• Keine Ergebnisse gefunden

Wage Policy in the Public Sector and Income Distribution

N/A
N/A
Protected

Academic year: 2022

Aktie "Wage Policy in the Public Sector and Income Distribution"

Copied!
12
0
0

Wird geladen.... (Jetzt Volltext ansehen)

Volltext

(1)

Munich Personal RePEc Archive

Wage Policy in the Public Sector and Income Distribution

Sheshinski, Eytan

The Hebrew University of Jerusalem

1982

Online at https://mpra.ub.uni-muenchen.de/73738/

MPRA Paper No. 73738, posted 15 Sep 2016 14:10 UTC

(2)

❲❛❣❡ P♦❧✐❝② ✐♥ t❤❡ P✉❜❧✐❝ ❙❡❝t♦r ❛♥❞ ■♥❝♦♠❡

❉✐str✐❜✉t✐♦♥

❊②t❛♥ ❙❤❡s❤✐♥s❦✐

❆❜str❛❝t

❚❤✐s ♣❛♣❡r ❡①❛♠✐♥❡s t❤❡ ❞✐r❡❝t ❛♥❞ ✐♥❞✐r❡❝t ❡✛❡❝ts ♦❢ ❛ ❣♦✈❡r♥♠❡♥t✬s

✇❛❣❡ ♣♦❧✐❝② ✐♥ t❤❡ ♣✉❜❧✐❝ s❡❝t♦r ♦♥ t❤❡ ♦✈❡r❛❧❧ ✐♥❝♦♠❡ ❞✐str✐❜✉t✐♦♥ ✐♥ t❤❡

❡❝♦♥♦♠②✳ ❇② ❞✐r❡❝t ❡✛❡❝ts ✇❡ ♠❡❛♥ t❤❡ ✇❛❣❡ ❞✐✛❡r❡♥t✐❛❧s ✐♥ t❤❡ ♣✉❜❧✐❝

s❡❝t♦r✳ ■♥❞✐r❡❝t ❡✛❡❝ts r❡❢❡r t♦ t❤❡ s❡❝♦♥❞❛r② ❡✛❡❝ts ♦❢ t❤❡ ❣♦✈❡r♥♠❡♥t✬s

♣♦❧✐❝② t❤r♦✉❣❤ ❝❤❛♥❣❡s ✐♥ t❤❡ ♦❝❝✉♣❛t✐♦♥❛❧ str✉❝t✉r❡✳ ❚❤✐s ❛♥❛❧②s✐s ✐s

❜❛s❡❞ ♦♥ ❛ s✐♠♣❧❡ ♠♦❞❡❧ s✉❣❣❡st❡❞ ❜② ❚✐♥❜❡r❣❡♥ ✭✶✾✺✶✮ ❛♥❞ ❘♦② ✭✶✾✺✶✮✱

❢♦❧❧♦✇❡❞ ❜② ❍♦✉t❤❛❦❦❡r ✭✶✾✼✻✮✳ ■♥ t❤❡ ♥✉♠❡r✐❝❛❧ ❝❛❧❝✉❧❛t✐♦♥s✱ t❤❡ ♠♦❞❡❧

②✐❡❧❞s r❡❛❧✐st✐❝ ❝♦♥❝❧✉s✐♦♥s ✇❤✐❝❤ ✉♥❞❡r❧✐♥❡ t❤❡ ✐♠♣♦rt❛♥❝❡ ♦❢ ❣♦✈❡r♥♠❡♥t

✇❛❣❡ ♣♦❧✐❝②✳

❑❡② ❲♦r❞✿ ✐♥❝♦♠❡ ❞✐str✐❜✉t✐♦♥✱ ✇❛❣❡ ♣♦❧✐❝②✱ ♣✉❜❧✐❝ ❛♥❞ ♣r✐✈❛t❡ s❡❝✲

t♦r✱ ▲♦r❡♥t③ ❝✉r✈❡✳

❲❡ ✇✐s❤ t♦ t❤❛♥❦ ❉r✳ ▼✳ ❙❤❡❢❡r ❢r♦♠ t❤❡ ❇✉r❡❛✉ ♦❢ ❈♦♠♠❡r❝❡ ❢♦r s✉♣♣❧②✐♥❣ ❞❛t❛ ❛♥❞ ♣r♦✲

