 t 2

+

a 3 t

+

a4 as t h e following second o r d e r polynomial

The RMS deviation f o r t h e regression (5) is equal to 0.15 (Figure 13). Now t h e residual behavior becomes r a t h e r random (Figure 14). The c h a r a c t e r i s t i c s of a l l t h r e e m o d e l s are given in Figure 15. Thus, t h e parabolic approximation is b e t t e r t h a n t h e exponential f o r t h e whole interval (1958-86).

When w e say t h a t one m o d e l i s b e t t e r than a n o t h e r , w e should clarify in what sense. Suppose t h a t by t h e method of nonparametric estimation o v e r t h e interval [O,T] (in t h e case of Mauna Loa, T

=

30y,,,,), w e have found a t r e n d , i.e., t r e n d

T

=

~ ( t ) i s defined by points r ( t l ) ,

. . .

, ~ ( t , ) . For construction of a parametric model, l e t us choose a family of functions u(t ; a ,

. . .

, a k ) , where u i s a given func- tional, and a l ,

. . .

, a k are t h e p a r a m e t e r s estimated during t h e analysis. In o u r case:

u l ( t ; a 1 , . . . , Q n ) = ~ l t 3 + ~ t t 2 + ~ 3 t + a , , a 2 ( t ;al.a2.a3)

=

a l e a g t

+

a3

.

Let us choose T1

<

T and l e t us consider t h e functional of t h e method of least s q u a r e s (MLS):

T1

F(Tl;al.

. . . .

a k

=

(r(t1

-

u(tl ; a l ,

. . . .

ak )12

1 =l

L e t u s put:

( a

. . . .

a )

=

a a l . . . min

.

.a) F(Tl;al,

. . .

, ak )

,

i.e., w e find a;,

. . .

, a; by t h e method of least squares.

In t h e framework of a given family of functions, w e find t h e optimal number of p a r a m e t e r s k with t h e aid of F - c r i t e r i a as in BMDP.

(11)

A s a r e s u l t , w e g e t a function of t (model):

u ( t ; a l I . . . # a ; ) . The f i r s t method of comparing models.

W e calculate residuals of predictions:

This residual is a function of

TI.

W e s a y t h a t model u l ( t ; a : ,

. . .

,

all)

i s

b e t t e r than model u2(t ;a:,

. . .

,

ai2)

if t h e residuals of predictions by model u l ( ; ) are l e s s than residuals of predictions by model u 2 ( ; ) .

TRe second method of comparing models.

Let u s define t h e residuals of predictions in t h e form:

W e s a y t h a t model u ( t ; a l ,

. . .

, a t ) i s w e l l on t h e level E, if A(TL) S E , where E

i s a given number. Let T; b e t h e f i r s t value for t h a t model uq ( t ; a l ,

. . . .

akq ) , q =1,2, i s w e l l on t h e level E .

We s a y t h a t model u ( t ;a;.

. . .

, a;) i s b e t t e r t h a n model u2(t ;a;,

. . .

,

a i l )

on

t h e level E, if T ;

<

T;.

The calculation by both methods h a s shown t h a t t h e long-term t r e n d of s e r i e s of concentration of C02 on o b s e r v a t o r y Mauna-Loa i s b e t t e r d e s c r i b e d by a p a r a - bolic model t h a n a n exponential one.

Let u s consider t h e f o r e c a s t ability of a parabolic model. A s c a n b e s e e n from Figures 1 6 a n d 16', a p a r a b o l a obtained from t h e d a t a for t h e f i r s t 5-year period deviates o v e r t h e complete 28-year period. However, a p a r a b o l a obtained f r o m d a t a for t h e f i r s t 15-years gives a n almost e x a c t forecast f o r t h e next 13-years (Figures 17 and 17'). T h e r e f o r e , t h e observed p r e s e n t C02 concentration w a s

(12)

possible t o predict in 1973 on t h e basis of t h e parabolic model, i.e., t h e observed r a t e s of C02 concentration growth a r e still t h e same as in t h e previous 10-years.

