• Keine Ergebnisse gefunden

Automated optimization of a reduced layer 5 pyramidal cell model based on experimental data

N/A
N/A
Protected

Academic year: 2022

Aktie "Automated optimization of a reduced layer 5 pyramidal cell model based on experimental data"

Copied!
13
0
0

Wird geladen.... (Jetzt Volltext ansehen)

Volltext

(1)

ContentslistsavailableatSciVerseScienceDirect

Journal of Neuroscience Methods

jo u rn al h om epa g e :w w w . e l s e v i e r . c o m / l o c a t e / j n e u m e t h

Automated optimization of a reduced layer 5 pyramidal cell model based on experimental data

Armin Bahl

a,b,c,d,∗

, Martin B. Stemmler

b,c

, Andreas V.M. Herz

b,c

, Arnd Roth

d

aDepartmentofSystemsandComputationalNeurobiology,MaxPlanckInstituteofNeurobiology,82152Martinsried,Germany

bGraduateSchoolofSystemicNeurosciences,Ludwig-Maximilians-UniversitätMünchen,82152Martinsried,Germany

cDepartmentofBiologyandBernsteinCenterforComputationalNeuroscienceMünchen,Ludwig-Maximilians-UniversitätMünchen,82152Martinsried,Germany

dWolfsonInstituteforBiomedicalResearchandDepartmentofNeuroscience,PhysiologyandPharmacology,UniversityCollegeLondon,LondonWC1E6BT,UK

a r t i c l e i n f o

Articlehistory:

Received14November2011 Receivedinrevisedform4April2012 Accepted5April2012

Keywords:

Pyramidalneuron Compartmentalmodel Evolutionaryalgorithm Multi-objectiveoptimization Automatedfitting

Dendriticgeometry Firingpattern

Dendriticcalciumdynamics

a b s t r a c t

Theconstructionofcompartmentalmodelsofneuronsinvolvestuningasetofparameterstomakethe modelneuronbehaveasrealisticallyaspossible.Whiletheparameterspaceofsingle-compartment modelsorothersimplemodelscanbeexhaustivelysearched,theintroductionofdendriticgeometry causesthenumberofparameterstoballoon.Asparametertuningisadauntingandtime-consuming taskwhenperformedmanually,reliablemethodsforautomaticallyoptimizingcompartmentalmodels aredesperatelyneeded,asonlyoptimizedmodelscancapturethebehaviorofrealneurons.Herewe presentathree-stepstrategytoautomaticallybuildreducedmodelsoflayer5pyramidalneuronsthat closelyreproduceexperimentaldata.First,wereducethepatternofdendriticbranchesofadetailed modeltoasetofequivalentprimarydendrites.Second,theionchanneldensitiesareestimatedusinga multi-objectiveoptimizationstrategytofitthevoltagetracerecordedundertwoconditions–withand withouttheapicaldendriteoccludedbypinching.Finally,wetunedendriticcalciumchannelparameters tomodeltheinitiationofdendriticcalciumspikesandthecouplingbetweensomaanddendrite.More generally,thisnewmethodcanbeappliedtoconstructfamiliesofmodelsofdifferentneurontypes,with applicationsrangingfromthestudyofinformationprocessinginsingleneuronstorealisticsimulations oflarge-scalenetworkdynamics.

© 2012 Elsevier B.V.

1. Introduction

Toincorporaterealismintolarge-scalesimulationsofcortical andothernetworks(Traubetal.,2005;Markram,2006),oneneeds toconstructbiophysicallyrealisticcompartmentalmodelsofthe individualneuronsinthecircuit.Manyparametersofthesemodels havenotbeendirectlymeasuredexperimentally;therefore,these parametersmustbetunedtomatchtheexperimentallyobserved input–outputrelationoftheneuron.Solvingtheresultingnonlinear optimizationproblemisdifficultandrequiresextensivecomput- ingresources,especiallyformodelscomprisingadetailedneuronal morphologyanda largenumber ofcompartments(Traubetal., 2005;AchardandDeSchutter,2006;Markram,2006;Druckmann etal.,2007;Hayetal.,2011).

Herewedevelopreducedmodelsofneocorticallayer5pyra- midalcells withasmall numberof compartmentstorepresent

Correspondingauthorat:DepartmentofSystemsandComputationalNeurobi- ology,MaxPlanckInstituteofNeurobiology,82152Martinsried,Germany.

Tel.:+498985783289.

E-mailaddress:arbahl@gmail.com(A.Bahl).

thedendriticgeometry.Comparedtofullydetailedcompartmental models,reducedmodelsconfersignificantspeedadvantagesboth fortheoptimizationofthesingleneuronmodelandforsimulation ofnetworksofsuchneurons.Thereducedmodel’sgeometry,even thoughsimplified,shouldstill incorporatethefactthatsynaptic inputsarrivingatdifferentlayersinthedendritictreeareintegrated differently(Larkumetal.,1999,2004;Schaeferetal.,2003;Branco etal.,2010).Thisimpliesthatasufficientnumberofcompartments mustbeusedforthereduceddendriticmorphology.Theabilityofa neurontolockontofastfluctuationsintheinputdependscritically onhowsharptheactionpotentialonsetisinitsvoltagetime-course (Naundorfetal.,2005;PalmerandStuart,2006;Koleetal.,2007;

Popovicetal.,2011).Astheinitiationsiteoftheactionpotential, locatedintheaxon(StuartandSakmann,1994;PalmerandStuart, 2006;Koleetal.,2007;Popovicetal.,2011),determineshowsteep theactionpotentialonsetis(Yuetal.,2008),areducedmodelmust alsohaveaminimumnumberofcompartmentsfortheaxon.

Weconstructthereducedpyramidalcellmodelsstepbystep, applyingmethodsadaptedtotheproblem(RothandBahl,2009).

Thefirststep,whichdeterminesthereducedcellmorphologyand passivemembraneproperties,followsthetraditionofdefiningcer- tainpassiveelectricalpropertiesofthefullmodelthatarepreserved

0165-0270© 2012 Elsevier B.V.

http://dx.doi.org/10.1016/j.jneumeth.2012.04.006

Open access under CC BY license.

Open access under CC BY license.

Konstanzer Online-Publikations-System (KOPS) URL: http://nbn-resolving.de/urn:nbn:de:bsz:352-2-49mjifjo9us20

(2)

inthereducedmodel(Stratfordetal.,1989;BushandSejnowski, 1993;Destexhe,2001).Second,weapplyapowerfuloptimization strategy, EvolutionaryMulti-Objective Optimization(EMOO) (Deb etal.,2002;Druckmannetal.,2007).Thismethod,startingfrom afamilyofmodelscharacterizedbymultiplefeatures,generatesa suiteofnewmodelsateachstep,withoutmakinganapriorideter- minationastowhichoneofthemultipledesiredobjectivesismost important.