✈✐❞✐♥❣ ❤❡❧♣❢✉❧ ❝♦♠♠❡♥ts ❛♥❞ ❆♥❛t ❇❛❜✐t③ ❢♦r ❤❡r ❡①❝❡❧❧❡♥t r❡s❡❛r❝❤ ❛ss✐st❛♥❝❡✳ ❚❤❡ ✜♥❛♥❝✐❛❧

❛ss✐st❛♥❝❡ ♦❢ t❤❡ ❋♦❡r❞❡r ■♥st✐t✉t❡ ❢♦r ❊❝♦♥♦♠✐❝ ❘❡s❡❛r❝❤ ✐s ❛❧s♦ ❣r❛t❡❢✉❧❧② ❛❝❦♥♦✇❧❡❞❣❡❞✳

(3)

■♥tr♦❞✉❝t✐♦♥

●♦✈❡r♥♠❡♥t ✐♥t❡r✈❡♥t✐♦♥ ✐♥ t❤❡ ♣r♦❝❡ss ♦❢ ✇❛❣❡ ❞❡t❡r♠✐♥❛t✐♦♥ t❛❦❡s ❛ ✈❛r✐❡t②

♦❢ ❢♦r♠s✳ ❉✐s❝✉ss✐♦♥s ♦❢ t❤✐s q✉❡st✐♦♥ ♠♦st ❝♦♠♠♦♥❧② r❡❢❡r t♦ st❛t✉t♦r② r❡❣✉✲

❧❛t✐♦♥ ♦❢ ✇❛❣❡s ✭♣r✐♠❛r✐❧② ❝♦♥❝❡r♥❡❞ ✇✐t❤ ❡st❛❜❧✐s❤✐♥❣ ♠✐♥✐♠✉♠ r❛t❡s ❛♥❞ t❤❡

♣r♦t❡❝t✐♦♥ ♦❢ ❧♦✇✲♣❛✐❞ ✇♦r❦❡rs✮✱ ❛r❜✐tr❛t✐♦♥ ♣r♦❝❡❞✉r❡s✱ ❛♥❞ ✐♥t❡r✈❡♥t✐♦♥ ✐♥ ❝♦❧✲

❧❡❝t✐✈❡ ❜❛r❣❛✐♥✐♥❣✳ ❚❤❡ r❡❝❡♥t ❣r♦✇t❤ ✐♥ ❲❡st❡r♥ ❡❝♦♥♦♠✐❡s ♦❢ t❤❡ ♣✉❜❧✐❝ s❡❝t♦r r❡❧❛t✐✈❡ t♦ t❤❡ ♣r✐✈❛t❡ s❡❝t♦r ❤❛s s❤✐❢t❡❞ t❤❡ ❢♦❝✉s ♦❢ t❤✐s ❞✐s❝✉ss✐♦♥ t♦ t❤❡ ❞✐✲

r❡❝t ❛♥❞ ✐♥❞✐r❡❝t ❡✛❡❝ts ♦❢ ✇❛❣❡ ♣♦❧✐❝✐❡s ✐♥ t❤❡ ♣✉❜❧✐❝ s❡❝t♦r ♦♥ t❤❡ ♦✈❡r❛❧❧ ❧❛❜♦r

