• Keine Ergebnisse gefunden

Modern organic carbon deposition in the Laptev Sea and the adjacent continental slope: surface water productivity vs. terrigenous input

N/A
N/A
Protected

Academic year: 2022

Aktie "Modern organic carbon deposition in the Laptev Sea and the adjacent continental slope: surface water productivity vs. terrigenous input"

Copied!
12
0
0

Wird geladen.... (Jetzt Volltext ansehen)

Volltext

(1)

P e r g a m o n

Org. Geochem. Vol. 26, No. 5/6, pp. 379-390, 1997

© 1997 Elsevier Science Ltd All rights reserved. Printed in Great Britain PII: S0146-6380(97)00007-7 0146-6380/97 $17.00 + 0.00

Modern organic carbon deposition in the Laptev Sea and the adjacent continental slope: surface water productivity vs. terrigenous input

K I R S T E N F A H L and R U E D I G E R S T E I N

Alfred-Wegener-lnstitute for Polar and Marine Research, Columbusstrasse, 27568 Bremerhaven, Germany

(Received 22 April 1996; returned to author for revision 25 June 1996; accepted 21 January 1997) Abstract--Sediment samples from the Laptev Sea, taken during the 1993 RV Polarstern expedition ARK IX/4 and the RV Ivan Kireyev expedition TRANSDRIFT I, were investigated for the amount and composition of their organic carbon fractions. Of major interest was the identification of different processes controlling organic carbon deposition (i.e. terrigenous supply vs. surface water productivity).

Long-chain unsaturated alkenones derived from prymnesiophytes, and fatty acids derived from diatoms and dinoflagellates, were analysed by means of gas chromatography and mass spectrometry. First results on the distribution of these biomarkers in surface sediments indicate that the surface water pro- ductivity signal is well preserved in the sediment data. This is shown by the distribution of the 16:1(n-7) and 20:5(n-3) fatty acids indicative for diatoms, and the excellent correlation with the chlorophyll a concentrations in the surface water masses and the biogenic-opal content and increased hydrogen indi- ces of the sediments. The high concentration of these unsaturated fatty acids in shallow water sediments shows the recent deposition of the organic material. In deep-sea sediments, on the other hand, the con- centrations are low. This decreased content is typical for phytoplankton material which has been degraded by microorganisms or autoxidation. In general, the alkenone concentrations are very low, suggesting low production rates by prymnesiophytes. Only at one station from the lower continental margin influenced by the inflow of Atlantic water masses, were some higher amounts of alkenones determined. Long-chain n-alkanes as well as high C/N ratios and low hydrogen indices indicate the im- portance of (fluvial) supply of terrigenous organic matter. © 1997 Elsevier Science Ltd

Key words--fatty acids, alkenones, marine organic matter, terrigenous organic matter, Laptev Sea, Arc- tic Ocean

INTRODUCTION

In relation to the world's ocean, the Arctic Ocean is rather less productive due to the permanent ice- cover (Subba R o a and Platt, 1984); however, re- gional differences occur. In marginal seas (such as the Laptev Sea) characterized by an increased flu- vial nutrient supply, near ice edges, a n d at local/re- gional upwelling cells, significantly raised primary production rates are expected. The m a p p i n g of sedi- mentological, geochemical a n d biological data reflecting the surface water productivity in surface sediments, and the subsequent comparison to recent oceanographic and biological parameters, will allow one to elucidate the most important processes deter- mining primary production in the Arctic Ocean.

Besides nutrients, the major Eurasian rivers also transport large a m o u n t s of dissolved a n d particulate material (i.e. chemical elements, siliciclastic a n d or- ganic matter) onto the shelves where it is accumu- lated, or further transported, toward the open ocean by different mechanisms (sea-ice, icebergs, turbidity currents, etc.). F o r example, the a n n u a l discharge o f suspended sediments by the Lena River is 17.6 x 106 tons, a n d the a m o u n t of dis-

solved organic carbon reaches m a x i m u m values of 11 mg/l during summer floods (Martin et al., 1993a). Thus, river-derived (terrigenous) organic material contributes major proportions to the or- ganic carbon in the sediments of the Laptev Sea and its adjacent continental slope.

The major goal of this study is to determine the a m o u n t and composition of the organic carbon fraction and to characterize the mechanisms con- trolling organic carbon deposition in surface sedi- ments from the Laptev Sea and its adjacent continental slope (i.e. surface water productivity vs.

terrigenous input).

FACTORS DETERMINING PRIMARY PRODUCTIVITY AND TERRIGENOUS ORGANIC CARBON FLUX The most important factors controlling organic carbon enrichment in the marine e n v i r o n m e n t are (1) increased surface water productivity, (2) increased preservation of organic carbon in anoxic a n d / o r high-sedimentation-rate environments, a n d (3) increased supply of terrigenous organic carbon (e.g. Berger et al., 1989; Stein, 1991). To distinguish between these different mechanisms, more detailed 379

(2)

380 Kirsten Fahl and Ruediger Stein information about the quantity as well as quality of

the organic matter is required. To get an estimate of the composition of the organic carbon fraction (i.e. to estimate the terrigenous and marine pro- portions) Rock-Eval pyrolysis parameters (HI), el- emental analysis data (C/N ratio), and Ol3Cor~

values are useful indicators in organic carbon-rich ( T O C > 0 . 5 % ) , immature sediments (Tissot and Welte, 1984; Stein, 1991). For a more precise deter- mination of the marine and terrigenous proportions of the organic carbon fraction, other methods such as kerogen/coal petrology, gas chromatography (GC), and mass spectrometry (MS) are required.

The distribution of n-alkanes determined by GC, for example, allows an identification of contri- butions of land-derived vascular plant material (characterized by long-chain C29 and C3j n-alkanes) and of marine phytoplankton (dominated by C~7 and C19 n-alkanes) (e.g. Blumer et al., 1971;

Kolattukudy, 1976; Prahl and Muehlhausen, 1989).

For fatty acids, it is generally accepted that mar- ine compounds are mainly represented by short- chain unsaturated fatty acids up to 22:6(n-3) indi- cating phytoplankton (or zooplankton) pro- ductivity, whereas the long-chain saturated fatty acids indicate a terrigenous input. Nearly the same is true for the wax esters. Based on the composition of the "marine" fatty acids it is possible to obtain more information about the productivity-controlling phytoplankton species. Diatoms mainly synthesize 16:1(n-7) and 20:5(n-3) fatty acids (Kates and Volcani, 1966; Ackman et al., 1968; Kattner et al., 1983; Fahl and Kattner, 1993; Graeve et al., 1994), whereas dinoflagellates synthesize the 18:4(n-3) and 22:6(n-3) compounds (Sargent and Henderson, 1986; Graeve, 1993).

At lower latitudes, the alkenones which were pro- duced by prymnesiophytes (Volkman et al., 1980), are used as (paleo-)temperature and (paleo-)pro- ductivity markers (Brassell and Eglinton, 1984;

Marlowe et al., 1984; Brassell et al., 1986; Prahl and Wakeham, 1987; Prahl et al., 1988).