Inpreviousapproachestoevolutionarymodeloptimization,up totwentydifferentfeaturesaredefined(Hayetal.,2011),fromthe actionpotentialwidthtothedepthoftheafter-hyperpolarization potential(AHP).Eachfeatureisassociatedwithasinglenumber.

In contrast, we return tothe classical approach of minimizing theleastsquaredifferencebetweentherecorded traceandthe model’sresponse.Wedefinefourleastsquaredifferenceobjective functions,oneforeachofthedifferenttimescalespresentinthe dynamics– fromtheAPonsetdynamicsonthemicrosecondtime scaletotheslowsub-thresholdchargingphaselastingseveraltens ofmilliseconds.

Theexperimentaldatawefitincludetheresponsesofalayer 5pyramidalneurontosomaticcurrentinjectionwhentheapical dendriteisoccludedorpinched(BekkersandHäusser,2007).Such aprocedureyieldsessentialinformationabouttheelectricalprop- ertiesofthecellanditsapicaldendrite.Thisinformationallows parameteroptimizationtonarrowdownthepossiblecombinations ofchanneldensitiesandpropertiesalongthedendriticgeometry thatcouldexplaintheneuron’svoltageresponsetosomaticcurrent injection.

Finally, we show how the evolutionary approach can be extendedtoensurethataneuronalmodelcapturesfeaturesthat donottakeoncontinuousvalues,butarediscrete.Forthispur- pose,we tookanotherdataset fromadifferent experimenton olderlayer5pyramidalneurons.Weoptimizedthedendriticcal- ciumchannelparametersandadjustedthesevaluessuchthatthe modelreproducestheshapeofthedendriticcalciumAPaswellas somato-dendriticcouplingfactorsfoundinexperiments(Schaefer etal.,2003).

Afterpursuingthesethreestepsinoptimizingneuronalmod- els,wepresentafamilyof10reducedmodelsoflayer5pyramidal neuronswhoseinput–outputrelationmatchesarangeofexperi- mentaldata.Thesemodelscouldbeusedinlarge-scalenetwork simulationsoftheneocortex.

2. Methods 2.1. Thecellmodel

Ouraimistocreateareducedpyramidalcellmodelthatissim- pleandfastbutdetailedenoughtoshowcomplexsomato-dendritic interactions.Themodelisbasedonstandardtechniquesfromcom- partmentalandionchannelmodeling(HodgkinandHuxley,1952;

Rall,1962), implementedin NEURON7.1(CarnevaleandHines, 2005)andcontrolledviatheNEURON-Pythoninterface(Hinesetal., 2009).

Toobtaina simplified geometryof thedendrites, we model the functional neuronal sections (soma, basal dendrites, apical dendriteand theapicaldendritictuft) eachbyasinglecylinder whoselengthanddiameterwillbelaterdeterminedbytheopti- mizationalgorithm we describe. Theaxonal geometry is based ona detailedreconstruction(Zhu,2000)and consistsofa coni- calaxonhillock(l=20␮m)whichhasadiameterof3.5␮matthe somaconnectionand tapersto2.0␮m. Theconical axoninitial segment(iseg;l=25␮m)isconnectedtothehillockanditsdiam- etertapersfrom2.0␮mto1.5␮m.Theactualaxon(l=500␮m)is connectedtotheinitialsegmentandhasa uniformdiameterof

1.5␮m.WedidnotmodelnodesofRanvierormyelination.Asthe reducedmodelshouldbefast,thenumberofcompartmentsought tobeassmallaspossible.Wechosethefollowingcompartment numbersforthefunctionalsections:soma=1;basaldendrite=1;

apicaldendrite=5;apicaldendritictuft=2;axonhillock=5;initial segment=5;axon=1.Hence,themodelhasatotalof20compart- ments.

Ion channelswere selected and distributed based onrecent experimentalfindingsandmodelingstudiesandweredownloaded fromModelDB(Hinesetal.,2004):Ahyperpolarization-activated cationchannel(HCN)(Koleetal.,2006)wasinsertedintothebasal dendrite,the apicaldendrite and thedendritic tuft.A transient sodiumchannel(Nat)(Koleetal.,2006)wasplacedintothesoma, theaxonhillock,theinitialsegment,theapicaldendriteandthe dendritictuft.Thevoltagedependencyofthechannelkineticswas shiftedtohighervalues(vshiftNat=+10mV)inallcompartmentsto yieldhigherthresholds(MainenandSejnowski,1996).Weintro- ducedasecondvoltageshift(vshift2Nat)fortheNatchannelinthe initialsegmenttoaccountfordifferentchannelpropertiesinthis area(ColbertandPan,2002).Natchanneldensitydecayedlinearly intheapicaldendritewithdistancefromthesoma(Mainenetal., 1995;Kerenet al.,2009).Afastpotassium channel(Kfast)(Kole etal.,2006)wasinsertedintothesoma,theapicaldendriteand thetuft.Itsdensitydecayedexponentiallyfromthesomatowards thetuft(Kerenetal.,2009).Aslowpotassiumchannel(Kslow)was inserted intothe soma, the apicaldendrite and tuftand chan- neldensitiesdecayedexponentiallywithdistancefromthesoma (KorngreenandSakmann,2000).Apersistentsodiumchannel(Nap) wasinsertedintothesomatoadjusttheneuron’sexcitability(Traub etal.,2003).Amuscarinicpotassiumchannel(Km)wasinsertedinto thesoma.TheKmchannelisanon-inactivatingvoltage-dependent slowpotassiumchannelwhichisthoughttoplayaroleinspike frequencyadaption(Winogradetal.,2008).Aslowcalciumchan- nel(Cas)wasinsertedintothetuft.The voltagedependencyof itskineticscouldbeshifted(vshiftCas)toadjustactivationthresh- olds.Finally,acalciumdependentpotassiumchannel(KCa)(Mainen andSejnowski,1996)aswellasacalciumpump(CP)(Koleetal., 2006)wasinsertedintothetuft.The10optimizedreducedmodel neuronsandtheionchannelmodelsareavailablefordownloadat http://senselab.med.yale.edu/ModelDB.

