• Keine Ergebnisse gefunden

Braid group actions on D

N/A
N/A
Protected

Academic year: 2022

Aktie "Braid group actions on D"

Copied!
25
0
0

Wird geladen.... (Jetzt Volltext ansehen)

Volltext

(1)

Braid group actions on D

b

(O)

Fabian Lenzen

(2)

Braid group actions onDb(O)

Setup

principal block O0 of BGG category for sln.

Vermas M(w ·0), simplesL(w ·0), projectives P(w·0).

Definition (Irving’s shuffling functor) Endofunctors ofO0 with properties:

exact sequence idO0 ⇒Θs ⇒Shs ⇒0,

ShsM(w ·0) =M(ws ·0),

ΘsM(w·0) = ΘsM(ws·0),

Θ2s = Θs⊕Θs.

Theorem (Rouquier)

Brn acts on Db(O0)via LShs.

(3)

Braid group actions onDb(O)

Setup

principal block O0 of BGG category for sln.

Vermas M(w ·0), simplesL(w ·0), projectives P(w·0).

Definition (Irving’s shuffling functor) Endofunctors ofO0 with properties:

exact sequence idO0 ⇒Θs ⇒Shs ⇒0,

ShsM(w ·0) =M(ws ·0),

ΘsM(w·0) = ΘsM(ws·0),

Θ2s = Θs⊕Θs.

Theorem (Rouquier)

Brn acts on Db(O0)via LShs.

(4)

Braid group actions onDb(O)

Setup

principal block O0 of BGG category for sln.

Vermas M(w ·0), simplesL(w ·0), projectives P(w·0).

Definition (Irving’s shuffling functor) Endofunctors ofO0 with properties:

exact sequence idO0 ⇒Θs ⇒Shs ⇒0,

ShsM(w ·0) =M(ws ·0),

ΘsM(w·0) = ΘsM(ws·0),

Θ2s = Θs⊕Θs.

Theorem (Rouquier)

Brn acts on Db(O0)via LShs.

(5)

Braid group actions onDb(O)

Setup

principal block O0 of BGG category for sln.

Vermas M(w ·0), simplesL(w ·0), projectives P(w·0).

Definition (Irving’s shuffling functor) Endofunctors ofO0 with properties:

exact sequence idO0 ⇒Θs ⇒Shs ⇒0,

ShsM(w ·0) =M(ws ·0),

ΘsM(w·0) = ΘsM(ws·0),

Θ2s = Θs⊕Θs.

Theorem (Rouquier)

Brn acts on Db(O0)via LShs.

(6)

Braid group actions onDb(O)

Setup

principal block O0 of BGG category for sln.

Vermas M(w ·0), simplesL(w ·0), projectives P(w·0).

Definition (Irving’s shuffling functor) Endofunctors ofO0 with properties:

exact sequence idO0 ⇒Θs ⇒Shs ⇒0,

ShsM(w ·0) =M(ws ·0),

ΘsM(w·0) = ΘsM(ws·0),

Θ2s = Θs⊕Θs.

Theorem (Rouquier)

Brn acts on Db(O0)via LShs.

(7)

Braid group actions onDb(O)

Setup

principal block O0 of BGG category for sln.

Vermas M(w ·0), simplesL(w ·0), projectives P(w·0).

Definition (Irving’s shuffling functor) Endofunctors ofO0 with properties:

exact sequence idO0 ⇒Θs ⇒Shs ⇒0,

ShsM(w ·0) =M(ws ·0),

ΘsM(w·0) = ΘsM(ws·0),

Θ2s = Θs⊕Θs.

Theorem (Rouquier)

Brn acts on Db(O0)via LShs.

(8)

Braid group actions onDb(O)

Setup

principal block O0 of BGG category for sln.

Vermas M(w ·0), simplesL(w ·0), projectives P(w·0).