(HI) and oxygen index (OI) were determined as described by Espitali6 et al. (1977).

For the lipid analyses the sediment samples were stored at -80°C or in dichloromethane/methanol (2:1, by vol.) at -23°C until further treatment. The sediment (2 g) was homogenised, extracted and pur- ified as recommended by Folch et al. (1957) and Bligh and Dyer (1959). An aliquot of the total extract was used for analyzing n-alkanes and alke- nones.

A l k a n e s

The alkanes were separated from the other frac- tions by column chromatography with hexane. The composition was analysed with a Hewlett Packard gas chromatograph (HP 5890, column 30 m x 0.25 ram; film thickness 0.25 #m; liquid phase: HP) using a temperature program as follows:

60°C (I min) to 150°C (rate: 10°C/min), then to 300°C (rate: 4°C/min), then 300°C (45 min isother- mal). A volume of 1 #1 was injected (cold injection system: 60°C (5s) to 300°C (60s, rate: 10°C/s) using helium as carrier gas. Squalane was added as an internal standard to provide quantitative data.

A lkenones

The alkenones were separated from the other fractions by column chromatography with hexane/

ethylacetate (95:5 and 90:10, by vol.). A saponifica- tion step with 1 M potassium hydroxide in 95%

methanol for 2 h at 90°C followed. Fractions were analysed by means of a Hewlett Packard gas chro- matograph (as described for the alkane analysis) using a temperature program as follows: 60°C (1 min) to 270°C (rate: 20°C/rain), then to 320°C (rate: l°C/min), then 320°C (20 rain isothermal). A volume of 1 #1 was injected (cold injection system:

60°C to 105°C (rate: 3°C/s), then to 320°C (rate:

10°C/s), then 320°C (60 s isothermal). Identification of the alkenones was achieved from GC retention times and MS fragmentation patterns. For quantifi- cation, octacosanoic acid methyl ester was used as an internal standard.

METHODS

The surface sediment samples from the Laptev Sea shelf and slope were taken in 1993 during the RV P o l a r s t e r n expedition A R K IX/4 (Fiitterer, 1994; Fig. 1) and the Transdrift I expedition with RV Ivan K i r e y e v (Kassens and Karpiy, 1994; Fig. 1).

The sampling was carried out with a giant box- corer.

Total nitrogen and organic carbon contents were determined by means of a Heraeus CHN-analyzer (for details concerning the method see Stein, 1991).

C/N ratios were calculated as "total organic car- bon/total nitrogen ratios" based on weight percen- tage. The Rock-Eval parameters hydrogen index

F a t t y acids

An aliquot of the total extract was used for pre- paring fatty acid methyl esters and free alcohols by transesterification for 4 h at 80°C with 3% concen- trated sulfuric acid in methanol. After extraction with hexane the product was analysed by GC (as above) but using D B - F F A P as liquid phase: the temperature program was as follows 160°C to 240°C (rate: 4°C/min), 240°C (15min isothermal) (modified according to Kattner and Fricke, 1986).

The injection volume was 1/A. The fatty acids and alcohols were identified by standard mixtures and quantified using methylnonadecanoate as internal standard.

(3)

O e~ O O

-2

O RV Polarstern (ARK I)(/4, PS24..) RV Ivan Kireyev (Transdrift I, IK93..) Fig. I. Positions of surface sediments taken during the 1993 RV Polarstern and RV Ivan Kireyev cruises. Black dots indicate Polarstern samples (71 = PS2471, etc.), grey dots indicate Kh'eyev samples (9 = 1K9309, etc.),

(4)

30 °N /'5 °N

\ raymyr aeninsula

~+~ ¸~7~ ~ jjjjJJ

~K ~r hatang --~- TOC < 0,5 ~ TOC 0.5-1.0 HI > 100 HI < 100

/ // I

\

110 °E 120 °E TOC 1.0-1.5 ~ TOC 1.5-2.0 no HI data

/ /

//

/ 130 °E TOC>2 reworked organic matter FI3"TT]TIT~ Ice margin during Sept. 93 (Eicken et aL, 1995)

50 °E r40 °E ~ig. 2. Distribution map of the total organic carbon content and hydrogen index values (rag HC,,gC) in surface sediments from the Laptev Sea and the adjacent continental nargin (after Stein and Ntirnberg, 1995). Open arrow indicates Atlantic water inflow. The hatched line symbolizes the ice margin during Sept. 93 (Eicken et al., 1995). Samples were taken during the RV Polarstern expedition ARK IX4 (F~tterer, 1994) and the RV lvan Kireyev expedition Transdrift I (Kassens and Karpiy, 1994).

L -1 _2.

(5)

Organic carbon deposition in the Laptev Sea 383 1500

~ . 1000 + 0 +

b,.

eu 500 0

:::L

5 -

X 4 -

.=_

3-

2 -

co 1.5 +

C~

¢D + i'.- I

@J

~S

+ r-. 0.5

J

l-G-I

nn01 nnl n0n °0°00n000 111111

I I I I I I I ! I I I I I I I ! I I I I I I I I I I I I

station

0n n I ,N bn n,

llillil

I I I I I I I I I I I

oJN

I I I I

~

I I

~=No~

I I

~

I I

N

I !

e e e e ~

I I I I I I

station

~mH,lon0o0,on~mH~lR~n,,~nmn.o.o0o.o0ooo.ooo

I I I I I I I I I I I I ! I I I I I I I I I

o0oLo.o.oo°,

I I I I I I

station

Fig. 3. Long-chain n-alkane ( C 2 7 + C 2 9 q- C 3 1 ) concentrations (A), calculated CPI index (B) and ratio of short-chain (C17 + Cm) to long-chain (C27 + C29 + C3l) n-alkanes (C).

(6)

384 Kirsten Fahl and Ruediger Stein RESULTS AND DISCUSSION

The Lena River run-off is of considerable import- ance to the hydrochemical and depositional struc- ture in the Laptev Sea. The large brackish surface plume extends to about 200 miles northward (L6tolle e t al., 1993; Cauwet and Sidorov, 1996);

approximately 84% of the total outflow is directed to the east and northeast. This is reflected in the total organic carbon (TOC) distribution (Fig. 2).

Maximum TOC values of up to 2% occur in the vicinity of the eastern Lena Delta, off the Kotuy river mouth, southwest of the New Siberian Islands, and the central part of the lower Laptev Sea conti- nental slope. Areas of high TOC concentration commonly correspond to low HI values ( < 100 mg HC/gC) and high C/N ratios ( > 7) indi- cating the dominance of terrigenous organic matter (Stein and Niirnberg, 1995; Stein, 1996). However, in the central part of the Laptev Sea and along the upper continental slope, the hydrogen indices reach values > 100 mg HC/gC suggesting the presence of significant concentrations of marine organic matter.

The distribution of the bulk parameters is sup- ported by the distribution of the terrigenous bio- markers (Fig. 3, Table 1).