2.2. Freemodelparameters

Reliabledataonthebiophysicalpropertiesofionchannelsin pyramidalneuronsarerareandmeasurementsmostlystemfrom differentneuronsfromdifferentanimalsoreven species.More- over,duetoexperimentallimitationsmanyparametersjustcannot bemeasured.Inparticular,informationaboutionchanneldensi- tiesandkineticsindistaldendriticbranchesarenotavailable.It is,therefore,notsufficienttoputtogetherallexistinginformation onpyramidalneuronsandbuildaworkingmodel;alonglistof uncertaintiesremains.Wemadeaselectionofthemostuncertain parametersthatwethoughtcouldbeestimatedbymeansofan optimizationstrategy:Thelengths(l),thediameters(d)andthe axialresistances(Ra)ofthefunctionalsectionsofthereducedmor- phologywerefreeparameters,aswerethevaluesofthemembrane resistance(Rm)andcapacitance(Cm).Weintroducedadendritic scalingfactor(dendscaling)thatallowedtheadjustmentofden- driticmembraneresistanceandcapacitancerelativetothesoma.

Thisshouldaccountfordendriticspines,systematicerrorsinden- driticreconstructionsordifferentratiosbetweenthesomasizeand thedendritictreesizeindifferentcells. Furtherfreeparameters weretheionchanneldensitiesindifferentcompartments,which weredescribedbythechannel’smaximalionicconductanceper membranearea(e.g.soma ¯gNat).Itwasshownthatcertainionchan- neldensitiesalongtheapicaldendritecanbedescribedbysimple

(3)

Table1

Fulllistofalloptimizedparameterswiththeirloweranduppersearchbounds(LSB,USB)togetherwithasummaryofmodelpropertiesforall10reducedmodels.(a)The morphologicalparametersfoundbyreducingthedetailedmodel(firststep)areshown.Theremainingparametersaregivenbecausethemethodmaintainsthetotalsurface areaofthefunctionalsectionsduringtheoptimization(Asoma=1682␮m2,Abasal=7060␮m2,Aapical=9312␮m2andAtuft=9434␮m2andthereforedsoma=23␮m,Lsoma=23␮m, dbasal=8.7␮m,dapical=5.9␮m,dtuft=6.0␮m).(b)Themodelparametersareshownthatwerefoundaftertheoptimizationofionicconductances(secondstep).Models1–6 wereoptimizedusingtargetdatabeforeandduringpinching,whilemodels7–10wereoptimizedonlywithtargetdatafromtheintactneuron.(c)Modelparametersfound afteroptimizingthedendriticcalciumdynamics(thirdstep)areshown.Inmodels4,5,9and10noparameterscouldbyfoundsatisfyingtherequirementsforpropercalcium dynamics.(d)Wesummarizedafewpropertiesofthe10resultingmodels:theratioofthesomaticsodiumandpotassiumchanneldensity,theratioofthesodiumchannel densityintheinitialsegmentandsomaaswellastheratioofthetuftHCNandbasalHCNchanneldensity.Itisalsosummarizedthatallmodelsshowback-propagatingAPs andwhichmodelsshowadecayofBAPamplitudewithsomaticdistance(illustratedinFig.7).Finallywesummarizethemodulationoftherestingpotentialalongtheapical dendrite(distalvoltage–somaticvoltageatrest,seeFig.6).Ifpropercalciumdynamicscouldbefoundinthethirdstepweshowtheresultingcouplingfactor.

Parameter Result LSB USB Unit

(a)Parametersfoundinfirststep

somaRa 82 80 200 cm

basalL 257 170 280 ␮m

basalRa 734 700 2000 cm

apicalL 500 500 800 ␮m

apicalRa 261 150 300 cm

tuftL 499 400 600 ␮m

tuftRa 527 500 1200 cm

Parameter Model1 Model2 Model3 Model4 Model5 Model6 Model7 Model8 Model9 Model10 LSB USB Unit (b)Parametersfoundinsecondstep

epas −83.06 −80.40 −80.50 −78.97 −82.55 −85.00 −83.68 −80.74 −84.37 −80.75 −85.00 −60.00 mV

Rm 23,823 20,588 20,514 10,784 17,387 15,159 21,298 11,594 11,081 14,712 10,000 30,000 cm2

Cm 2.30 2.23 2.41 1.79 2.02 2.71 2.37 2.34 1.40 2.51 0.60 3.00 ␮F/cm2

dendscaling 0.86 0.78 0.69 0.50 0.52 0.50 0.55 0.50 0.50 0.50 0.50 2.00 1

soma ¯gNat 284.55 236.62 238.88 182.17 248.75 295.47 447.25 402.17 277.35 371.43 0.00 500.00 pS/␮m2

soma ¯gKfast 50.80 67.20 59.26 45.43 44.77 43.23 43.78 41.35 32.41 48.25 0.00 300.00 pS/␮m2

soma ¯gKslow 361.58 475.82 433.80 467.50 523.27 630.25 190.33 264.79 187.87 621.74 0.00 1000.00 pS/␮m2

soma ¯gNap 0.87 1.44 1.48 3.33 2.29 3.52 0.85 4.18 2.21 4.16 0.00 5.00 pS/␮m2

soma ¯gKm 7.12 10.46 11.12 12.99 14.20 11.91 11.05 14.92 12.22 7.00 0.00 15.00 pS/␮m2

basal ¯gHCN 15.71 11.04 10.72 7.94 13.62 12.87 3.12 11.92 13.90 22.09 0.00 50.00 pS/␮m2

tuft ¯gHCN 17.69 16.19 17.80 18.89 15.73 23.93 40.67 15.27 51.84 3.34 0.00 150.00 pS/␮m2

tuft ¯gNat 6.56 47.82 29.01 76.65 40.38 45.92 0.41 11.56 46.94 87.60 0.00 100.00 pS/␮m2

Kfast 58.52 20.08 55.58 2.15 8.91 65.61 82.07 91.80 73.47 67.52 1.00 100.00 ␮m

Kslow 42.21 37.71 88.72 55.49 49.67 34.33 65.18 75.61 69.61 83.03 1.00 100.00 ␮m

hillock ¯gNat 8811 9512 8303 5997 4988 9451 8171 8030 4904 8407 0 20,000 pS/␮m2

iseg ¯gNat 13,490 13,327 17,624 12,625 10,730 17,194 19,583 17,591 10,777 15,509 0 20,000 pS/␮m2 isegvshift2Nat −9.80 −10.61 −9.57 −10.16 −10.75 −8.92 −5.36 −5.98 −10.26 −8.47 −15.00 0.00 mV