♠❛r❦❡t ❝♦♥❞✐t✐♦♥s ❛♥❞ ♦♥ ✐♥❝♦♠❡ ❞✐str✐❜✉t✐♦♥✳ ❇② ❞✐r❡❝t ❡✛❡❝ts ■ ♠❡❛♥ t❤❡ ❧❡✈❡❧

♦❢ ♣❛② ❜② t❤❡ ❣♦✈❡r♥♠❡♥t ❢♦r ❞✐✛❡r❡♥t ♦❝❝✉♣❛t✐♦♥s✳ ■♥❞✐r❡❝t ❡✛❡❝ts r❡❢❡r t♦ t❤❡

✏s❡❝♦♥❞❛r②✑ ❡✛❡❝ts✱ ❣❡♥❡r❛t❡❞ t❤r♦✉❣❤ ❝❤❛♥❣❡s ✐♥ t❤❡ ♦❝❝✉♣❛t✐♦♥❛❧ str✉❝t✉r❡✱ ❛s

✐♥❞✉❝❡❞ ❜② ✇❛❣❡ ♣♦❧✐❝✐❡s ✐♥ t❤❡ ♣✉❜❧✐❝ s❡❝t♦r✳

❚❤✐s ♣❛♣❡r ❢♦❝✉s❡s ♦♥ t❤❡ ❡✛❡❝ts ♦❢ ❣♦✈❡r♥♠❡♥t✬s ✇❛❣❡ ♣♦❧✐❝② ✇✐t❤✐♥ t❤❡

♣✉❜❧✐❝ s❡❝t♦r ♦♥ t❤❡ ❞✐str✐❜✉t✐♦♥ ♦❢ ✐♥❝♦♠❡ ✐♥ t❤❡ ♣r✐✈❛t❡ s❡❝t♦r✱ ❛s ✇❡❧❧ ❛s ♦♥

t❤❡ ♦✈❡r❛❧❧ ✐♥❝♦♠❡ ❞✐str✐❜✉t✐♦♥✳ ■♥ ♣❛rt✐❝✉✐❛r✱ ❜② ♠❡❛♥s ♦❢ ❛ ✈❡r② s✐♠♣❧❡ ♠♦❞❡❧

♦r✐❣✐♥❛❧❧② s✉❣❣❡st❡❞ ❜② ❚✐♥❜❡r❣❡♥✳ ✭✶✾✺✶✮ ❛♥❞ ❢♦❧❧♦✇❡❞ ❜② ❘♦② ✭✶✾✺✶✮ ❛♥❞

❍♦✉t❤❛❦❦❡r ✭✶✾✼✻✮✱ ✐t ❡①❛♠✐♥❡s t❤❡ ❡✛❡❝ts ♦❢ t❤❡ ♣✉❜❧✐❝ s❡❝t♦r✬s ✇❛❣❡ s❝❤❡❞✉❧❡

♦♥ t❤❡ ❞✐str✐❜✉t✐♦♥ ♦❢ t❤❡ ❧❛❜♦r ❢♦r❝❡ ❜❡t✇❡❡♥ s❡❝t♦rs ❛♥❞ ♦♥ t❤❡ ❞✐str✐❜✉t✐♦♥ ♦❢