Let us make a n analogous investigation of t h e temperature time-series f o r t h e Mauna-Loa station o v e r t h e period 1958-1986. An amplitude spectrum of t h e tem- p e r a t u r e time-series (Figure 18) shows t h e p r e s e n c e of t r e n d and two harmonics in a period of 12-months and of approximately 3-years. Those harmonics of more than a 12-month period d i s a p p e a r a f t e r subtraction of t h e yearly e f f e c t s (Figure 19).

This means t h a t t h e c u r v e of t h e yearly e f f e c t s contains information on global behavior. The behavior of t h e monthly effects evidently r e f l e c t s seasonal (winter-summer) temperature oscillations (Figure 20). The l a r g e year-to-year variability does not allow construction of a simple analytical m o d e l . Nevertheless, i t i s possible t o say t h a t , o v e r t h e past 1 0 y e a r s , t h e mean annual t e m p e r a t u r e h a s increased. The second o r d e r polynomial which gives t h e b e s t approximation i s a s follows:

The amplitude spectrum f o r t h e yearly temperature effects before and a f t e r sub- traction of t h e parabolic c u r v e (6) can b e seen in Figures 22 and 23. The com- parison shows t h a t t h e parabola can b e considered as a model of t r e n d because i t s subtraction deletes t h e harmonic with t h e maximal period, leaving all o t h e r har- monics unchanged. A s h i f t in temperature parabola (Figure 21) in comparison with t h e parabola of C02 growth might b e explained as a result of t h e lag between rising COz concentrations and rising global temperatures.

5. CONCLUSIONS

A method was developed f o r finding a long-term tendency in t h e atmospheric concentration of CO2. In p a r t i c u l a r , it w a s shown t h a t on a long-time interval t h e

(13)

polynomial a p p r o a c h is b e t t e r than t h e exponential one, which means t h a t t h e prediction f o r c e of a parabolic model i s s t r o n g e r t h a n a n exponential one. The constancy of t h e rate of growth of t h e statistically s t a b l e c h a r a c t e r i s t i c of t h e main direction of a s e r i e s of concentrations of C02 f o r t h e Mauna Loa station dur- ing t h e l a s t 28-years was also shown.

More p a r t i c u l a r r e s u l t s were: t h e amplitude of t h e seasonal oscillation on g r a p h s of t h e monthly e f f e c t considerably i n c r e a s e s from t h e South Pole to t h e North Pole; to obtain t h e e f f e c t s of annual t r e n d s , a 12-month interval i s a statisti- cally s t a b l e interval; oscillation of t h e monthly e f f e c t s f o r t h e n o r t h e r n and south- e r n hemisphere h a s opposite phases.

The main problem of t h e possible existence of a statistically confident c o r r e - lation between long-term t r e n d s in t h e observation s e r i e s of concentrations of CO, and t h e main climatic v a r i a b l e t e m p e r a t u r e remains open.

ACKN(IWLEDGrnENTS

The a u t h o r s wish t o e x p r e s s t h e i r recognition of D. Keeling, S c r i p p s Institu- tion of Oceanography, f o r his pioneer work at Mauna L o a . They would also like t o thank Oak Ridge National Laboratory f o r providing a t a p e of t h e d a t a used in this analysis.

The a u t h o r s would a l s o like to thank P r o f e s s o r s Bo Diias and Ted Munn f o r t h e i r advice and support.

REF%BENCES

Antonovsky, M.Ya. (1986) The modern a s s e s s m e n t of carbon d i o x i d e a n d o t h e r t r a c e g a s roles i n climate v a r i a t i o n s . WMO/TD No.151, December. Env. Poll.

Mon. & Res. Prog. No.45.

BMPD (BioMeDical Package), Statistical Software Manual, 1440 Supulveda Blvd..

Palo Alto, Ca.. USA.

Gemon, R.H.,

J.T.

P e t e r s o n , W.D. Komyr (1986) Atmospheric C02 c o n c e n t r a t i o n s . NOAA, GIMS, Flask and Continuous Network. CDIAC, NDP 005, Oak Ridge N a t . Lab., Tenn., USA.

Huber, P.J. (1981) Robust S t a t i s t i c s , Wiley & Sons, NY.