Parameter Model1 Model2 Model3 Model4 Model5 Model6 Model7 Model8 Model9 Model10 LSB USB Unit (c)Parametersfoundinthirdstep

apicalRa 454.06 382.22 444.13 445.01 332.92 358.47 250.00 500.00 cm

tuft ¯gCas 3.68 0.45 2.12 0.49 2.81 3.86 0.00 4.00 pS/␮m2

tuftvshiftCas 7.48 7.19 8.35 0.80 2.35 3.79 −10.00 10.00 mV

tuft ¯gKCa 9.76 6.15 8.23 9.69 9.55 9.60 0.00 4.00 pS/␮m2

Property Model1 Model2 Model3 Model4 Model5 Model6 Model7 Model8 Model9 Model10 (d)Modelproperties

soma ¯gNat/( ¯gKfast+g¯Kslow) 0.69 0.44 0.48 0.36 0.44 0.44 1.91 1.31 1.26 0.55 iseg ¯gNat/(soma ¯gNat) 47.41 56.32 73.78 69.30 43.14 58.19 43.78 43.74 38.86 41.76 tuft ¯gHCN/(basal ¯gHCN) 1.13 1.47 1.66 2.38 1.16 1.86 13.03 1.28 3.73 0.15

BAPs? Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

BAPsdecay? Yes Yes Yes No No Yes Yes Yes No No

Mod.ofrest +1.2mV +1.5mV +2mV +1.5mV +1.5mV +2mV +5mV +0.5mV +4mV −2mV

Coupling 0.50 0.50 0.50 0.62 0.50 0.54

functions(Bergeretal.,2001;Koleetal.,2006).Weassumedan exponentialdecayofthepotassiumchanneldensityalongtheapi- caldendritebutallowedthespaceconstant(Kfast,Kslow)tobe afree parameter.Natand HCNchanneldensitieswerechanged linearlyalongtheapicaldendritewithslopescalculatedbasedon thechannels’densitiesinthesomaandtuft.Finally,somekinetic parametersofthesameionchanneltypearedistinctindifferent partsoftheneuron(ColbertandPan,2002).Thereforewechosethe voltagedependencyoftheNatchannelintheaxoninitialsegment (isegvshift2Nat)andthevoltagedependencyoftheCas-channelin thetuft(tuftvshiftCas)asfurtherfreeparameters.Thefreemodel parametersusedforoptimizationaswellasloweranduppersearch boundsarelistedinTable1.

2.3. Theoptimizationalgorithm

InallthreeoptimizationstepsweusedtheEvolutionaryMulti- ObjectiveOptimization(EMOO)algorithm(Deb,2001;Debetal., 2002).TheEMOO-algorithmallowsone tosimultaneouslymin- imize multiple and possibly conflicting error functions and is thereforeespeciallywellsuitedfortheoptimizationofspikingneu- ronmodelstoexperimentaldata(Druckmannetal.,2007,2008).

EMOO isa geneticalgorithm and usesmechanismsinspiredby biological evolution, suchas selection, crossoverand mutation, to grow a population of size N to a certain capacity C and to transfergoodindividualsintothenextgeneration.WeusedaSim- ulated BinaryCrossoveroperator (DebandAgrawal,1995)anda

(4)

PolynomialMutationoperator(Deb,2001).Theefficacyofanoper- atoriscontrolledbycandmrespectively.Largevaluescandm

meanthattheoperator’seffectisweak.TheEMOO-algorithmwas implementedinPythonandrunparallelizedonanAMDx8664 clusterwith80processorsrunningLinux.ThePython-Framework fortheevolutionarymulti-objectiveoptimizationisavailablefor downloadunderwww.g-node.org/emoo.

3. Results

3.1. Stepwisefittingstrategy

Animportantaspectofagoodmodelisthatitcloselyreproduces datausedtoconstructthemodeland,evenmoreimportantly,pre- dictskeyfeaturesofnewdatathatwerenotusedtoconstrainthe model(Druckmannetal.,2011).Tuningasetofparametersbyhand suchthatthemodelfulfillstheserequirementsisadaunting,time- consumingorevenimpossibletaskandanewsetofdataorminor modelmodifications mightrequire arepetition ofthat process.

Thereforetheprocessofcreatingamodelandtuningitsparam- etersshouldbeasautomatedaspossible.Todividetheparameter spaceintosmallerunitsandtooptimizeeachparametersubset independentlywehavedevelopedathree-stepfittingstrategy:In thefirststepweestimatedthegeometryofthemodel,includingthe axialresistancesofthesections.Thegeometricalparametersofthe modelwerefixedafterthisstep.Inthesecondstepallionchan- nelandmembraneparametersaffectingsomaticspikingbutnot calciumspikingdynamicswereoptimized.Oncethisstepwascar- riedout,theseparameterswerealsofixed.Finally,inthethirdstep weestimatedtheparametersneededfordendriticcalciumspike dynamics.Inanoptimalscenarioallthesedatawouldcomefrom thesameneuronfromthesameanimal.Thiswouldbeanexper- imentalchallengeandcurrentlysuchasetofdatadoesnotexist.

Thereforewehavetocombinedatafromdifferentexperimentsin eachofthesesteps.

3.2. Firststep:optimizingthereducedgeometry

Toobtainarepresentativegeometryforthereducedmodelwe startedwithadetailedmodelreconstructionofalayer5pyramidal neuronfromayoung(≈P21)rat(StuartandSpruston,1998).Todo soweadoptedamodelsimplificationstrategy(Destexhe,2001):

Asweare onlyoptimizing theneuronalgeometry weremoved allactiveconductancesandgloballysetthemembraneresistance (Rm)to15,000cm2,themembranecapacitance(Cm)to1pF/␮m2, thereversalpotential(epas)to−70mVinboththedetailedandin thereducedmodel.Thespecificmembrane parameters(Rm,Cm, epas)donotchangewithgeometryandthereforedonotneedto beoptimized in the firststep. However theywill needfurther tuningwhen themodel is matched tospikingdata inthe sec- ondstep. Next, weassigned each compartment in the detailed model to one of the functional sections (basal dendrite,soma, apicaldendrite,tuft),determinedtheirsurfaceareasandsetthe sizeofthefunctionalsectionsinthereducedmodeltothesame values(Asoma=1682␮m2,Abasal=7060␮m2,Aapical=9312␮m2and Atuft=9434␮m2). Then, in thedetailed model, we setthe axial resistance(Ra)globallytothecommonlyusedvalueof100cm.

Asitisnotclearwhattheaxialresistanceandthelengthofthe functionalsectionsinthereducedmodelshouldbe,weneededto estimatethesevalues.Onceweknowthelengthofafunctional section,wecanalsocomputeitsdiameter,asthisshouldleadto thesamesurfaceareaasmeasuredinthereconstruction.Destexhe (2001)onlyusedthesteadystatevoltageinresponsetoconstant currentinjectionstofittheseparametersacrossallcompartments.