It is generally accepted that long-chain n-alkanes and long-chain wax esters indicate terrigenous input (Yunker e t al., 1995; Peulv6 et al., 1996). The high- est concentrations of these markers (Fig. 3A, Table 1) were found in the vicinity of the eastern Lena Delta. Peulv6 et al. (1996) reported the same trends for high molecular weight hydrocarbons (C23-C35). The concentration decreases in the direc- tion of the shelf and the continental slope. The low- est contents were measured in the deep-sea environment, which is presumably caused by a decreasing terrigenous flux toward the open ocean.

The C42 wax ester content decreases from 40 to 3#g/g TOC (Table 1), the long-chain n-alkanes from 1.5 to 0.2 mg/g TOC. In general, high contents of terrigenous organic material are shown by high CPI indices (1.9-5.1, Fig. 3B) (Bray and Evans, 1961). Fresh terrigenous organic matter shows a

CPI index of 3-10 (Brasseli e t aL, 1978; Hollerbach, 1985), whereas fossil material varies around 1 depending on the state of decomposition. Marine organic material shows no predominance of odd- over-even carbon chain lengths of n-alkanes.

The TOC maximum along the lower continental slope characterized by low HI values (Fig. 2) and high C/N ratios (Stein, 1996), and indicative of ter- rigenous sources, may be related to the inflow of Atlantic water masses laterally transporting (organic carbon-enriched) suspended matter.

The accumulation of marine organic carbon is mainly controlled by primary production and sedi- mentation rates (e.g. M/Jller and Suess, 1979;

Berger e t al., 1989; Stein, 1991). Highly productive environments, such as upwelling areas with values of > 250 gC m -2 yr -1, are characterized by accumu- lation rates of I gC cm -2 kyr -1, whereas open-ocean environments with productivity values of about 50 gC m -2 yr -I display accumulation rates of about 0.005 gC cm -2 kyr -1 (Stein, 1991). The Laptev Sea, characterized by sedimentation rates of about 40- 60 cm kyr -1, displays accumulation rates of about 450 gC cm -2 kyr -1 (Stein and Schubert, 1996). The maximum rates occur on the shelf. At the ice edge primary productivity values may be significantly increased (e.g. Nelson et aL, 1989). This is sup- ported by the marine fatty acid distribution (Fig. 4) in the surface sediments of the Laptev Sea. It is well established that phytoplankton contains par- ticular fatty acids. Thus, the fatty acid composition of cultured diatoms is dominated by 16"1 and 20:5 fatty acids (e.g. Kates and Volcani, 1966; Orcutt and Patterson, 1975; Pohl and Zurheide, 1979;

Kattner and Brockmann, 1990). The same result has been found for sea-ice diatoms (Whitaker and Richardson, 1980; Gillan et al., 1981; Nichols e t al., 1986) and natural phytoplankton blooms domi- nated by diatoms (Kattner et al., 1983; Mayzaud et al., 1989). The highest concentrations of the 16:l(n- 7) and 20:5(n-3) compounds (0.9 mg/g TOC) which are mainly synthesized by diatoms (Kates and Volcani, 1966; Ackman e t al., 1968; Kattner et al., 1983; Fahl and Kattner, 1993; Graeve e t al., 1994), Table 1. Wax ester and ketone contents of surface sediment samples from the Laptev Sea and the adjacent continental margin

Location Sample Position Water depth (m) C42 C37:3" C37:2

Latitude Longitude wax ester #g/g ketone/tg/g ketone #g/g

TOC TOC TOC

Lena Delta IK9306 72°00.1 'N 131 °00. I'E 18 40.19 0.05 0.01

IK9316 73°00.1'N 131°50.3'E 28

Shelf IK9365 75°48.3'N I 19°91.1 'E 40 28.95 0.03 0.0 l

IK9368 75°41.8'N 125°86. I'E 41 21.07 0.01 --

IK9370 75°31.3'N 129°56.8'E 44 24.12 0.01 --

Upper cont. PS2458 78 ° 10.0'N 133 °23.9'E 983 3.12 -- --

margin

PS2467 77°05.0'N 126 ° 13.4'E 284 2.47 -- --

PS2474 77°40.2'N 118°34.5'E 1497 4.21 - - --

Lower cont. PS2471 79 °09.3'N 119°46.9'E 3048 2.53 0.50 0.07

margin

Dash indicates concentrations of less than 0.01/~g/g TOC; IK: RV Ivan Kireyev; PS: RV Polarstern.

*C37:4 alkenone could not be identified.

(7)

N

q~ m

m

Chlorophyll a and phaepigment maximum in the surface-water (90mg/m 2, Boetius et al., 1996) and biogenic opal maximum (3-5%, Stein and N0rnberg, 1995) ~'11 \

© P~ O ga. C~ O • 135 ~tg/g TOC liJll~l J J l llJ Ice margin during Sept. 93 (Eicken et al., 1995) Fig. 4. Distribution or the sum of 16:1(n-7) and 20:5(n-3) fatty acids in surface sediments from the Laptev Sea and the adjacent continental margin. Samples were taken during the RV PolarslerJ~ expedition ARK IX/4 (FiJtterer, 1994) and the RV Ira, Kir<t'e~, expedition Transdrift i (Kassens and Karpiy, 1994). The hatched line symbolizes the ice margin during Sept. 93 (Eicken et (11., 1995). Arrow shows the position of maximum chlorophyll a concentration in the surface water (Boetius et al., 1996) and bio- genic opal in the surface sediments (Stein and Niirnberg, 1995).

(8)

386 Kirsten Fahl and Ruediger Stein w e r e o b t a i n e d n e a r t h e ice e d g e , w h e r e m e l t i n g p r o -

c e s s e s i n d u c e i n c r e a s i n g p h y t o p l a n k t o n g r o w t h . T h e s e v a l u e s a r e well c o r r e l a t e d w i t h h i g h c o n - c e n t r a t i o n s o f c h l o r o p h y l l a a n d p h a e o p i g m e n t s o f a b o u t 9 0 m g m -2 in t h e s u r f a c e w a t e r m a s s e s ( B o e t i u s et al., 1996) a n d b i o g e n i c o p a l o f 3 5 % (Stein a n d N f i r n b e r g , 1995) in t h e s u r f a c e sedi- m e n t s . D e s p i t e t h e d o m i n a n c e o f t h e t e r r i g e n o u s i n p u t in t h e w h o l e a r e a ( u p t o 9 9 % o f t o t a l o r g a n i c m a t e r i a l is t e r r i g e n o u s ) t h e h i g h v a l u e s o f t h e r a t i o s h o r t - to l o n g - c h a i n n - a l k a n e s a t t h e ice e d g e ( s t a t i o n P S 2 4 5 8 ) o f a b o u t 1 (Fig. 3C) i n d i c a t e a sig- n i f i c a n t m a r i n e i n f l u e n c e . S i m i l a r to t h e m a x i m u m f a t t y a c i d v a l u e s o b t a i n e d n e a r t h e ice e d g e , h i g h c o n c e n t r a t i o n s a l s o o c c u r in t h e w e s t e r n a n d n o r t h - e r n p a r t o f t h e L e n a D e l t a . I n t h e s e a r e a s o f i n c r e a s i n g p r o d u c t i v i t y , t h e t o t a l f a t t y a c i d c o n t e n t ( t h e p r i n c i p a l m a r i n e o r g a n i c c o m p o u n d s ) m a y r e a c h m o r e t h a n 0 . 2 % o f t h e T O C (Fig. 4, T a b l e 2).