Definition (Seidel and Thomas’ spherical twist)

{Ei} ⊆Db(O0) is an An-collectionofd -spherical objects if

Hom(Ei,Ei)=C[ε]/(ε2) withεof degreed,

Hom(Ei,F)×Homd−∗(F,Ei) Homd(Ei,Ei)/(idε) non-degenerate

dim Hom(Ei,Ej) =n1 if|ij|= 1,

0 o/w.

Definetwist functor TE:F 7→cone(hom(E,F)⊗F −→ev F)

Theorem (Seidel, Thomas) Brn acts on Db(O0)via TEi.

(9)

Braid group actions onDb(O)

Setup

principal block O0 of BGG category for sln.

Vermas M(w ·0), simplesL(w ·0), projectives P(w·0).

Definition (Seidel and Thomas’ spherical twist)

{Ei} ⊆Db(O0) is an An-collectionofd -spherical objects if

Hom(Ei,Ei)=C[ε]/(ε2) withεof degreed,

Hom(Ei,F)×Homd−∗(F,Ei) Homd(Ei,Ei)/(idε) non-degenerate

dim Hom(Ei,Ej) =n1 if|ij|= 1,

0 o/w.

Definetwist functor TE:F 7→cone(hom(E,F)⊗F −→ev F)

Theorem (Seidel, Thomas) Brn acts on Db(O0)via TEi.

(10)

Braid group actions onDb(O)

Setup

principal block O0 of BGG category for sln.

Vermas M(w ·0), simplesL(w ·0), projectives P(w·0).

Definition (Seidel and Thomas’ spherical twist)

{Ei} ⊆Db(O0) is an An-collectionofd -spherical objects if

Hom(Ei,Ei)=C[ε]/(ε2) withεof degreed,

Hom(Ei,F)×Homd−∗(F,Ei) Homd(Ei,Ei)/(idε) non-degenerate

dim Hom(Ei,Ej) =n1 if|ij|= 1,

0 o/w.

Definetwist functor TE:F 7→cone(hom(E,F)⊗F −→ev F)

Theorem (Seidel, Thomas) Brn acts on Db(O0)via TEi.

(11)

Braid group actions onDb(O)

Setup

principal block O0 of BGG category for sln.

Vermas M(w ·0), simplesL(w ·0), projectives P(w·0).

Definition (Seidel and Thomas’ spherical twist)

{Ei} ⊆Db(O0) is an An-collectionofd -spherical objects if

Hom(Ei,Ei)=C[ε]/(ε2) withεof degreed,

Hom(Ei,F)×Homd−∗(F,Ei) Homd(Ei,Ei)/(idε) non-degenerate

dim Hom(Ei,Ej) =n1 if|ij|= 1,

0 o/w.

Definetwist functor TE:F 7→cone(hom(E,F)⊗F −→ev F)

Theorem (Seidel, Thomas) Brn acts on Db(O0)via TEi.

(12)

Braid group actions onDb(O)

Setup

principal block O0 of BGG category for sln.

Vermas M(w ·0), simplesL(w ·0), projectives P(w·0).

Definition (Seidel and Thomas’ spherical twist)

{Ei} ⊆Db(O0) is an An-collectionofd -spherical objects if

Hom(Ei,Ei)=C[ε]/(ε2) withεof degreed,

Hom(Ei,F)×Homd−∗(F,Ei) Homd(Ei,Ei)/(idε) non-degenerate

dim Hom(Ei,Ej) =n1 if|ij|= 1,

0 o/w.

Definetwist functor TE:F 7→cone(hom(E,F)⊗F −→ev F)

Theorem (Seidel, Thomas) Brn acts on Db(O0)via TEi.

(13)

Braid group actions onDb(O)

Setup

principal block O0 of BGG category for sln.

Vermas M(w ·0), simplesL(w ·0), projectives P(w·0).