✐♥❝♦♠❡✳

▲❡t ✉s ✜rst ❧♦♦❦ ❛t s♦♠❡ ❢❛❝ts ❝♦♥❝❡r♥✐♥❣ ✐♥❝♦♠❡ ❞✐✛❡r❡♥t✐❛❧s ❜❡t✇❡❡♥ t❤❡

♣r✐✈❛t❡ ❛♥❞ ♣✉❜❧✐❝ s❡❝t♦rs ✐♥ s♦♠❡ ❲❡st❡r♥ ❡❝♦♥♦♠✐❡s✳ ❙♠✐t❤ ✭✶✾✼✻✮ ❤❛s st✉❞✲

✐❡❞ ♣❛② ❞✐✛❡r❡♥❝❡s ❜❡t✇❡❡♥ t❤❡s❡ s❡❝t♦rs ❢♦r t❤❡ ❯❙✳ ❡❝♦♥♦♠②✳ ❆❧t❤♦✉❣❤ ♥♦

s②st❡♠❛t✐❝ ❞✐✛❡r❡♥❝❡ ✇❛s ❢♦✉♥❞ ❢♦r t❤❡ ❛✈❡r❛❣❡ ♣❛② ❛❝r♦ss ❞✐✛❡♥❡♥t ❝♦♠♣❛r❛❜❧❡

♦❝❝✉♣❛t✐♦♥s✱ t❤❡r❡ s❡❡♠s t♦ ❜❡ ❛ ❝❧❡❛r ♥❡❣❛t✐✈❡ ❝♦rr❡❧❛t✐♦♥ ❜❡t✇❡❡♥ t❤❡ ✇❛❣❡

r❛t✐♦ ✭♣✉❜❧✐❝ t♦ ♣r✐✈❛t❡✮ ❛♥❞ t❤❡ ❧❡✈❡❧ ♦❢ ✐♥❝♦♠❡✳ ❋r♦♠ ❤❡r ✜♥❞✐♥❣s ♦♥❡ ❝❛♥

❝♦♠♣✉t❡ ❚❛❜❧❡ ✶ ✳

❚❛❜❧❡ ✶✿

❆✈❡r❛❣❡ ❊❛r♥✐♥❣s ♦❢ ▼❡♥ ✐♥ ❉✐✛❡r❡♥t ❖❝❝✉♣❛t✐♦♥❛❧

●r♦✉♣s ❯✳❙✳❆ ✶✾✺✽✲✶✾✼✵

P❡r❝❡♥t❛❣❡ ♦❢ ❛✈❡r❛❣❡ ❢♦r ❛❧❧ ❣r♦✉♣s Pr✐✈❛t❡ s❡❝t♦r P✉❜❧✐❝ ❙❡❝t♦r

❍✐❣❤❡r Pr♦❢❡ss✐♦♥❛❧ ✷✾✽ ✶✽✵

▲♦✇❡r Pr♦❢❡ss✐♦♥❛❧ ✶✷✹ ✶✺✹

❆❞♠✐♥✐str❛t♦rs ❛♥❞ ♠❛♥❛❣❡rs ✷✼✶ ✶✻✵

❈❧❡r❦s ✶✵✵ ✶✶✵

❋♦r❡♠❡♥ ✶✹✾ ✶✸✵

❙❦✐❧❧❡❞ ♠❛♥✉❛❧ ✶✶✼ ✶✵✵

❙❡♠✐s❦✐❧❧❡❞ ♠❛♥✉❛❧ ✽✺ ✽✾

❯♥s❦✐❧❧❡❞ ♠❛♥✉❛❧ ✼✾ ✽✺

■t ✐s q✉✐t❡ ❝❧❡❛r ❢r♦♠ t❤❡ t❛❜❧❡ t❤❛t t❤❡ s♣r❡❛❞ ♦❢ ✇❛❣❡s ✐s ♠✉❝❤ s♠❛❧❧❡r

✐♥ t❤❡ ♣✉❜❧✐❝ s❡❝t♦r t❤❛♥ ✐♥ t❤❡ ♣r✐✈❛t❡ s❡❝t♦r✳ ❚❤❡ ♦❜✈✐♦✉s q✉❡st✐♦♥ t❤❛t t❤✐s

(4)