W e e x p e c t e d s u c h h i g h c o n c e n t r a t i o n s in t h e vicin- ity o f t h e e a s t e r n b r a n c h o f t h e L e n a D e l t a , w h i c h p r e s e n t s t h e m a i n o u t f l o w o f t h e river, w h e r e a n e n h a n c e d fluvial n u t r i e n t s u p p l y m a y c a u s e e n h a n c e d p h y t o p l a n k t o n p r o d u c t i v i t y . B u t , b e c a u s e o f t h e l o w f a t t y a c i d c o n c e n t r a t i o n s in t h i s a r e a c o m p a r e d to t h e h i g h c o n t e n t s in t h e n o r t h - w e s t e r n p a r t , t h i s r e s u l t l e a d s u s to a s s u m e t h a t t h e r e a r e p r o b a b l y o t h e r p r o c e s s e s w h i c h i n f l u e n c e t h e p h y t o - p l a n k t o n g r o w t h .

It m a y be t h a t t h e h i g h c o n c e n t r a t i o n s o f s u s - p e n d e d m a t e r i a l a c t a s s o m e k i n d o f " s h a d o w "

w h i c h d e c r e a s e s t h e l i g h t p e n e t r a t i o n a n d r e d u c e s p h o t o s y n t h e s i s . A s i m i l a r m e c h a n i s m w a s d e s c r i b e d b y P a l m i s a n o et al. (1988) w h o s u g g e s t e d t h a t c o r n -

m u n i t i e s o f a l g a e m a y e n t e r a " s t a t i o n a r y p h a s e " o f z e r o g r o w t h d u e to l i g h t l i m i t a t i o n b y s e l f - s h a d i n g . T h e l o w c o n t e n t o f m a r i n e b i o m a r k e r s in t h i s a r e a is well c o r r e l a t e d w i t h p i g m e n t d a t a a c c o r d i n g to H e i s k a n e n a n d K e c k (1996). T h e l o w c h l o r o p h y l l a a n d h i g h p h a e o p i g m e n t c o n c e n t r a t i o n s i n d i c a t e t h a t t h e p i g m e n t s h a v e a l r e a d y u n d e r g o n e a l t e r a t i o n . I n a d d i t i o n to t h e s h a d o w h y p o t h e s i s m e n t i o n e d a b o v e t h e r e a r e s e v e r a l p o s s i b l e m e c h a n i s m s c a u s i n g t h e l o w c o n t e n t s o f m o s t o f t h e m a r i n e b i o m a r k e r s . R e c y c l i n g b y m i c r o o r g a n i s m s m a y b e r e s p o n s i b l e (Saliot et al., 1996) a s well a s g r a z i n g b y z o o p l a n k - t o n ( V o l k m a n a n d M a x w e l l , 1986). O u r r e s u l t s , a n d t h e d a t a o b t a i n e d w i t h i n t h e f r a m e w o r k o f t h e in- t e r n a t i o n a l p r o g r a m S P A S I B A ( M a r t i n et al., 1993b; H e i s k a n e n a n d K e c k , 1996; P e u l v 6 et al., 1996; Saliot et al., 1996), s h o w a n i n s i g n i f i c a n t in- f l u e n c e o f p r i m a r y p r o d u c t i v i t y in t h e L e n a R i v e r a n d t h e e a s t e r n p a r t o f t h e delta. T h e h i g h f a t t y a c i d c o n t e n t in t h e n o r t h - w e s t e r n p a r t o f t h e L e n a D e l t a is c o r r e l a t e d w i t h t h e p o s i t i o n o f t h e L a p t e v Sea p o l y n y a . T h e w i n t e r ice c o v e r o f t h e L a p t e v Sea is c h a r a c t e r i z e d b y t h e o c c u r r e n c e o f a n a p p r o x i - m a t e l y 1800 k m l o n g , n a r r o w z o n e o f o p e n w a t e r o n t h e m i d - s h e l f ( D e t h l e f f et al., 1993, 1994;

R e i m n i t z et al., 1994). D u r i n g w i n t e r t h e p o l y n y a s a r e a r e a s o f i n t e n s i v e sea-ice f o r m a t i o n , s a l i n i t y i n c r e a s e , c o n v e c t i o n , a n d l a r g e h e a t loss i n t o t h e at- m o s p h e r e ; s p r i n g t i m e is c h a r a c t e r i z e d b y a n ac- c u m u l a t i o n o f h e a t a n d r a p i d m e l t i n g o f sea-ice ( Z a k h a r o v , 1966). T h e s e f a c t o r s m a y i n d u c e i n c r e a s - i n g p r i m a r y p r o d u c t i o n e s p e c i a l l y in t h i s a r e a . T h e c o n c e n t r a t i o n s o f t h e f a t t y a c i d s in t h e L a p t e v Sea Table 2. Fatty acid composition (weight%) of surface sediments taken during the 1993 RV Kireyev cruise

Fatty acids 9307 9309 9315 9316 9318 9320 9 3 2 3 9 3 2 7 9340 9349 9 3 5 3 9 3 6 8 9370 9384 9373 A 93Z2

14:0 3.3 4.8 5.7 10.2 7.4 9.1 8.2 7.6 8.5 5.8 10.6 13.6 22.2 7.3 11.1 4.3

15:0 16.7 l.l 12.6 2.1 1.5 .- - - 2.2 3.2 2.7 2.3 4.7 1.6 1.4 4.4

16:0 24.0 36.5 28.1 37.3 35.6 25.1 32.8 29.6 2 7 . 3 3 2 . 9 28.8 38.3 49.0 29.3 34.1 20.2 16:1(n-7) 39.9 38.8 33.8 23.2 35.8 42.3 39.9 44.8 37.9 37.3 38.4 22.2 16.1 24.6 3 4 . 8 48.4

1 6 : 1 ( n - 5 ) . . . 0.7 - 3.8 1.7 6.9 -~ 0.6 2.3

1 6 : 2 ( n - 6 ) . . . 1.3 -

1 6 : 3 ( n - 3 ) . . . 1.6 - - - 0.7

16:4(n-?) . . . 2.1 --- - 0.7

18:0 - - 6.0 11.1 9.6 6.5 5.1 9.2 2.9 -- 9.3 5.7 3.8 6.1 10.8 - 5.8

18:1(n-9) 5,6 6.9 - - 8.2 6.4 17.2 5.2 4.2 5.1 5.4 4.7 6.7 - - 14.0 3.2 8.6

18:1(n-7) 4.1 1.7 5.8 2.6 0.6 - - 3.6 6.0 4.2 3.8 - 10.1 8.9 1.7

18:2(n-6) 3,5 3.3 - - 5.5 3,8 - 1.6 -- - - 1,6 - - 2,2 1.0 3.2

1 8 : 3 ( n - 3 ) . . . .

