• Keine Ergebnisse gefunden

Quality and Distribution of Frozen Organic Matter (Old, Deep, Fossil Carbon) in Siberian Permafrost

N/A
N/A
Protected

Academic year: 2022

Aktie "Quality and Distribution of Frozen Organic Matter (Old, Deep, Fossil Carbon) in Siberian Permafrost"

Copied!
1
0
0

Wird geladen.... (Jetzt Volltext ansehen)

Volltext

(1)

Quality and Distribution of Frozen Organic Matter (Old, Deep, Fossil Carbon) in Siberian Permafrost

Lutz Schirrmeister (1), Jens Strauss (1), Sebastian Wetterich (1), Guido Grosse (2), and Pier Paul Overduin (1)

(1) Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Dept. of Periglacial Research, Potsdam, Germany (Jens.Strauss@awi.de), (2) Geophysical Institute, Permafrost Laboratory, University of Alaska Fairbanks, Fairbanks, USA

Introduction

ŸSince 1998, northeast Siberian permafrost sequences have been analyzed as frozen paleoenvironmental archives of the last

~200,000 years (joint Russian-German science cooperation “SYSTEM LAPTEV SEA”). Organic matter (OM) properties were used as an important paleo proxy

ŸThis study summarizes regional datasets on the quality and quantity of fossil OM in permafrost sequences of NE Siberia:

à to show the permafrost carbon pool heterogeneity related to paleoenvironmental dynamics, and

à to improved estimations of permafrost organic carbon stocks.

• OM distribution in the upper permafrost zone up to 100 m depth in the Northeastern Siberian Arctic indicates considerable variability of OM between different stratigraphical units, between same stratigraphical units at different study sites, and even within stratigraphic units at the same site.

0 50 100

Absolute ice content

[%]

0 2 4 6 8

Height[ma . s. l . ]

0 2 4 6 8

Height[ma . s. l . ]

6 8 10

Height[ma . s. l . ]

16 18 20 22 24 26 28

Height[ma . s. l . ]

4 6 8 10 12

Height[ma . s. l . ]

0 50 100

Absolute ice content

[%]

0 10 20

TOC [wt%]

0 10 20

TOC [wt%]

0 5 10

TIC [wt%]

0 5 10

TIC [wt%]

0 20 40

C/N

0 20 40

C/N

-32 -28 -24

13C [VPDB, ‰]

-32 -28 -24

13C [VPDB, ‰]

Late Glacial / Early Holocene thermokarst lake deposits Holocene polygonal cover in thermokarst depression

Taberite formed during Weichselian to Holocene transition

Middle Weichselian Ice Comlex deposits

Early Weichselian alluvial deposits

Eemian

thermokarst lake deposits

Taberite formed during Saalian to Eemian transition

Pre-Eemian

alluvial deposits

Late Saalian Ice Complex deposits

1

2 3

4 5

6 7

8 9

11

12 13 10

16 15

18 17

14

19

20 21

22

Study sites

Western Laptev Sea:

(1) Cape Mamontov Klyk Lena Delta:

(2) Turakh Sise Island, (3) Ebe Sise Island (Nagym), (4) Khardang Island, (5) Kurungnakh Sise Island

Central Laptev Sea:

(6) Bykovsky Peninsula, (7) Muostakh Island New Siberian Archipelago:

(8) Stolbovoy Island, (9) Bel’kovsky Island, (10) Kotel’ny Island (Cape Anisii), (11) Kotel’ny Island (Khomurganakh River), (12) Bunge Land (low terrace), (13) Bunge Land (high terrace), (14) Novaya Sibir Island, (15) Maly Lyakhovsky Island

Dmitry Laptev Strait:

(16) Bol’shoy Lyakhovsky Island (Vankina river mouth), (17) Bol’shoy Lyakhovsky Island (Zimov’e river mouth), (18) Cape Svyatoy Nos, (19) Oyogos Yar coast

Indigirka-Kolyma lowland:

(20) Duvanny Yar (Lower Kolyma R. ).

(21) Kytalyk (Berelekh R.), (22) Pokhodsk (Kolyma Delta)

of permafrost archives in NE Siberia with fossil OM data sets

EGU2013-12417

Methods

Ice content – gravimetrically measured

→ Ice-rich (>50 %), ice-bearing (25-50 %), ice-poor (< 25%)

→ Syncryogenic formation, thawing & refreezing (taberite)

→ Total mass balance calculation, bulk density estimation

TC, TN, TOC - CNS analyzer (Elementar Vario EL III)

TOC → Variations in OM accumulation and degradation TOC/TN → Decomposition degree, microbial activities

→ Low ratios: strongly decomposed;

high ratios: less decomposed

TC-TOC→ TIC; inorganic carbon (e.g. fossil shells)

d13C (TOC) - Finnigan DELTA S mass spectrometer

→ OM origin (marine, terrestrial; subaerial/aquatic)