♦❜s❡r✈❛t✐♦♥ ❜r✐♥❣s t♦ ♠✐♥❞ ✐s ✇❤❡t❤❡r t❤❡ ♣✉❜❧✐❝ s❡❝t♦r ✐s ❣❡tt✐♥❣ ❧♦✇❡r ❛❜✐✐✐t②

✐♥❞✐✈✐❞✉❛❧s ✇✐t❤✐♥ ❡❛❝❤ ♦❝❝✉♣❛t✐♦♥✳ ■❢ s♦✱ t❤❡♥ t❤❡r❡ ✐s ♣r❡s✉♠❛❜❧② ❛♥ ❛❞❞✐✲

t✐♦♥❛❧ ❡✛❡❝t✱ ♥❛♠❡❧②✱ ✐❢ ✐♥❞✐✈✐❞✉❛❧✐s ✇✐t❤ ❤✐❣❤ ❛❜✐❧✐t② ✇✐t❤✐♥ t❤❡ ❤✐❣❤✲♣❛②✐♥❣

♦❝❝✉♣❛t✐♦♥s t❡♥❞ t♦ ✇♦r❦ ✐♥ t❤❡ ♣r✐✈❛t❡ s❡❝t♦r ❛♥❞ ✐❢ ❧♦✇✲❛❜✐❧✐t② ✐♥❞✐✈✐❞✉❛❧s

✇♦r❦ ✐♥ t❤❡ ❧♦✇✲♣❛②✐♥❣ ♦❝❝✉♣❛t✐♦♥s✱ t❤❡♥ t❤❡ ✐♥❝♦♠❡ ❞✐str✐❜✉t✐♦♥ ✐♥ t❤❡ ♣r✐✈❛t❡

s❡❝t♦r t❡♥❞s t♦ ❜❡ ❧❡ss ❡❣❛❧✐t❛r✐❛♥ ✇❤❡♥ t❤❡ ✇❛❣❡ ♣♦❧✐❝② ✐♥ t❤❡ ♣✉❜❧✐❝ s❡❝t♦r ✐s

♠♦r❡ ❡❣❛❧✐t❛r✐❛♥✳ ❙♦♠❡ ❡✈✐❞❡♥❝❡ ❢♦r s✉❝❤ t❡♥❞❡♥❝② ✐♥ t❤❡ ■sr❛❡❧✐ ❡❝♦♥♦♠② ❝❛♥

❜❡ ❞❡❞✉❝❡❞ ❢r♦♠ t❤❡ st✉❞✐❡s ♦❢ ❍❛♥♦❝❤ ✭✶✾✻✸✮ ❛♥❞ ▲❡✈② ✭✶✾✼✺✮✳

❲❡ ♥♦✇ t✉r♥ t♦ ❛ s✐♠♣❧❡ ♠♦❞❡❧ ♦❢ t❤❡ ❝❤♦✐❝❡ ♦❢ ✇♦r❦ ❛♠♦♥❣ s❡❝t♦rs✱ s❤♦✇✐♥❣

t❤❡ ❞❡♣❡♥❞❡♥❝❡ ♦❢ ✐♥❝♦♠❡ ❞✐str✐❜✉t✐♦♥ ✇✐t❤✐♥ ❛♥❞ ❜❡t✇❡❡♥ s❡❝t♦rs ♦♥ t❤❡ ♣✉❜❧✐❝

s❡❝t♦r✬s ✇❛❣❡ ♣♦❧✐❝②✳

❚❤❡ ❛ss✉♠♣t✐♦♥s ♦❢ t❤❡ ♠♦❞❡❧ ❛r❡ ♥♦ ❞♦✉❜t t♦♦ s✐♠♣❧❡ t♦ ♣r♦✈✐❞❡ ❛ r❡❛❧✲

✐st✐❝ ❞❡s❝r✐♣t✐♦♥✳ ◆❡✈❡rt❤❡❧❡ss✱ t❤❡② ❤❛✈❡ ❢❛✐r❧② r❡❛❧✐st✐❝ ✐♠♣❧✐❝❛t✐♦♥s ❢♦r t❤❡