Definition (Seidel and Thomas’ spherical twist)

{Ei} ⊆Db(O0) is an An-collectionofd -spherical objects if

Hom(Ei,Ei)=C[ε]/(ε2) withεof degreed,

Hom(Ei,F)×Homd−∗(F,Ei) Homd(Ei,Ei)/(idε) non-degenerate

dim Hom(Ei,Ej) =n1 if|ij|= 1,

0 o/w.

Definetwist functor TE:F 7→cone(hom(E,F)⊗F −→ev F)

Theorem (Seidel, Thomas) Brn acts on Db(O0)via TEi.

(14)

Braid group actions onDb(O)

Question

Are thereEi’s such thatTEi ∼=LShsi?

Example (spherical objects in Db(O0) for sl2) P(s1) has C[ε]/(ε2) as endomorphisms:

L(s1) L(e) L(s1)

L(e) L(s1)

L(e) L(s1)

L(s1)

P(s1) P(e) P(s1)

Hence{P(s1)} is an A1-collection ford = 0.

(15)

Braid group actions onDb(O)

Question

Are thereEi’s such thatTEi ∼=LShsi?

Example (spherical objects in Db(O0) for sl2) P(s1) has C[ε]/(ε2) as endomorphisms:

L(s1) L(e) L(s1)

L(e) L(s1)

L(e) L(s1)

L(s1)

P(s1) P(e) P(s1)

Hence{P(s1)} is an A1-collection ford = 0.

(16)

Braid group actions onDb(O)

Results

Start withO0 forsl2:

Theorem

{P(s)}is 0-spherical and TP(s)∼=LShs[−1]

{L(e)} is 2-spherical and TL(e)∼=LShs

as auto-equivalences of Db(O0).

(17)

Braid group actions onDb(O)

Results

Start withO0 forsl2: Theorem

{P(s)}is 0-spherical and TP(s)∼=LShs[−1]

{L(e)} is 2-spherical and TL(e) ∼=LShs

as auto-equivalences of Db(O0).

(18)

Braid group actions onDb(O)

Results

Start withO0 forsl2: Theorem

{P(s)}is 0-spherical and TP(s)∼=LShs[−1]

{L(e)} is 2-spherical and TL(e) ∼=LShs

as auto-equivalences of Db(O0).

(19)

Braid group actions onDb(O)

Results

Start withO0 forsl2: Caveat

Remain not spherical under sl2,→sln:

L(s) L(st) L(ts)

L(w0) L(e)

L(s) L(t) L(st) L(ts)

L(w0)

L(t) L(st) L(ts)

L(w0) L(e)

L(s) L(t) L(st) L(ts)

L(w0)

L(s) L(st) L(ts)

L(w0) L(e)

L(s) L(t) L(st) L(ts)

L(w0)

P(s) P(t) P(s)

Db(O0(sl2))( @ (Db(O0(sl3)) in which P(s) is spherical.

(20)

Braid group actions onDb(O)

Results

Start withO0 forsl2: Caveat

Remain not spherical under sl2,→sln:

L(s) L(st) L(ts)

L(w0) L(e)

L(s) L(t) L(st) L(ts)

L(w0)

L(t) L(st) L(ts)

L(w0) L(e)

L(s) L(t) L(st) L(ts)

L(w0)

L(s) L(st) L(ts)

L(w0) L(e)

L(s) L(t) L(st) L(ts)

L(w0)

P(s) P(t) P(s)

Db(O0(sl2))( @ (Db(O0(sl3)) in which P(s) is spherical.

(21)

Braid group actions onDb(O)

Results

Pass to parabolic categoryOp:

Theorem

For maximal parabolic subalgebrap=

∗ ∗ ··· ∗ ... ... ... ...

∗ ∗ ··· ∗ 0∗ ··· ∗

⊂sln,

{Pp(s1), . . . ,Pp(s1· · ·sn−1)}is an An−2-collection.

TPp(s1···si) ∼=LShsi[−1].