Weusedthistargetfunction,aswell,butextendedthemethodto

reproduce the detailed neuron’s somatic input impedance and phase shift functions for oscillatory somatic input currents (0–1000Hz).Theseimpedancefunctionswereshowntocontain information about thesub-threshold neuronal dynamicsof the wholemorphology(Fox,1985;BorstandHaag,1996).Wedeter- mined these three functions in the detailed model and, for a givenparametercombination, in thereducedmodel and calcu- latedthesumofsquareddifferences.Thisgaveusthreefeatures tominimizebyEMOO.WeusedapopulationsizeofN=350and acapacity ofC=700individualsandevaluated100generations.

Thecrossoverparameterstartedatc=5andincreasedlinearlyto c=50,whilethemutationparameterincreasedfromm=10to m=500,therebyreducingthestrengthoftheseoperatorsduring evolution.Themutationprobabilityperparameterwasconstantat 10%.Wedroppedtheaxoninthisstepasthedetailedreconstruc- tionlacksanaxon.Theaxonwasappendedagainafterwardsand itsmembranepropertieswerechosentoequalthosefoundforthe soma.Appendingtheaxonreducedthesomaticinputresistance from69Mto63M.

After optimization the passive response properties of the reduced model matched those of the detailed model (Fig. 1).

Onesetofoptimalparametersisgivenin Table1;furtheropti- mization trials have led to different parameter combinations (notshown)that reproducedthepassiveresponsepropertiesof thedetailedmodelsimilarlywell.Tochallengetheoptimization methodweinjectedthesameGaussiannoiseintothesomaofthe reducedandcomplexmodelandmeasuredtheresultingvoltage responsesinthesomaandin thedendrite.Asdemonstrated in Fig.2,thepassivevoltageresponsesinboth modelsarealmost indistinguishable.

3.3. Secondstep:optimizingtheionchannelparameters

In the next step we estimated the ion channel parameters affectingsomaticspiking.Thiswasdoneusingexperimentaldata onthesomaticspikingdynamicsundertwodifferentconditions, firstin theintactneuron,and secondwhiletheapicaldendrite hasbeenoccludedusinga methodcalledPinching(Bekkersand Häusser,2007).Dendritic calciumspikesdevelop morefully in olderpyramidalneurons(Schilleretal.,1997)andareactivated bystrongdendriticlocaldepolarizationorbysomaticinputcom- binedwithdendriticinput(Larkumetal.,1999,2001).Thismeans that theexperimentaldatadoesnot containinformation about calciumdynamics.Thereforethisfeaturecouldnotbeoptimized hereandwe onlytunedtheparametersaffectingsomaticspik- inginthesecondstep.Astherecordingsweremadefromyoung rat(P17-25) pyramidalcells wecan usetheoptimized reduced geometrythatwe obtainedafterthefirststepas itisbased on adetailedgeometryofapyramidalneuronfromaratofsimilar age.

Pinchinghasanumberofeffectsonneuronaldynamics(com- pare black and blue traces in Fig. 3): (1) the input resistance increases (from ≈82M to 131M) and hence the spike fre- quency.By occluding theapical dendrite, one path for current lossis blocked,allowingthe somaticmembrane tobecharged moreeffectively(BekkersandHäusser,2007).(2)Thesomaticrest- ingpotentialbecomesmorehyperpolarized(≈4mV).Ithasbeen shownthatthedensityofIhincreaseswithdistancefromthesoma intheapicaldendriteoflayer5pyramidalneurons(Bergeretal., 2001;Koleetal.,2006).Whentheapicaldendriteisblockedduring pinching,thedepolarizinginfluenceofdendriticHCNchannelsis reduced,whichmightexplainthehyperpolarizationofthesomatic restingpotential.(3)ThethresholdforAPinitiationbecomeslower (≈3mV)andtheAPpeakvoltageincreases(≈0.8mV),which,at leastinamodel(BekkersandHäusser,2007)couldbeexplainedby thedecreaseinthedendriticcapacitance,reducingtheelectrical

(5)

Fig.1. Morphologyandpassiveresponsepropertiesforthecomplexandthereducedcellmodel.(a)Thedetailedreconstructionofalayer5pyramidalneuron(Stuart andSpruston,1998)thatweusedasthestartingpointtocreatethereducedmodel.(b)Anillustrationofthereducedmodel(samescaleasdetailedmodel,geometrical parameterscanbefoundinTable1).Wedividedthecomplexmorphologyintofourfunctionalsections:Thesoma,thebasaldendrites,theapicaldendritesandthetuft.

Theobliquedendritesareconsideredtobepartoftheapicaldendrites.(c)Weinjectedaconstantcurrent(−1nA)intothesomataofbothmodelneuronsandmeasured thesteady-statevoltageatdifferentlocations.(d)Weusedalow-amplitudeoscillatorysomaticinputcurrentandmeasuredtheresultingmembranepotentialoscillationto determinethesomaticfrequency–impedancecurveforbothmodels.(e)Wecalculatedthesomaticphase-shiftbetweentheoscillatoryinputcurrentandresultingmembrane potentialoscillationforbothmodels.Theblackdotsandcurvesin(c–e)describethepassiveresponsepropertiesofthedetailedmodelandservedastargetfunctionsforthe optimizationprocedureinthefirststep.Thereddotsandcurvesshowthecorrespondingresponseofthereducedmodelafteroptimization.

Fig.2. Comparisonofthevoltagetracesinthecomplexandinthereducedmodelinresponsetonoisyinputcurrent.Totestwhetherthereducedmodelisagoodapproximation ofthecomplexmodel,weanalyzedresponsestoGaussiannoisecurrentinjections.Thesamerandomcurrentwasinjectedintothesomataofthemodels(greenelectrodes inaandbandgreentraceine).Forbothmodels,thesomaticvoltageaswellasthevoltagedistally(≈280␮mand≈425␮mfromthesoma)wasrecorded(blackandred electrodesinaandb)andtherecordingsoverlaid(tracesinc–e).