18:4(n-3) 1.1 - - 1.5 1.3 - - - - 0.5 2.4 . . . .

20:1(n-9) . . . 1.3

20:1(n-7) . . . 3.6

20:4(n-6) . . . .

20:5(n-3) 5.3 4.2 2.9 5.3 4.9 1.2 4.7 3.9 7.5 1,3 3.6 6.2 1.9 2.3 1.6 2.3

22:1(n-11) . . . .

22:1(n-9) . . . .

22:5(n-3) . . . .

22:6(n-3) . . . 0.7

% Total sats, 44.0 48.4 57.5 59.2 51.0 39.3 5 0 . 2 42.3 39,0 48.0 47.8 58.0 8 2 , 0 49.0 46.6 34.7

% Total monos, 49.6 47.4 39.6 34.0 42.8 5 9 . 5 45.1 53.3 49.0 5 0 . 7 48.6 35.8 16.1 48.7 51.1 62,3

% Total PUFA 6,4 4.2 2.9 6,8 6.2 1.2 4,7 4.4 12.0 1.3 3.6 6.2 1,9 2.3 2,3 3.0

Dash indicates not detected or trace amounts (< 0.1%). Total sats.: Total saturated; Total monos.: Total monounsaturated; Total PUFA:

Total polyunsaturated fatty acids.

(9)

Organic carbon deposition in the Laptev Sea 387

sat. fatty a c i d - - C - - O - " - CH

/

I[ 1

u n s a t , fatty a C i d - - - - C - - O - - C H ~ 0

- - 0

Fluvial sediment and nutrient supply Polynya

f - - ~ .

,.Deep Sea )

Fig. 5. Scheme indicating the most important processes controlling the organic carbon flux in the Laptev Sea and the adjacent continental margin and deep-sea areas (fluvial sediment and nutrient supply, gravitational sediment downslope transport, primary production and vertical organic carbon flux, and transport by bottom currents). Additionally, the chemical structures of typical terrigenous (long-chain wax esters, long-chain n-alkanes, and lignin phenols) and marine (triaclyglycerols, alke-

nones, phospholipids, and chlorophyll a) biomarkers are shown.

polynya are comparable with the contents of the fatty acids near the ice edge.

The lowest concentrations of marine fatty acids occur in the shallow ice-covered shelf areas as well as in the ice-covered deep-sea environment. On the shelf, the low concentrations can be attributed to low primary productivity due to the sea-ice cover whereas, in the deep sea, the low concentrations may be explained by a combination of low primary productivity and other mechanisms. That is, autoxi- dation, alteration by grazers and degradation by microorganisms (Saliot et al., 1996) due to the long residence time in the water column, as well as in the surface sediments, may have caused the low concen- trations. On the other hand down-slope transport (turbidity currents) might be important (Fig. 5).

The fatty acid composition of various surface sediments are presented in Table 2 and Table 3. In general, the surface sediments are characterized by high proportions of saturated (34 85%) and short- chain monounsaturated fatty acids (14-60%) due to the effect of degradation and autoxidation of the unstable polyunsaturated compounds. The highest proportions of the polyunsaturated fatty acids (around 5 % of total fatty acids) occur in the sur- face sediments from the shallow shelf due to the short residence time in the water column, whereas the surface sediments of the continental slope, and in the deep sea, are characterized by the absence of

the polyunsaturated compounds with the exception of station PS2458 (ice edge). The rather high pro- portions of the 18:1 fatty acid were found in nearly all surface sediment samples. It is well established that particulate matter in waters of low productivity is deficient in polyunsaturated fatty acids, but it contains high levels of saturated fatty acids and fatty acids with 18 carbon atoms (Goutx and Saliot, 1980; Kattner et al., 1983; Mayzaud et al., 1989; Henderson et al., 1991; Graeve, 1992). In all surface sediment samples no marine fatty alcohols occur, which would indicate zooplankton growth. It is generally accepted that polar copepods accumu- late large amounts of lipids in the form of wax esters, or energy-rich long-chain triacylglycerols (Hagen, 1988; Hagen et al., 1993). Moderate amounts of the long-chain marine 22:1(n-11) fatty acid occur in one surface sediment sample from the eastern part of the Laptev Sea (PS2484; 3% of total fatty acid).

It is generally accepted that alkenones are only synthesized by prymnesiophytes (Volkman et al.,

1980). At lower latitudes, characterized by tempera- tures of > 10°C, these lipids are used as paleotem- perature markers (Brassell and Eglinton, 1984;

Marlowe et al., 1984; Brassell et al., 1986; Prahl and Wakeham, 1987; Prahl et al., 1988). In the Arctic Ocean and its marginal seas, where very low surface water temperatures of <<5°C are typical,

(10)

388 Kirsten Fahl and Ruediger Stein

Table 3. Fatty acid composition (weight%) of surface sediments taken during the 1993 RV Polarstern cruise

Fatty acids 2458 2465 2469 2471 2472 2473 2474 2483 2484

14:0 7.1 8.0 14.0 10.5 3.9 7.5 11.6 5.9 3.9

15:0 2.1 2.5 5.2 8.2 7.5 6.2 - 0.9

16:0 28.5 34.0 69.2 29.5 62.2 34.1 33.3 51.3 29.0

16: l(n-7) 32.6 l 7.7 16.8 20.1 14.6 32.7 24.5 37.7 25.0

16:1(n-5) 5.8 - - 5.8 - - - - - - 1.1

16:2(n-6) 0.5 2.1 . . . .

1 6 : 3 ( n - 3 ) . . . 3.9

1 6 : 4 ( n - ? ) . . . .

18:0 6.5 10.2 8.5 11.1 10.9 10.5 - - 10.6

18:1(n-9) 6.8 18.1 15.0 7.3 12.3 7.9

18:1 ( n - 7 ) . . . . 3 . 7 - - - - - 1 . 6 - - 2 . 2

1 8 : 2 ( n - 6 ) 1.5 . . . 2.3 -- 1.6

1 8 : 3 ( n - 3 ) . . . .

18:4(n-3) - - 3.8 - 1.7 • - - - - 5.1

20:1(n-9) . . . 6.6

20:1(n-7) - 5.7 . . . . 9.7

20:4(n-6) . . . .

20:5(n-3) 7.5 . . . .

22:1(n-11) 3.1 . . . 3.1

22:1(n-9) . . . .

22:5(n-3) . . . .

22:6(n-3) . . . .