• −1 ←−−→− • −←−−→− · · · −←−−→−n−1• .

1 = 0,

• → • → •= 0,

• ← • ← •= 0,

i = i

(22)

Braid group actions onDb(O)

Results

Pass to parabolic categoryOp: Theorem

For maximal parabolic subalgebrap=

∗ ∗ ··· ∗ ... ... ... ...

∗ ∗ ··· ∗ 0∗ ··· ∗

⊂sln,

{Pp(s1), . . . ,Pp(s1· · ·sn−1)}is an An−2-collection.

TPp(s1···si) ∼=LShsi[−1].

• −1 ←−−→− • −←−−→− · · · −←−−→−n−1• .

1 = 0,

• → • → •= 0,

• ← • ← •= 0,

i = i

(23)

Braid group actions onDb(O)

Results

Pass to parabolic categoryOp: Theorem

For maximal parabolic subalgebrap=

∗ ∗ ··· ∗ ... ... ... ...

∗ ∗ ··· ∗ 0∗ ··· ∗

⊂sln,

{Pp(s1), . . . ,Pp(s1· · ·sn−1)}is an An−2-collection.

TPp(s1···si) ∼=LShsi[−1].

• −1 ←−−→− • −←−−→− · · · −←−−→−n−1• .

1 = 0,

• → • → •= 0,

• ← • ← •= 0,

i = i

(24)

Braid group actions onDb(O)

Results

Pass to parabolic categoryOp: Caveat

Condition is necessary:

there is no An-collection of projective objects for other maximal parabolic subalgebras.

Example: p=

∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ 0 0∗ ∗ 0 0∗ ∗

L(ts)L(tsut)L(tu) L(t)

L(tsu) L(e)

L(t) L(tsut)

L(t) L(tsut)

L(ts) L(tu)

L(tsu) L(tsu)

L(ts) L(tsu)

L(tu)L(tsut) L(tsu)

L(ts)L(tsut)L(tu) L(t)

L(tsu) L(e)

L(t) L(tsut)

Pp(t) Pp(tsu) Pp(t)

(25)

Braid group actions onDb(O)

Results

Pass to parabolic categoryOp: Caveat

Condition is necessary:

there is no An-collection of projective objects for other maximal parabolic subalgebras.

Example: p=

∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ 0 0∗ ∗ 0 0∗ ∗

L(ts)L(tsut)L(tu) L(t)

L(tsu) L(e)

L(t) L(tsut)

L(t) L(tsut)

L(ts) L(tu)

L(tsu) L(tsu)

L(ts) L(tsu)

L(tu)L(tsut) L(tsu)

L(ts)L(tsut)L(tu) L(t)

L(tsu) L(e)

L(t) L(tsut)

Pp(t) Pp(tsu) Pp(t)

Referenzen

ÄHNLICHE DOKUMENTE

sind nun die beiden Flächen parallel, so sind, wie leicht einzusehen, auch die von beiden Flächen reflectirten Strahlen parallel, und die beiden Bilder werden im Fernrohre sich

International trainer and member of the Board of Directors and Faculty of IIBA (International Institute for Bioenergetic Analysis), President of SIAB (Italian Society of

[r]

These findings mark a contribution to empirical social research as well, which is increasingly using video material in action analysis and should take slow motion as a

Important property: Exotic sheaves interact well with a certain action of the affine braid group constructed by Bezrukavnikov and Riche.. Cautis–Kamnitzer: “Braid group actions

The aim of this section is to give algebraic proofs of the well-known facts that the first cohomology group depends only on the group segment and the second cohomology group

(Se si verifica un errore passando dalla stampa su foglio singolo alla stampa su modulo continuo, assicuratevi che la levetta per il rilascio della carta sia nella

Abstract: I will discuss an infinite group of geometric origin very much related to the symmetric group, in a way which is somewhat similar to the braid group. The group (and