Keeling, C.D. (1984) Atmospheric a n d oceanic measurement n e e d e d f o r e s t a b l i s h - i n g d a t a base i n the potential effect of CO, i n d u c e d c l i m a t i c changes of Alaska. Proceedings of University of Alaska.

(14)

Keeling, C.D. (1987) Hourly c d i b r a t i o n a t m o s p h e r i c C02 c o n c e n t r a t i o n 1958- 1988. Mauna Loa Observatory. CDIAC NDP 043, Oak Ridge Nat. Lab., Tenn., USA.

Pearman, G., P. Hyson (1981) The annud v a r t a t i o n of atmospheric C 0 2 concen- t r a t i o n observed i n the n o r t h e r n hemtsphere. Journal of Geophysical Research. 86: 40:9839-9843.

Tukey. J.W. (1977) E z p l o r a t o + y Data A n d y s t s . Reading, M.A.: Addison-Wesley.

(15)

Figure 1: Decomposition of matrix of data on effects by method of median smoothing.

c,

-

typical (characteristic) value f o r a given station;

c l

-

year effect (variation);

c

-

month effect (variation);

E

-

random fluctuation associated with other factors.

(16)

F i g u r e 2 : Amplitude s p e c t r u m of mean-monthly c o n c e n t r a t i o n of C O z , B a r r o w sta- t i o n , 1973-1982.

(17)
(18)

Figure 4: Amplitude s p e c t r u m of r e s i d u a l s of c o n c e n t r a t i o n s of C02 , Barrow ski- tion, 1973-1982.

(19)

F i g u r e 5 : Amplitude s p e c t r u m of monthly e f f e c t s of c o n c e n t r a t i o n , Barrow sta- t i o n , 1973-1982.

(20)

F i g u r e 6: Amplitude s p e c t r u m of mean monthly e f f e c t s of c o n c e n t r a t i o n , of C 0 2 with s u b t r a c t e d y e a r e f f e c t , NWR (Niwot Ridge).

(21)

F i g u r e 7: Amplitude s p e c t r u m of r e s i d u a l s of c o n c e n t r a t i o n s o f C02, NWR (Niwot R i d g e ) s t a t i o n , 1976-1982.

(22)

Figure 8: Dependence of characteristic value of concentration of COz from alti- tude of the stations of Global Monitoring of climate change NOAA/GMCC, 1968-1982.

(23)

F i g u r e 9: I n c r e a s e of y e a r e f f e c t s f o r f o u r s t a t i o n s of continuous monitoring:

BRW, MLO, SMO, S P O s t a t i o n s . 1971-1982.

(24)

F i g u r e 1 0 : B e h a v i o r of mean-month e f f e c t s of c o n c e n t r a t i o n of C02 f o r f o u r s t a - t i o n s of c o n t i n u o u s monitoring: BRW, MLO, S M O , SPO, 1971-1982.

(25)

F i g u r e 11: Approximation of a c u r v e of y e a r e f f e c t s of c o n c e n t r a t i o n of C02 (o- o b s e r v e d ) by exponential function ( p - p r e d i c t i o n ) o n i n t e r v a l of time 1958-1985.

(26)

Figure 12: Behavior of r e s i d u a l s of exponential approximation of c u r v e of year e f f e c t s of c o n c e n t r a t i o n s of C o p during 1958-1985.

(27)

Figure 1 3 : Approximation of c u r v e of y e a r e f f e c t s of c o n c e n t r a t i o n of C 0 2 (o- o b s e r v e d ) by polynomial function (p-predicted) o n time i n t e r v a l 1958- 1985.

(28)

Figure 1 4 : Behavior of r e s i d u a l of polynomial approximation of c u r v e of y e a r ef- f e c t s of c o n c e n t r a t i o n s of COz d u r i n g 1958-1985.

(29)

SHAPE OF THE MODEL STANDARD DEVIATIONS

I

c (t)

=

0.02t2

=

0.55t

+

317.74

i

Figure 15: The models of the behavior of year effects of concentrations of COz Mouna-Loa station, 1958-1985.