❞✐str✐❜✉t✐♦♥ ♦❢ ✐♥❝♦♠❡ ❛♥❞ t❤❡ ❧❛❜♦r ❢♦r❝❡✳

❆ ❇❛s✐❝ ▼♦❞❡❧ ♦❢ ▲❛❜♦r ❋♦r❝❡ ❉✐str✐❜✉t✐♦♥

❊❛❝❤ ✐♥❞✐✈✐❞✉❛❧ ✐s ❛ss✉♠❡❞ t♦ ♠❛①✐♠✐③❡ ❤✐s ❡❛r♥✐♥❣s ❜② ❝❤♦♦s✐♥❣ ❛♠♦♥❣ ♦❝❝✉✲

♣❛t✐♦♥s ❛❝❝♦r❞✐♥❣ t♦ ❤✐s ❛♣t✐t✉❞❡ ❢♦r ❡❛❝❤ ♦❝❝✉♣❛t✐♦♥✳ ❲❡ ❢♦❝✉s ♦♥ t❤❡ ❝❤♦✐❝❡

❜❡t✇❡❡♥ ♣✉❜❧✐❝ s❡❝t♦r ❛♥❞ ♣r✐✈❛t❡ s❡❝t♦r ❡♠♣❧♦②♠❡♥t✳ ▲❡t t❤❡ ✐♥❞✐✈✐❞✉❛❧✬s ❛♣✲

t✐t✉❞❡s ❜❡ s✉♠♠❛r✐③❡❞ ❜② t❤❡ ♣❛✐r(a1, a2)✱ ✇❤❡r❡a1✐s ❤✐s ♠❛r❣✐♥❛❧ ♣r♦❞✉❝t ✐♥

t❤❡ ♣✉❜❧✐❝ s❡❝t♦r✱ ❛♥❞a2 ✐s ❤✐s ♠❛r❣✐♥❛❧ ♣r♦❞✉❝t ✐♥ t❤❡ ♣r✐✈❛t❡ s❡❝t♦r✳ ❋♦r s✐♠✲

♣❧✐❝✐t②✱ t❤❡s❡ ♣r♦❞✉❝t✐✈✐t✐❡s ❛r❡ ❛ss✉♠❡❞ t♦ ❜❡ ✐♥❞❡♣❡♥❞❡♥t ♦❢ t❤❡ ❧❛❜♦r ❢♦r❝❡

❛❧❧♦❝❛t✐♦♥ ❜❡t✇❡❡♥ t❤❡ s❡❝t♦rs✳ ❚❤❡ ✐♥❞✐✈✐❞✉❛❧✬s ✇♦r❦✐♥❣ t✐♠❡ ✐s ❛ss✉♠❡❞ t♦

❜❡ ✜①❡❞ ❛t ✉♥✐t②✳ ❚❤❡ t✐♠❡ ❞❡✈♦t❡❞ t♦ t❤❡it❤ ♦❝❝✉♣❛t✐♦♥ ✐s xi, 0≤xi≤1✳

❚❤❡ ✇❛❣❡s ♣❛✐❞✳ ❜② ❡❛❝❤ s❡❝t♦r✱ wi✱ ❛r❡ ❛ss✉♠❡❞ t♦ ❞❡♣❡♥❞ ♦♥ ❤✐s ❛♣t✐t✉❞❡✿

wi=wi(ai)✳ ■t ✐s t❤✉s ❛ss✉♠❡❞ t❤❛t t❤❡ ✐♥❞✐✈✐❞✉❛✐✬s ❛♣t✐t✉❞❡ ❝❛♥ ❜❡ ✐❞❡♥t✐✜❡❞✳

❚❤❡ ✐♥❞✐✈✐❞✉❛❧ ✐s s✉♣♣♦s❡❞ t♦ ♥♦t ❢❛✈♦r ❛♥② ♦❝❝✉♣❛t✐♦♥ ❛♥❞ ❤❡♥❝❡ t♦ ❛❧t♦❝❛t❡