(6)

Fig.3.Fittingresultsforthereducedmodel2afterevolvingtheionchannelconductancesusingEMOOinthesecondstepofoptimization.Foursub-thresholdstepcurrents andonesupra-thresholdstepcurrentweredelivered,andtheneuron’sandmodel’svoltageresponsewasrecordedinthesomabeforeandduringpinchingoftheapical dendrite.Thesevoltagetraceswereusedfortheoptimization.Theleftpartofthefigurecomparestheexperimentalrecordings(black)withthemodelresponses(red)forthe intactneuronbeforepinching.Thetracesintherightpart(blueandorange)showthecorrespondingresponsesduringpinching.Acomparisonoftheblackandbluetraces (a–c,leftandrightparts)revealstheeffectspinchinghasontheneuronalresponseproperties.Weusedthefollowingfourobjectivesfortheoptimization:(1)theshapeof theAPonset(a,lefttraces);(2)theshapeoftheAPoffset(a,righttraces);(3)Theinterspikeintervaltimes(ISIs)ofthespiketrain(b,onlythefirst600msareshownfor bettervisualization).(4)Thefoursub-thresholdtraces(c).ThefivestepcurrentinjectionswereIamp=−0.1nA,−0.05nA,0nA,0.05nAand0.4nA(d,greentraces).Thefour objectives(a–c)weredeterminedbeforeandduringpinchingandcomparedwiththeexperimentaldata.Theresultingdistancesweresummedupyieldingfourdistance functionsthatweminimizedbyEMOO.Nocalciumchannelswerepresentinthisstepoftheoptimization.

loadon the AP initiation site in the axon. (4) The spike after- hyperpolarizingpotential(AHP)becomesstrongerduringpinching (≈3mV).ItisunknownwhatcausestheincreaseintheAHP.Under normalconditionsintheintactcell,back-propagatingactionpoten- tials(BAPs) (StuartandSakmann,1994)arecarriedbydendritic voltage-dependentcurrents,andthisinturnleadstodendriticcur- rents flowing backtothesomathat counteract theAHP. Upon pinching,thissourceofdepolarization isremoved,whichcould resultinanapparentincreaseoftheAHP.

Forourtargetdata,wechosea pyramidallayer5cell’s volt- agetracesin responsetofourweakcurrentinjections(−0.1nA,

−0.05nA,0nA,0.05nA)andonestrongercurrentinjection(0.4nA) that led tospiking responses under both conditions, before as wellasduringpinching.Thegoalofparameteroptimizationusing EMOOwastoreproducethesedataandtheeffects ofpinching.

EMOO automaticallydistributedthe activeconductances inthe axon,somaanddendrites.

Aspike was definedas a voltage excursionabove a thresh- old(=−20mV).Thespiketimewasgivenbythetimeatwhich the voltage reaches its maximum, whereas the spike width is measuredbyvoltagecrossingthethresholdbeforeandafterthe spike.

Inresponsetosupra-thresholdstimulationof0.4nA,themodel hadtorespondwithatleastsixspikes.Furtherprerequisitesforthe model’sresponseatthiscurrentwere:nospikewidthcouldexceed 3ms;theabsolutespikeheights(voltagepeaks)fromthethirdto

thepenultimatespikecouldnotchangebymorethan20%;thevolt- ageminimumbetweenthethirdandthefourthspikecomparedto thevoltageminimumbetweenthepenultimateandthelastspike shouldnotchangebymorethan10%;and,finally,thereshouldnot beanyinterspikeinterval(ISI)below15ms.Forallothercurrents, themodelwasrequirednottospike.

Iftheseprerequisiteswerenotmet,forboth theintactneu- ronaswellasforthemodelneuroninwhichtheapicaldendrite waspinched,theEMOOalgorithmseverelypunishedthemodelby assigningitanextremelyhigherrorvalue.Withtheprerequisites fulfilled,foursquareddistancevaluesweremeasuredbetweenthe modelresponseandtheexperimentaldata:

(1) We determined the distances between model and data foreachofthefoursub-thresholdtracesbetweent=−50msand 300ms (relativetothe currentinjectiononset, t0=100ms)and summedthesedistancesup:

E1=

k

300

−50

(vkModel(t)−vkExp(t))2dt

(2)WedeterminedthesquareddistancebetweentheaverageAP onsetinthemodelandtheAPonsetinthedata.Forthispurpose, thetimesegmentbetween−0.5and−0.1msbeforetheAPpeak wasconsidered,andboththevoltageanditstimederivativewere

(7)

Fig.4.Modelgeneralization.Toillustratehowwelltheoptimizedmodelgeneralizes,wecomparethemodelresponses(redandorangetraces)toanewinputcurrent(c, 0.6nA)withthecorrespondingexperimentaldata(blackandbluetraces).Theseexperimentaltraceshavenotbeenusedduringtheoptimization.Shownarethemodel predictionsoftheAPshape(a)andofthespiketrain(b)beforeandduringpinching.

used:

E2=

tspike0.1 tspike−0.5

(vModel(t)−vExp(t))2

+0.01·

d

dtvModel(t)− d dtvExp(t)

2

dt

(3)WealsodeterminedthedistancebetweentheaverageAP offsets,includingtheirfirstderivatives(timewindowrangedfrom 0.1msto14msafterthespikepeaks):

E3=

tspike+14 tspike+0.1

(vModel(t)−vExp(t))2

+0.01·

d

dtvModel(t)− d dtvExp(t)

2

dt

As we included the time derivative for feature extraction our approach resembles the idea of taking thephase-plane of a spike train for theoptimization (LeMasson and Maex, 2001).

Thatapproach,however,putsmoreweightonthesub-threshold responsesthanonthespikeshape.Thiscanleadtoimperfectfit- tingresults,especiallywhenexperimentaldataisusedasatarget (Druckmannetal.,2008).Weinsteadfocusontheaveragespike ratherthanonthewholespiketrainandhenceovercomethatlim- itation.Theexperimentaldataweusedfortheoptimizationwas recordedat50kHz(t=20␮s)anddoesnotprovidesufficienttime resolutionforproperspikealignmentandhenceforcalculatingthe averagespikeanditstimederivatives.Thereforeweappliedacubic splineinterpolation(newt=5␮s)toeachspikeandthenaligned andaveragedtheseinterpolatedspikes(WheelerandSmith,1988).

(4) Finally we also determined a distance for each ISI and summedthesedifferencesup.Thisdistancefunctionhasalready

proventobewellsuitedfortheoptimizationofconductance-based models(Kerenetal.,2005):

E4=

i

(ISIModeli −ISIExpi )2

Foreachofthefourdistances,thevaluewasdeterminedbefore and during pinching and summed, yielding four final distance values. If all four distances are minimized, then the resulting modelreproducesexperimentalsub-thresholdresponses,spiking responsesaswellasdetailedAPshapebeforeandduringpinching.

Theeffectofpinchingwasintroducedintothemodelbyincreasing theaxialresistanceoftheapicaldendritetoahighvalue(106cm).