(30)

F i g u r e 16: P r e d i c t i o n of t h e b e h a v i o r of y e a r e f f e c t s of c o n c e n t r a t i o n of C O E b y polynomial model, c o n s t r u c t e d by d a t a f o r t h e f i r s t 5 - y e a r s .

(31)

p l = 3 1 4 . L 9 5 2 1 2 pi?

=

0 . Q O L 5 6 1 p 5 = 0. U O O i 3 2

Figure 16': G r a p h of o b s e r v e d a n d p r e d i c t e d functions al e x p a2t

+

a g f o r 28 y e a r s . P r e d i c t i o n of t h e b e h a v i o r of y e a r e f f e c t s of c o n c e n t r a t i o n of C02 with e x p o n e n t i a l model, c o n s t r u c t e d by d a t a f o r f i r s t 5 y e a r s .

(32)

Figure 17: P r e d i c t i o n of t h e b e h a v i o r of y e a r e f f e c t s of c o n c e n t r a t i o n of COz po- lynomial model, c o n s t r u c t e d by d a t a f o r f i r s t 15 y e a r s .

(33)

Figure 17': G r a p h of o b s e r v e d a n d p r e d i c t e d functions of al e x p a2t

+

a g for 28 y e a r s . P r e d i c t i o n of t h e b e h a v i o r of y e a r e f f e c t s of c o n c e n t r a t i o n of COz with exponential model, c o n s t r u c t e d by d a t a for f i r s t 15 y e a r s .

(34)

F i g w e 18: Amp!itude s p e c t r u m of mear,-monthly t e m p e r a t n r e s . !fauna-50a S ~ Z -

tiofis, 1958-1 985.

(35)

r e 9 Arnp!itude s p e c t r u n : of mean-monthly t e m p e r a t u r e s with s ~ b s t r u c t e c y e a r e f f e c t , Yanna L o a . 1958-1985.

(36)

F i g u r e 20: B e h a v i o r of mean-monthly e f f e c t s of t h e t e r n p e ~ a t u r e Y a 3 ~ n a - L o a s t z - t i o n , 1350-1-985.

(37)

-. : : c u r e 21: S e h a v i o r of y e z r e f f e c t s cf x e z ~ - r c n t h l y te,r,perat;lre. Ya2r.z 1.02 s t ? - t i o n , 1958-1985.

(38)

F i g u r e 22: Amp!itude s 2 e c t r u m of y e a r e f f e c t s of t e m p e r a t u r e . Vaur,a Loz statior., 1958-1985.

(39)

F i g u r e 23: A ~ p l i t u d e s p e c t r u m o f y e a r e f f e c t s of t e m p e r a t u r e with s u b s t r u c t e d

;arabo!ic trend, Mauna 30a statior,, 'L958-1985.

Referenzen

ÄHNLICHE DOKUMENTE

It is shown that the projection of a parabolic parameterization agrees well with the series of projections obtained on the base of models that used the

INTERNATIONAL INSTITUTE FOR APPLIED SYSTEMS ANALYSIS A-2361 Laxenburg, Austria... movement of

Cross correlations and phase synchroni- Table 4: Trend coefficients of annual temperature averages of considered climate stations in Central Asia for different time

Dafi dies eine ganz junge Entwicklung ist, zeigt sich im Vergleich mit friiheren Jahren, etwa 1955, als der Fremdenverkehr noch kaum 10?/o der Gesamt.. einnahmen Hawaiis

Tabelle 1: Verringerung der Varianz (?/o) und Zeitpunkt des maximalen Niederscblages der ?ersten harmoniscben Kurve&#34; fiir typische Stationen auf der Insel

in these four subdivisions; and, they were further assumed to be generally representative of all owners of lots of Hawaii's remote subdivisions. It was hypothesized

HAU.. Schünemann KG Bremen. Alle Rechte vorbehalten. Von dieser Vorlage ist die Vervielfältigung für den eigenen Unterrichtsgebrauch gestattet. a) Bilden Sie Komposita und ergänzen

Gegen den erklärten Willen oder ohne die Zustimmung des Patienten sind keine ärztlichen Maßnahmen durchzuführen; es sei denn, der Pa- tient verfügt nicht — infolge seiner