→ Composition of plant material

→ Isotopic fractionation during carbon metabolism

13 13

→ Decomposition degree (low d C less, high d C strong)

44.2 ± 9.0 n = 22 44.4 ± 16.0 n = 67 47.4 ± 14.6 n = 20

40.3 ± 12.8 n = 234 28.8 ± 4.8 n = 4 38.3 ± 12.5 n = 66

22.4 ± 11.3 n = 313 29.0 ± 8.3 n = 37 32.6 ± 8.3 n = 23 58.7 ± 20.1 n = 20 0 20 40 60 80 100

10.9 ± 12.2 n = 50 5.3 ± 4.9 n = 52 5.9 ± 9.0 n = 148

3.7 ± 4.2 n = 359 2.7 ± 1.4 n = 9 2.2 ± 0.9 n = 109

0.4 ± 1.3 n = 426 3.1 ± 4.0 n = 75 1.0 ± 0.7 n = 119 6.2 ± 4.1 n = 14 0.01 0.1 1 10

0.2 ± 0.2 n = 22 0.2 ± 0.3 n = 114 0.6 ± 0.6 n = 37

0.4 ± 0.5 n = 289 0.4 ± 0.1 n = 9 0.4 ± 0.2 n = 94

0.1 ± 0.1 n = 352 0.6 ± 0.9 n = 61 0.3 ± 0.1 n = 15 1,82 ± 3.0 n = 9

0 2 4 6 8

11.8 ± 3.2 n = 50 10.0 ± 5.4 n = 133 14.9 ± 5.8 n = 42

10.6 ± 5.2 n = 311 7.3 ± 3.4 n = 9 9.3.0 ± 2.3 n = 112

8.8 ± 8.8 n = 79 10.2 ± 3.7 n = 37 6.5 ± 5.0 n = 16 14.2 ± 4.8 n = 14

0 10 20 30 40

-27.63 ± 0.87 n = 52 -27.93 ± 1.33 n = 139 -27.98 ± 1.320 n = 49

-26.38 ± 1.26 n = 338 -29.47 ± 1.55 n = 9

-25.58 ± 0.70 n = 111

-25.70 ± 1.31 n = 99 -27.50 ± 0.70 n = 36 -25.05 ± 0.29 n = 18 -27.89 ± 1.03 n = 14 -32 -30 -28 -26 -24 -22

Middle Weichselian Ice Complex Holocene thermo- erosional valley Late Glacial to Holocene thermokarst Holocene cover Taberites

Late Weichselian Ice Complex

Early to Late Weichselian fluvial deposits Eemian thermokarst lake deposits Pre Eemian floodplain Late Saalian ice-rich deposits

absolute

ice content (wt%) TOC (wt%) TIC (wt%) C/N C (‰ vs VPDB)d13

Stratigraphical classification of permafrost deposits by organic matter signatures, Schirrmeister et al. (2011)

min max

median Q1 Q3

Box plot graph displays the minimum, maximum, median, lower quartile and upper quartile

The south coast of Bolshoy Lyakhovsky Island

Lateglacial to Holocene thermokarst basins (lacustrine and polygonal mires)

Middle Weichselian Ice Complex deposits

Eemian ice wedge casts Early Weichselian alluvial deposits

Studied section of different stratigraphical units from Bolshoy Lyakhovsky Island (site 16), Dmitry Laptev Strait

Stratigraphical Units

Ice Content

[wt%] Bulk

Density [g cm-3],

Total organic

carbon [wt%],

Carbon inventory

[kg C m-3] SD Holocene thermo-erosional

valley 44.2 ± 9.0 0.781 5.3 ± 4.9 41.42 40.87

Holocene thermokarst 44.4 ± 16.0 0.775 6.9 ± 9.0 53.51 77.22

Holocene cover 47.4 ± 14.5 0.686 10.9 ± 12.9 74.73 96.26

Taberites 28.8 ± 4.8 1.242 2.7 ± 1.4 33.55 17.82

Late Weichselian

Ice Complex 38.3 ± 12.5 0.958 2.2 ± 0.9 21.08 11.92

Middle Weichselian

Ice Complex 40.5 ± 12.8 0.892 3.7 ± 4.1 33.23 40.07

Early to Middle Weichselian

fluvial deposits 22.4 ± 11.3 1.434 0.5 ± 1.4 7.17 18.72

Eemian lake deposits 29 ± 8.3 1.236 3.2 ± 4.2 39.57 50.10

Pre Eemian floodplain 32.6 ± 8.3 1.129 1.0 ± 0.8 11.29 8.28

Saalian Ice Complex 58.7 ±20.1 0.347 5.3 ± 4.3 18.41 34.93

Carbon inventory estimates

General scheme of the stratigraphical segments of the permafrost zone, and several components of arctic periglacial landscapes

Yedoma

Thermokarst depression

(alas)

Thermo- erosional valley

Distance (m)

SE

Zimov'e River valley

height(ma.s.l.)