Tominimizethefourdistancevalues,weusedEMOOwithapop- ulationsizeofN=1000andacapacityofC=2000individuals.1000 generationswereevaluated.Thecrossoverandmutationparam- etersremainedconstantatc=10andm=20respectively.The probabilityofamutationperparameterwas20%.Bydesign,EMOO endswithapopulationcontainingmodelsthatperformwellon oneofthedistancemeasuresalone,butcouldbefaroffthemarkin theothers.Butthefinalpopulationalsocontainsmodelsthathave intermediatefitnessineachofthedistancefunctions.Itisupto themodelertochooseanindividualfromthepopulation.Inorder todothisstepautomaticallyaswell,wenormalizedeachdistance functionbythelowestvaluefoundintherespectivedistancefunc- tionofthelastgeneration.Thisnaturalnormalizationthenallowed ustogothroughallgenerationsandpicktheindividualforwhich thesum(=totalerror,ET)ofthesenormalizeddistancevalueswas minimal.

Weperformedsixindependentoptimizationtrials,witheach trialrequiring approximatelytwo daysof runtime. Therelative improvementofthetotalerrorduringevolutionwas86±5%(mea- suredas(ET(0)−ET(i))/ET(0);ET(0)istheminimaltotalerrorinthe initialpopulationandET(i)istheminimaltotalerrorinthefinal

(8)

Fig.5.Modelpredictionoffiringfrequency.Wecomparetheexperimentallymea- suredwiththepredictedfiringfrequenciesbeforeandduringpinching(blackand reddotsandblueandorangedotsrespectively)forcurrentinjectionsrangingfrom 0nAto1.1nA.Thecurrentinjection’amplitudetakenformodeloptimizationwas 0.4nAwhichisillustratedwiththeblackdashedline.Errorbarsfortheexperimental datashowthestandarddeviationofthetwomeasurementsforeachdatapoint.

population)indicating a significantimprovement of thefit.We obtainedsixmodelsthatcloselyreproducetheexperimentalsub- thresholdresponses,thespiketrainaswellastheAPshapebefore andduringpinching,buthavedifferentsetsofparameters(models 1–6,Table1).Fig.3showsthefittingresultsformodel2.Theother fivemodelsreproducethedatasimilarlywell(notshown).

3.3.1. Optimizationwithoutthepinchingdata

Thedatasetwehaveusedforoptimizationisunusual,giventhat theneuron’sresponsewithandwithouttheapicaldendritewas measured.Wewishedtoquantifyhowmuchisgainedbyusingsuch data.Therefore,werepeatedtheoptimizationstrategydescribed abovebutexcludedthedistancesobtainedduringpinching and onlyusedmodelresponsesanddatafromtheintactneuron.This wasdoneforfourindependentruns(models7–10,Table1).The qualityofthefitimprovedsignificantlyduringevolutionasshown byarelativeimprovementofthetotalerrorof82±10%.Thesemod- elsreproducetheexperimentalrecordingsfortheintactneuron well,includingtheAPshape.Howeverthepredictionoftherecord- ingsduringpinchingispoorinallthesemodelsandalsovariable betweenmodels(seeFigs.S1andS2).Thisshowsthatthediffer- enceinneuronalresponsesbeforeandduringpinchingcontains usefulinformationaboutdendriticparameters.

3.3.2. Modelevaluation

Wecheckedhowwelltheoptimizedreducedmodelsgeneralize toinputcurrentsthatwerenotusedintheoptimizationprocess.

Forthiswecomparedtheresponsesofmodel2withtheexperi- mentaldataforanothercurrentinjection(0.6nA),whichthemodel predictswell(Fig.4,theothermodels’predictionsweresimilarly good).Moreover,themodel’sspikefrequencybeforeandduring pinchingisqualitativelycorrectforabroadsetofcurrentinjections (between0and1.1nA),withaslightlyhigherfiringfrequencyfor strongerinputcurrents(Fig.5).

We werealso interestedin how theoptimized models pre- dictotherexperimentalfindingsinpyramidalneurons.Models1–6 showedarestingpotentialmodulationwithdistancefromthesoma ofapproximately+2mV(Fig.6AandTable1)whichisqualitatively alsoseen in experiments (Stuart etal., 1997).Followingprevi- ousstudies(Kerenetal.,2009)weusedmodel2toevaluatethe conductancesactive atrestalong theapical dendrite.It canbe

seenthattheenhanceddendriticdepolarizationatrestisdueto anincreaseddendriticdepolarizingHCNcurrent(Fig.6B)anddue toalackofhyperpolarizingdendriticpotassiumcurrents(Fig.6D andE).Themodulationoftherestingpotentialin models7–10 wasvariable,andinmodel10theneuron’svoltagebecameeven morehyperpolarizedthefartherawayfromthesoma(Table1).

Thisshowsthatthepinchingdatais beneficialtoproperly con- straindendriticparameters.Next,wetestedifthemodelpredicts realisticBAPs(StuartandSakmann,1994;Stuartetal.,1997).In all10modelssomaticAPsactivelypropagatedintotheapicalden- dritewhiletheAPhalf-width(widthathalfwayfrom−60mVto theAPpeak)increased.Inmodels1–3and6–8theAPamplitude decreasedwithsomaticdistance,whileinmodels4,5,9and10the APamplituderemainednearlyconstantalongtheapicaldendrite (notshown).Fig.7illustratesBAPsformodel2.

Finallywetestedhowwellanaverageoftheoptimizedmodels 1–6wouldfittheexperimentaldata.Theresultingmodelpresented asurprisinglygoodfittothedata(Fig.S4)andthepredictionofthe experimentalIF–curveappearedevenbetterthaninanyofthe6 optimizedmodels(Fig.S5).Itmightbepossiblethattheparameter rangeleadingtogoodfittingresultsisbroadand thattheaver- agemodelstilllieswithinthisrange.Totestforthiswereplaced onlyasingleparameter(likeRm)permodelwithitsaverage,which producedamodelthatfailedreproducingtheexperimentaldata.

Thisshowsthatthequalityoftheaveragedmodelisratheranindi- cationthatcertainparameterratios(thataremaintainedduring averaging)determinethequalityofthefit.

3.4. Thirdstep:optimizingthecalciumspikedynamics

Olderpyramidalneuronsshowelaboratecalciumspikedynam- ics,i.e.astrongdendriticcurrentinputinducesalocaldendritic calcium spike, which can in turn depolarize the soma suffi- ciently to evoke axosomatic APs (Schiller et al., 1997; Larkum etal.,1999).Moreover,axosomaticallyinitiatedspikescanactively back-propagatealongtheapicaldendriteandreducethecurrent thresholdfordendriticcalciumspikeinitiation(Larkumetal.,1999, 2001).Thisthresholdreduction translatesintoacouplingfactor betweensomaanddendrite,estimatedtobearound0.5forpyra- midalneurons(Schaeferetal.,2003).