❤✐s ✇♦r❦✐♥❣ t✐♠❡ s♦ ❛s t♦ ♠❛①✐♠✐③❡ ❤✐s ✐♥❝♦♠❡✳ ❚❤✉s✱

xmax1,x2(w1x1+w2x2) ✭✶✮

s✉❜❥❡❝t t♦

x1+x2= 1 ✭✷✮

❚❤❡ ♠❛①✐♠✉♠ ✐s r❡❛❝❤❡❞ ❜② ✇♦r❦✐♥❣ ❛❧❧ t❤❡ t✐♠❡ ✐♥ t❤❡ s❡❝t♦r ❢♦r ✇❤✐❝❤ ❤✐s

✇❛❣❡ ✐s ❣r❡❛t❡st✳ ◆♦r♠❛❧❧② t❤❡r❡ ✐s ♦♥❧② ♦♥❡ s✉❝❤ ♦❝❝✉♣❛t✐♦♥✳ ■❢ t❤❡r❡ ✐s ♠♦r❡

t❤❛♥ ♦♥❡✱ t❤❡♥ t❤❡ ❛❧❧♦❝❛t✐♦♥ ♦❢ t✐♠❡ ✐s ✐♥❞❡t❡r♠✐♥❛t❡✳

❚❤✐s s✐♠♣❧❡ ♠✐❝r♦♠♦❞❡❧ ❧❡♥❞s ✐ts❡❧❢ r❡❛❞✐❧② t♦ ❛❣❣r❡❣❛t✐♦♥ ♦✈❡r ✐♥❞✐✈✐❞✉❛❧s✱

♣r♦✈✐❞❡❞ s✉✐t❛❜❧❡ ❝♦♥t✐♥✉✐t② ❛ss✉♠♣t✐♦♥s ❛r❡ ♠❛❞❡✳ ❋♦r t❤✐s ♣✉r♣♦s❡ ✇❡ ❛ss✉♠❡

t❤❛t t❤❡ ♣❛✐r (a1, a2) ✈❛r✐❡s r❛♥❞♦♠❧② ♦✈❡r t❤❡ ✐♥❞✐✈✐❞✉❛❧s ✇✐t❤ ❛ ❝♦♥t✐♥✉♦✉s

❞❡♥s✐t② ❢✉♥❝t✐♦♥ f(a1, a2)✳ ❚❤❡ ❞✐str✐❜✉t✐♦♥ ❢✉♥❝t✐♦♥ F(a1, a2) ✐s t❤❡♥ ❛❧s♦

❝♦♥t✐♥✉♦✉s✳ ❚♦ ❡❧✐♠✐♥❛t❡ t❤❡ ✐♥❞❡t❡r♠✐♥❛❝② ♠❡♥t✐♦♥❡❞ ❡❛r❧✐❡r✱ ♦♥❧② ❞❡♥s✐t②

❢✉♥❝t✐♦♥s ❛♥❞ ✇❛❣❡ s❝❤❡❞✉❧❡s wi(ai) ✇❤❡r❡ t✐❡s ✭✐✳❡✳ w1 = w2✮ ❤❛✈❡ ❛ ③❡r♦

♣r♦❜❛❜✐❧✐t② ❛r❡ ❝♦♥s✐❞❡r❡❞✳ ❖t❤❡r✇✐s❡✱ ♥♦ r❡str✐❝t✐♦♥s ❛r❡ ✐♠♣♦s❡❞ ♦♥ t❤❡ ❥♦✐♥t

❞❡♥s✐t② ❢✉♥❝t✐♦♥✳ ■♥ ♣❛rt✐❝✉✐❛r✱ ❛♣t✐t✉❞❡s ♠❛② ♦r ♠❛② ♥♦t ❜❡ ✐♥❞❡♣❡♥❞❡♥t ♦❢

❡❛❝❤ ♦t❤❡r✳

(5)