IV IV

IIa

4500 5000 5500

4000 3500

3000 2500

2000

1500 6000

500

0 6500

0 5 10 15 20 25 30 35

NW

Thermokarst depression

(alas)

Taberal deposits Saalian ice-rich deposits

Eemian thermokarst deposits

Pre Eemian flood plain deposits Middle Weichselian ice-rich deposits with numerous peat inclusion

Holocene deposits

Ice wedges of different generations Peat in the modern

flood plain Early Weichselian flood plain deposits

Periglacial reworked weathering crust

+ 40

+ 30

+ 20

+ 10

0

- 10

- 20

- 30

- 40

Eemian Interglacial

Saalian glacial Weichselian Glacial

Active layer

Tertiary Talik

Dmitry Laptev Strait Thermokarst

depression

Cretaceous basement rocks Holocene cover

Permafrost table

height[ma.s.l.]

Ice wedges Plant cover

Ice casts

Saalian ice-rich deposits (200 to 150 ka)

Eemian thermokarst deposits (130 to 110 ka)

Early Weichselian (100 to 60 ka) and

pre Eemia (> 130 ka) flood plain deposits

Middle Weichselian ice-rich deposits with numerous peat inclusion

(60 to 25 ka)

Late Weichselian ice-rich deposits (25 to 15 ka)

Lategalcial (15 to 10 ka) and Holocene deposits (< 10 ka)

Talik zone

Unfrozen marine deposits (< 5ka) Unfrozen lake deposits (< 10 ka)

Thermokarst lake

Tertiary sands with coal

Bedrock (granite,limestone, sandstone)

?

? ?

? ?

Talik

?

? ?

?

?

Eemian taberites

Conclusion

ŸCarbon contents, OM qualities and decomposition degrees are highly variable and connected to changing paleoenvironmental conditions

à Interglacial & interstadial periods: High TOC contents, high C/N, low δ13C less-decomposed OM accumulated under wet, anaerobic soil conditions.

à Glacial & stadial periods: Less variable, low TOC, low C/N, high δ13C values stable environments with reduced bioproductivity and stronger OM decomposition under dryer, aerobic soil conditions.

ŸOM release to the ocean, lakes, rivers and the atmosphere due to permafrost degradation (e.g.

thermokarst, thermal erosion, coastal erosion) and microbial decomposition.

ŸThe landscape average is likely about 30 % lower than previously published permafrost carbon inventories

ŸStill large uncertainties in carbon estimations/

calculations.

à Detailed mapping of permafrost deposits especially of Ice Complex (Yedoma-type) and thermokarst deposits (Alas-type), their distribution and thickness are essential for OM pool estimation.

à Measurements and estimations on OM available for decomposition are necessary.

Reference

Schirrmeister, L., G. Grosse, S. Wetterich, P. P. Overduin, J. Strauss, E. A. G. Schuur, and H.‐

W. Hubberten (2011), Fossil organic matter characteristics in permafrost deposits of the northeast Siberian Arctic, J. Geophys. Res. 116, G00M02, doi:10.1029/2011JG001647

Scheme of stratigraphical units from Bolshoy Lyakhovsky Island (site 17), Dmitry Laptev Strait

Referenzen

ÄHNLICHE DOKUMENTE

The observed differences between the microbial com- munity composition in submarine permafrost (particularly in the zone of high methane concentration) and its terres- trial

Organic carbon occurs in permafrost as large tree trunks, peat inclusions, twigs and root fragments, other solid plant remains, and finely distributed plant detritus, but

For the studied individual strata (Saalian ice-rich deposits, Pre-Eemian floodplain, Eemian lake deposits, Early to Middle Weichselian fluvial deposits, Mid- dle Weichselian

• This study summarizes regional datasets on the quality and quantity of fossil OM in permafrost sequences of NE Siberia, in order to show the permafrost carbon pool

During the late Pleistocene, a large pool of organic matter (OM) accumulated in ice-rich deposits of the arctic per- mafrost zone.. Because of the potential re-introduction of

The higher archaeol content in the thermokarst deposits (156.76 ng/g sediment) indicates larger archaeal communities, which is related to a drier and

130 ka) alluvial (floodplain) deposits; Eemian (130 to 110 ka) thermokarst lake and lagoon deposits; early Weichselian (100-60 ka) fluvial and alluvial (floodplain) deposits;

Moreover, lipid biomarkers (alkanes, fatty acids and glycerol dialkyl glycerol tetraether) and sediment parameters like grain size and bulk density of Yedoma and thermokarst