We wanted ourreduced model to reproduce thesecalcium spikedynamicsand showhow themethodcanbeextendedto matchrather differentdata sets.In general,fourparameters in themodeldominatethecalciumdynamics.Thestrengthandini- tiationthresholdofadendriticcalciumspikearedeterminedby the calcium channel density in the tuft ( ¯gCas) and the voltage shift(vshiftCas)ofthischannel.Thecalcium-dependentpotassium channel curtailsthelength of thecalciumplateau and thereby thenumberofsomaticaction potentialsina burst.Thedensity ofthis channel ( ¯gKCa)wasalsooptimized. Theapicalresistivity (apicalRa),eventhoughithadbeenpreviouslyoptimizedinthe firststep,hadtobeleftasafreeparameteraswell.Allremain- ing parameters that had been previously optimized were not modified.

To illustrate the power of the evolutionary optimization approach,wedonotusequantitativeexperimentaldatatocon- structthedistancefunction.Instead,wetookgeneralexperimental observationsofhowdendriticcalciumdynamicsdependonthe couplingof thesomaandthedendrite(seeexperimentaltraces inFig.8)and constructeda discrete step-likedistancefunction describing which of these interactions the model qualitatively reproduced.Geneticalgorithmsfortheoptimization,asopposedto gradientdescent,forinstance,canhandlesuchastep-likedistance function.Foragivenparametercombinationwesetthedistance function(orerror)Easfollows:

(9)

-70 -69 -68

0 200 400 600 800 1000

Resting potential (mV)

Distance to soma (µm)

a

0 100 200 300 400

0 200 400 600 800 1000 gHCN (fS/µm2 )

Distance to soma (µm)

b

0 0.05 0.1

0 200 400 600 800 1000 gNat (fS/µm2 )

Distance to soma (µm)

c

0 20 40 60

0 200 400 600 800 1000 gKfast (fS/µm2 )

Distance to soma (µm)

d

0 100 200 300 400 500

0 200 400 600 800 1000 gKslow (fS/µm2 )

Distance to soma (µm)

e

Fig.6. Modelpredictionofdendriticpropertiesandchanneldensities.Therestingpotentialismoredepolarizedinthedistalregionsthanintheproximityofthesoma(a).

TheHCNchanneldensityincreasesalongtheapicaldendrite,addingtothedepolarizationatrest(b).Thesodiumconductanceatrestisnegligibleanddecayslinearlywith somaticdistance(c).Bothpotassiumchannelconductancesdecayrapidlywithsomaticdistance(d,e).Atrest,theseconductancesthusonlyhyperpolarizethesoma.

(1) We determined the threshold somatic current pulse required for a somatic spike. Observing more than a single somaticspikeatthresholdimpliesthatasingleback-propagating AP already elicits a dendritic calcium spike and thereby fur- thersomatic spikes. Thisis not seen in experiments, however.

Hence, a model exhibiting multiple spikes was penalized and associatedwiththehighesterrorvalue(E=5000)duringoptimiza- tion.

(2)Now,ifatthresholdonly asinglesomaticspikewasini- tiated, we nexttested whethera strongEPSP shapeddendritic currentinjectionalonecouldinducealocaldendriticcalciumspike.

Wealsocheckedwhetherthisalsoresultedinaquicklyforward spreading Caspike andeventually multiplesomatic spikes.We searchedforthedendriticcurrentamplitudethreshold(=ICA)that ledto this behavior. Based onexperimental observations, such a currentshouldelicit aburstof 2–4spikesinthesoma. Yeta somaticspikecanoccursimplyduetodepolarizationofthesoma, withoutadendriticspike.Sowedouble-checkedwhetherthefirst somaticspikewas,infact,duetoasomaticdepolarizationresult- ingfromadendriticCaspike.Forthispurpose,weintegratedthe voltageinthetuftfrom−10msto0msbeforethefirstsomatic spikepeak.Alargevalueforthisintegralindicatesthatthecalcium spikewastriggeredlocally;aslongasthetuftvoltageintegralwas largerthan500mVmsweconsideredthecalciumspiketobelocal.

Ifnocurrentamplitudewasfoundtoproducealocallyinitiated andforwardpropagatingcalciumspikewesettheerrorvalueto E=4000.

(3)Thenexttestwastodeterminehowaback-propagatingNa- spikefromthesomainfluencesthatthreshold.Tomeasurethis, weinjectedabriefsomaticcurrentpulseintothesomatoiniti- ateaback-propagatingAPandsearchedfortheminimaldendritic currentthreshold(=IBAC)neededtoinitiateacalciumspike.The resultingcalciumspikehadtofulfillthefollowingrequirements:It shouldproduceasomaticburstof2–4spikesanditshouldconsist ofprolongeddendriticdepolarizationwithafastshutoff.Toquan- tifytheserequirementswedetermined2voltageintegralsinthe tuft(I1from0msto50msandI2from100msto150msafterthe firstsomaticspikerespectively):I1hadtobelargerthan500mVms whileI2hadtobesmallerthan1000mVms.Ifnodendriticcurrent couldbefoundthatinitiatedacalciumspikewesettheerrorvalue toE=3000.

(4)Ifthemodelpassedalltheprecedingtests,theerrorwas determinedcompletelybythesomato-dendriticdegreeofcoupling (C)(Schaeferetal.,2003):

C= ICA−IBAC ICA

Referenzen

ÄHNLICHE DOKUMENTE

surface, at 0.3 bath changes/hour (left) and 10 bath changes/hour (right) in a conventional cross flow electrolysis cell design [46] ...44 Figure 21: Concentration boundary layer

Most importantly, even very weak steady-state input to the dendrite increases the gain of proximal inputs implying that top-down input arriving at the distal dendritic

In particular, the overall power demand of the network is optimized by using flexibilities resulting from distributed storage devices and controllable loads..

The article “Parallel optimization of the ray-tracing algorithm based on the HPM model”, written by Wang Jun-Feng, Ding Gang-Yi, Wang Yi-Ou, Li Yu-Gang, and Zhang Fu-Quan,

During the last two decades, a wide variety of advanced methods for the visual exploration of large data sets have been proposed.For most of these techniques user interaction has

На основе модели формулируется задача оптимального управления, анализ которой проводится в рамках принципа максимума Понтрягина для задач

Connections be- tween the probability of ruin and nonsmooth risk functions, as well as adaptive Monte Carlo optimization procedures and path dependent laws oflarge numbers,

It would be greatly enhanced by application of multi-criteria model analysis, because in fact we deal with two conicting goals, namely, to minimize the tropospheric ozone