% Total sats. 44.2 54.7 83.2 53.7 85.4 60.0 61.6 57.2 44.4

% Total monos. 48.3 41.5 16.8 44.6 14.6 40.0 38.4 37.7 55.6

% Total PUFA 7.5 3.8 1.7 - - - - 5.1 -

Dash indicates not detected or trace amounts (< 0.1%). Total sats.: Total saturated; Total monos.: Total monounsaturated; Total PUFA:

Total polyunsaturated fatty acids.

a l k e n o n e s c a n n o t be u s e d to e s t i m a t e t e m p e r a t u r e s . I n t h i s r e g i o n , t h e a l k e n o n e s s h o u l d o n l y be u s e d as a p a l e o p r o d u c t i v i t y i n d i c a t o r . W i t h t h e e x c e p t i o n o f o n e s u r f a c e s e d i m e n t s a m p l e , w h i c h w a s c o l l e c t e d f r o m t h e l o w e r m o s t c o n t i n e n t a l s l o p e ( w a t e r d e p t h o f 3 0 4 7 m , s t a t i o n P S 2 4 7 1 ) , t h e c o n c e n t r a t i o n o f a l k e n o n e s is r a t h e r l o w in t h e e n t i r e L a p t e v Sea (less t h a n 0.007 # g / g T O C ) ( T a b l e 1). T h i s is p r o b - a b l y c a u s e d b y t h e l o w a b u n d a n c e o f p r y m n e s i o - p h y t e s a n d l o w t e m p e r a t u r e s in t h e L a p t e v Sea.

T h e r e f o r e , t h e u s e o f t h e s e lipids f o r r e c o n s t r u c t i n g p a l e o t e m p e r a t u r e o r p a l e o p r o d u c t i v i t y is l i m i t e d . T h e r a t h e r h i g h c o n c e n t r a t i o n s o f a l k e n o n e s in t h e s u r f a c e s e d i m e n t a t s t a t i o n PS2471 m a y be c a u s e d b y c o c c o l i t h o p h o r i d e s o r o t h e r p r y m n e s i o p h y t e s w h i c h w e r e t r a n s p o r t e d b y A t l a n t i c w a t e r m a s s e s a l o n g t h e c o n t i n e n t a l slope. T h i s a s s u m p t i o n m a y b e r e s o l v e d a f t e r o u r i n v e s t i g a t i o n o f t h e c o r r e - s p o n d i n g s e d i m e n t c o r e PS2471 in w h i c h h i g h a l k e - n o n e c o n c e n t r a t i o n s o c c u r .

CONCLUSION

d u c t i v i t y n e a r t h e ice e d g e . T h u s t h e f a t t y acids, a s r e l a t i v e l y u n s t a b l e o r g a n i c m o l e c u l e s , c a n b e u s e d a s b i o m a r k e r s f o r r e f l e c t i n g r e c e n t p r o c e s s e s . B e c a u s e o f t h e i r h i g h c o n c e n t r a t i o n in a r e a s o f e n h a n c e d m a r i n e p r o d u c t i v i t y in t h e L a p t e v S e a t h e y a r e s i g n i f i c a n t f o r t h e m a r i n e o r g a n i c c a r b o n b u d g e t . T h e t e r r i g e n o u s b i o m a r k e r s ( l o n g - c h a i n n- a l k a n e s a n d w a x e s t e r s ) in L a p t e v S e a s u r f a c e sedi- m e n t s w e r e m a i n l y s u p p l i e d b y t h e S i b e r i a n rivers.

T h e i r c o n c e n t r a t i o n s d e c r e a s e w i t h i n c r e a s i n g dis- t a n c e f r o m t h e s o u r c e ; t h e l o w e s t c o n c e n t r a t i o n s w e r e f o u n d in t h e d e e p - s e a e n v i r o n m e n t .

Associate Editor - - J . O . G r i m a l t

Acknowledgements--We thank W. Drebing, M. Siebold, and K. Weber for technical assistance and discussions. We t h a n k N. Andersen and the two a n o n y m o u s reviewers for n u m e r o u s constructive suggestions and comments. The financial support by the Ministry for Education, Science, Research, and Technology (BMBF) is gratefully acknowl- edged. This is contribution No. 1145 of the Alfred- Wegener-Institute for Polar and Marine Research.

Specific b i o m a r k e r s c a n be u s e d to d i s t i n g u i s h b e t w e e n m a r i n e a n d t e r r i g e n o u s s o u r c e s o f t h e or- g a n i c m a t t e r o f t h e L a p t e v S e a s u r f a c e s e d i m e n t s . T h e d i s t r i b u t i o n o f t h e m a r i n e b i o m a r k e r s is well c o r r e l a t e d w i t h t h e sea-ice d i s t r i b u t i o n . T h e l o w e s t c o n c e n t r a t i o n s o f t h e m a r i n e f a t t y a c i d s w e r e f o u n d in t h e i c e - c o v e r e d a r e a s w h e r e a s t h e h i g h e s t a m o u n t s w e r e l o c a t e d in t h e s e d i m e n t s n e a r t h e ice m a r g i n . T h e m a r i n e f a t t y a c i d d i s t r i b u t i o n c o r r e - l a t e s well w i t h t h e c h l o r o p h y l l a a n d b i o g e n i c o p a l c o n t e n t , i n d i c a t i n g a n i n c r e a s e d s u r f a c e w a t e r p r o -

R E F E R E N C E S

Ackman, R. G., Tocher, C. S. and McLachlan, J. (1968) Marine phytoplankter fatty acid. Journal of the Fisheries Research Board of Canada 25, 1603-1620.

Berger, W. H., Smetacek, V. and Wefer, G. (Eds.) (1989) Productivity of the Ocean: Past and Present. Life Sciences Research Report 44, Wiley and Sons, New York, 471 pp.

Bligh, E. G. and Dyer, W. J. (1959) A rapid m e t h o d of total lipid extraction and purification. Canadian Journal of Biochemical Physiology 37, 911-917.

(11)

Organic carbon deposition in the Laptev Sea 389 Blumer, M., Guillard, R. R. L. and Chase, T. (1971)

Hydrocarbons of marine phytoplankton. Marine Biology 8, 183-189.

Boetius, A., Nrthig, E., Liebezeit, G. and Krfncke, I.

(1996) Distribution of chlorophyll pigments as indicator for marine organic matter input in the Eurasian shelf seas and the central Arctic Ocean. In Surface-Sediment Composition and Sedimentary Processes in the Central Arctic Ocean and Along the Eurasian Continental Margin, eds R. Stein, G. Ivanov, M. Levitan and K.

Fahl. Reports o f Polar Research 212, 324 pp.

Brassell, S. C., Eglinton, G., Maxwell, J. R. and Philip, R.

P. (1978) Natural background of alkanes in the aquatic environment. In Aquatic Pollutants: Transformation and Biological Effects, eds. O. Hutzinger, I. H. Lelyveld and B. C. J. Zoetman, pp. 69-86. Pergamon Press, Oxford.

Brassell, S. C. and Eglinton, G. (1984) Lipid indicators of microbial activity in marine sediments. In Heterotrophic Activity in the Sea, eds. J. E. Hobbie and P. J. Williams, pp. 481-503. Plenum Press, New York.

Brassell, S. C., Eglinton, G., Marlowe, I. T., Pflaumann, U. and Sarntheim, M. (1986) Molecular stratigraphy: a new tool for climate assessment. Nature 320, 129-133.

Bray, E. E. and Evans, E. D. (1961) Distribution of n-par- affins as a clue to recognition of source beds.

Geochimica et Cosmochimica Acta 22, 2-15.

Cauwet, G. and Sidorov, I. (1996) The biogeochemistry of Lena River: organic carbon and nutrients distribution.

Marine Chemistry 53, 211-227.

Dethleff, D., Kleine, E. and Loewe, P. (1994) Oceanic heat loss, sea ice formation and sediment dynamics in a tur- bulent Siberian flaw lead. In Report Series in Geophysics, pp. 35-40. Helsinki University Department of Geophysics, Helsinki.

Dethleff, D., Niirnberg, D., Reimnitz, E., Saarso, M. and Savchenko, Y. P. (1993) East Siberian Arctic Region Expedition '92: The Laptev Sea - - its significance for Arctic sea ice formation and Transpolar sediment flux.

Report on Polar Research 120, 3-37.

Eicken, H., Viehoff, T., Martin, T., Kolatschek, J., Alexandrov, V. and Reimnitz, E. (1995) Studies of clean and sediment-laden ice in the Laptev Sea. In Second Workshop on "Russian-German Cooperation in and Around the Laptev Sea", eds H. Kassens et al. St.

Petersburg, November 1994. Reports o f Polar Research 176, 62-70.

Espitalir, J., Laporte, J. L., Madec, M., Marquis, F., Leplat, P., Paulet, J. and Boutefeu, A. (1977) M&hode rapide de characterisation des roches-mere de leur po- tential petrolier et de leur degre d'rvolution. Rev. Inst.

Tranc. Petrol. 32, 23--42.

Fahl, K. and Kattner, G. (1993) Lipid content and fatty acid composition of algal communities in sea-ice and water from Weddell Sea (Antarctica). Polar Biology 13, 405-409.

Folch, J., Lees, M. and Sloane-Stanley, G. H. (1957) A simple method for the isolation and purification of total lipids from animal tissues. Journal o f Biological Chemistry 226, 497-509.

Fiitterer, D. K. (1994) The Expedition ARCTIC93 Leg ARK IX/4 of RV "Polarstern" 1993. Report on Polar Research 149, 244.

Gillan, F. T., McFadden, G. I., Wetherbee, R. and Johns, R. B. (1981) Sterols and fatty acids of an Antarctic sea ice diatom Stauroneis amphioxys. Phytochemistry 20, 1935-1937.

Goutx, M. and Saliot, A. (1980) Relationship between dis- solved and particulate fatty acids and hydrocarbons, chlorophyll a and zooplankton biomass in Villefranche Bay, Mediterranean Sea. Marine Chemistry 8, 299-318.

Graeve, M. (1992) Umsatz und Verteilung von Lipiden in arktischen marinen Organismen unter besonderer

Beriicksichtigung trophischer Stufen. Ph.D. thesis, Universit/it Bremen, 145 pp,

Graeve, M. (1993) Turnover and distribution of lipids in Arctic marine organisms with regard to lower trophic levels. Report on Polar Research 124, 141.

Graeve, M., Hagen, W. and Kattner, G. (1994) Herbivorous or omnivorous? On the significance of lipid composition as trophic markers in Antarctic copepods.

Deep-Sea Research 41, 915-924.

Hagen, W. (1988) Zur Bedeutung der Lipide im antark- tischen Zooplankton. Report on Polar Research 49, 129.

Hagen, W., Kattner, G. and Graeve, M. (1993) Calanoides acutus and Calanus propinquus, Antarctic copepods with different lipid storage modes via wax ester or triacylgly- cerols. Marine Ecology Progress Series 97, 135-142.

Heiskanen, A.-S. and Keck, A. (1996) Distribution and sinking rates of phytoplankton, detritus, and particulate biogenic silica in the Laptev Sea and Lena River (Arctic Siberia). Marine Chemistry 53, 229-245.

Henderson, R. J,, Olsen, R. E. and Eilertson, H. C. (1991) Lipid composition of phytoplankton from the Barents Sea and environmental influence on the distribution pat- tern of carbon among photosynthetic end products.

Polar Research 10, 229-237.

Hollerbach, A. (1985) Grundlagen der organischen Geochemie. Springer, Berlin, 190 pp.

Kassens, H. and Karpiy, V. Y. (1994) Russian-German Cooperation: The Transdrift I Expedition to the Laptev Sea. Report on Polar Research 151, 168.

Kates, K. and Volcani, B. E. (1966) Lipid components of diatoms. Biochimica et Biophysica Acta 116, 264-278.

Kattner, G. and Brockmann, U. H. (1990) Particulate and dissolved fatty acids in an enclosure containing a unial- gal Skleletonema costatum (Greve.) Cleve culture.

Journal o f Experimental Marine Biology and Ecology 114, 1-13.

Kattner, G. and Fricke, H. S. G. (1986) Simple gas-liquid chromatographic method for simultaneous determi- nation of fatty acids and alcohols in wax esters of mar- ine organisms. Journal o f Chromatography 361, 313-318.

Kattner, G., Gercken, G. and Eberlein, K. (1983) Development of lipids during a spring plankton bloom in the Northern North Sea. I. Particulate fatty acids.

Marine Chemistry 14, 149-162.

Kolattukudy, P. E. (1976) Chemistry and Biochemistry o f Natural Waxes. Elsevier, New York, 459 pp.

Lrtolle, R., Martin, J. M., Thomas, A. J., Goordeev, V.

V., Gusarova, S. and Sidorov, I. S. (1993) lSO abun- dances and dissolved silica in the Lena delta and Laptev Sea (Russia). Marine Chemistry 43, 47-64.

Marlowe, I. T., Brassell, S. C., Eglinton, G. and Green, J. C. (1984) Long chain unsaturated ketones and esters in living algae and marine sediments. Organic Geochemistry 6, 135-141.

Martin, J. M., Goordeev, V. V. and Emelyanov, E.

(1993a) The Arctic Estuaries and Adjacent Seas:

Biogeochemical Processes and Interactions with Global Changes. The Third International Symposium, Svletogorsk, Russia, 19-25 April 1993, pp. 1-89.

Martin, J. M., Guan, D. M., Elbaz-Poulichet, F., Thomas, A. J. and Goordeev, V. V. (1993b) Preliminary assess- ment of the distributions of some trace elements (As, Cd, Cu, Fe, Ni, Pb and Zn) in a pristine aquatic en- vironment: the Lena River estuary (Russia). Marine Chemistry 43, 185-199.

Mayzaud, P., Chanut, J. P. and Ackman, R. G. (1989) Seasonal changes of the biochemical composition of marine particulate matter with special reference to fatty acids and sterols. Marine Ecology Progress Series 56, 189-204.

Mialler, P. J. and Suess, E. (1979) Productivity, sedimen- tation rate, and sedimentary organic matter in the

(12)

390 Kirsten Fahl and Ruediger Stein oceans, I. - - Organic matter preservation. Deep-Sea

Research 26, 1347-1362.

Nelson, D. M., Smith, W. O., Muench, R. D., Gordon, L.

I., Sullivan, C. W. and Husby, D. M. (1989) Particulate matter and nutrient distribution in the ice-edge zone of the Weddell Sea: relationship to hydrography during late summer. Deep-Sea Research 36, 191-209.

Nichols, P. D., Palmisano, A. C., Smith, G. A. and White, D. C. (1986) Lipids of the Antarctic sea-ice diatom Nitzschia eylindrus. Phytochemistry 25, 1649-1653.

Orcutt, D. M. and Patterson, G. W. (1975) Sterol, fatty acids and elemental composition of diatoms grown in chemical defined media. Comparative Biochemisto' and Physiology 50B, 579-583.

Palmisano, A. C., Lizotte, M. P., Smith, G. A., Nichols, P. D., White, D. C. and Sullivan, C. W. (1988) Changes in photosynthetic carbon assimilation in Antarctic sea- ice diatoms during spring bloom: Variation in synthesis of lipid classes. Journal of Experimental Marine Biology and Ecology 16, 1 13.

Peulv~, S., Sicre, M.-A., Saliot, A., De Leeuw, J. W. and Baas, M. (1996) Molecular characterization of sus- pended and sedimentary organic matter in an Arctic delta. Limnology and Oceanography 41(3), 488-497.

Pohl, P. and Zurheide, F. (1979) Fatty acids and lipids of marine algae and their control of biosynthesis by en- vironmental factors. In Marine Algae in Pharmaceutical Science, eds H. A. Hoppe et al., pp. 473 523. Walter de Gruyter, Berlin.

Prahl, F. G. and Muehlhausen, L. A. (1989) Lipid bio- markers as geochemical tools for paleoceanographic study, In Productivity o f the Ocean: Past and Present, eds W. H, Berger et al. Life Science Research Report 44, 271-290.

Prahl, F. G. and Wakeham, S. G. (1987) Calibration of unsaturation pattern in long-chain ketone compositions for paleotemperature assessment. Nature 330, 367 369.

Prahl, F. G., Muehlhausen, L. A. and Zahnle, D. L. (1988) Further evaluation of long-chain alkenones as indicators of paleoceanographic conditions. Geoehimica et Cosmochimica Acta 52, 2303-2310.

Reimnitz, E., Dethleff, D. and Nfirnberg (1994) Contrasts in Arctic shelf sea-ice regimes and some implications:

Beaufort Sea and Laptev Sea. Marine Geology 119, 215-225.

Saliot, A., Cauwet, G., Cahet, G., Mazaudier, D. and Daumas, R. (1996) Microbial activities in the Lena River delta and Laptev Sea. Marine Chemistry 53, 247- 254.

Sargent, J. R. and Henderson, R. J. (1986) Lipids. In The Biological Chemistry of Marine Copepods, eds E. D. S.

Corner and S. C. M. O'Hara, pp. 59-108. Clarendon Press, Oxford.

Stein, R. and Ntirnberg, D. (1995) Productivity proxies:

Organic carbon and biogenic opal in surface sediments from the Laptev Sea and the adjacent continental slope.

In Second Workshop on "Russian-German Cooperation in and around the Laptev Sea", St. Petersburg, November 1994, eds H. Kassens et al. Reports of Polar Research 176, 286-296.

Stein, R. and Schubert, C. (1996) Organischer

Kohlenstoffeintrag im zentralen Arktischen Ozean w~ih- rend des Sp~itquart~irs. Geowissenschaften 9, 370-375.

Stein, R. (1996) Organic-carbon and carbonate distri- bution in Eurasian continental margin and Arctic Ocean deep-sea surface sediments: Sources and pathways. In Surface-Sediment Composition and Sedimentary Processes in the Central Arctic Ocean and Along the Eurasian Continental Margin, eds R. Stein, G. Ivanov, M. Levitan and K. Fahl. Reports o f Polar Research 212, 324 pp.

Stein, R. (1991) Accumulation of organic carbon in mar- ine sediments. In Lecture Notes in Earth Sciences 34.

Springer, Heidelberg, 217 pp.

Subba Rao, D. V. and Platt, T. (1984) Primary production of Arctic waters. Polar Biology 3, 191-201.

Tissot, B. P. and Welte, D. H. (1984) Petroleum Formation and Occurrence. Springer, Heidelberg, 699 pp.

Volkman, J. K., Eglinton, G., Corner, E. D. S. and Forsberg, T. E. V. (1980) Long-chain alkenes and alke- nones in the marine coccolithophorid Emiliania huxleyi.

Phytochemistry 19, 2619-2622.

Volkman, J. K. and Maxwell, J. R. (1986) Acyclic isopre- noids as biological markers. In Biological Markers in the Sedimentary Records, ed. R. B. Johns, pp. 1-42.

Elsevier, Amsterdam.

Whitaker, T. M. and Richardson, M. G. (1980) Morphology and chemical composition of a natural population of an ice-associated Antarctic diatom Navicula glaciei. Journal o f Phycology 16, 250-257.

Yunker, M. B., Macdonald, R. W., Veltkamp, D. J. and Cretney, W. J. (1995) Terrestrial and marine biomarkers in a seasonally ice-covered Arctic estuary - - integration of multivariate and biomarker approaches. Marine Chemistry 49, I 50.

Zakharov, V. F. (1966) The role of flaw leads off the edge of fast ice in the hydrological and ice regime of the Laptev Sea. Academy o f Science of the UDSSR 6, 815- 821.

Referenzen

ÄHNLICHE DOKUMENTE

Cauwet and Sidorov (1996) presented TOC concentrations over an entire annual cycle for the Lena River and this is to our knowledge the only study that contains data

Ice wedges are usually classified as active ice wedges if they crack more than once every 50 years (PEWE 1966, MACKAY 1992). The occurrence of active ice wedges in the region

The comparison of the different data sets of the water column and the surface sediments provide information about organic carbon sources and pathways in the Laptev Sea shelf

All sediments supplied into the Laptev Sea from various sources (abrasion, river discharge and drifting ice) reach 177 x 10 6 t year-I and are distributed in different areas of

In this paper we investigate the change in temperature flux at different latitudes, compare the temperature flux with the mean geostrophic flow field and with

The intention of our studies is to trace the terrestrial organic matter using the organic stable carbon isotope composition in the sediments and to identify the depositional changes

Zu den Zielen der vorliegenden Arbeit gehör die Abschätzun der Mengen an Opal und organischem Kohlenstoff (Corg), die ins Sediment eingetragen werden, die regionale

When using a 5 percent discount rate, a permanent reduction of one ton of carbon in 2010 is therefore equivalent to 4.70 / 2.47 = 1.9 tons of 40-year storage, or permanently