❚❤❡ ✭❝✉♠✉❧❛t✐✈❡✮ ❞✐str✐❜✉t✐♦♥ ❢✉♥❝t✐♦♥ ❢♦r ✐♥❝♦♠❡s ✐♥ s❡❝t♦r i = 1,2✱ ✐s

❞❡♥♦t❡❞ Gi(z)✱ ❛♥❞ t❤❡ ❝♦rr❡s♣♦♥❞✐♥❣ ❞❡♥s✐t② ✐s ❞❡♥♦t❡❞ gi(z)✳ ❚❤❡ ♦✈❡r❛❧❧

❞✐str✐❜✉t✐♦♥ ❢✉♥❝t✐♦♥ ✐sG(z) =G1(z)+G2(z)❛♥❞ t❤❡ ❞❡♥s✐t② ✐sg(z) =g1(z)+

g2(z)✳

■❢wi ❛r❡ str✐❝t❧② ♠♦♥♦t♦♥❡ ✐♥❝r❡❛s✐♥❣ ❢✉♥❝t✐♦♥s ♦❢ai✱ t❤❡♥ t❤❡ ❜❛s✐❝ ✐♠♣❧✐✲

❝❛t✐♦♥ ♦❢ t❤❡ ♠♦❞❡❧ ❢♦r t❤❡ ❞✐str✐❜✉t✐♦♥ ♦❢ ✐♥❝♦♠❡ ✐s G(z) =F

w1−1(z1), w−12 (z2) ✭✸✮

✇❤❡r❡z=w1(a1) =w2(a2)❛♥❞wi−1 ❛r❡ t❤❡ ❝♦rr❡s♣♦♥❞✐♥❣ ✐♥✈❡rs❡ ❢✉♥❝t✐♦♥s✳

❚❤❡ ❞✐str✐❜✉t✐♦♥ ♦❢ ✐♥❝♦♠❡ ✐♥ ❛♥② ♦❝❝✉♣❛t✐♦♥ ❝❛♥ ❜❡ ❞❡r✐✈❡❞ s✐♠✐❧❛r❧②✳ ❋♦r

❡①❛♠♣❧❡✱

G1(z) =

z

ˆ

0 z1

ˆ

0

f

w11(z1), w21(z2) 1

∆dz1dz2 ✭✹✮

✇❤❡r❡

∆ =w1

w−11 (z1) w2

w−12 (z2)

, wi=dvi(ai)/dai

■t ✐s ❛ss✉♠❡❞ t❤r♦✉❣❤♦✉t t❤❛t t❤❡ ♣r✐✈❛t❡ s❡❝t♦r ♣❛②s ✐♥❞✐✈✐❞✉❛❧s t❤❡✐r

♠❛r❣✐♥❛❧ ♣r♦❞✉❝t✱ t❤❛t ✐s✱

w2(a2) =a2 ✭✺✮

❚❤❡ ❛♥❛❧②s✐s ❢♦❝✉s❡s ♦♥ t❤❡ ✐♠♣❛❝t ♦❢ t❤❡ ✇❛❣❡ ♣♦❧✐❝② ✐♥ t❤❡ ♣✉❜❧✐❝ s❡❝t♦r

♦♥ ✐♥❝♦♠❡ ❞✐str✐❜✉t✐♦♥✱ ❧❛❜♦r ❢♦r❝❡ ❛❧❧♦❝❛t✐♦♥✱ ❛♥❞ ♦✉t♣✉t ❧❡✈❡❧s✳ ❚♦ s✐♠♣❧✐❢②✱ ✐t

✐s ❝♦♥✜♥❡❞ t♦ ❧✐♥❡❛r ✇❛❣❡ s❝❤❡❞✉❧❡s✱ ❛♥❞ t♦ ❜✐✈❛r✐❛t❡ ❡①♣♦♥❡♥t✐❛❧ ❞✐str✐❜✉t✐♦♥s✱

s❡❧❡❝t❡❞ ❢♦r ❝♦♠♣✉t❛t✐♦♥❛❧ ❝♦♥✈❡♥✐❡♥❝❡✱ r❛t❤❡r t❤❛♥ r❡❛❧✐s♠✳ ❚❤❡♥✱ ❧❡t

w1=α+βa1 ✭✻✮

✇❤❡r❡ α, β(β >0)❛r❡ ❝♦♥st❛♥ts✳ ❚❤❡ ❞❡♥s✐t② ❢✉♥❝t✐♦♥ ♦❢ ❛♣t✐t✉❞❡s ✐s ❛ss✉♠❡❞

t♦ ❤❛✈❡ t❤❡ ❢♦r♠✿

f(a1, a2) = ˆθ1θˆ2exp

−θˆ1a1−θˆ2a2

✭✼✮

✇❤❡r❡ θˆ1, θˆ2 ✭θˆ1>0✱θˆ2>0✮ ❛r❡ ❝♦♥st❛♥ts✳ ❇t ❊qs✳ ✭✹✮✲✭✼✮✱

G1(z) =θ1θ2exp (θ1α)

z

ˆ

α w1

ˆ

0

exp (−θ1w1−θ2w2)dw1dw2

= [θ1/(θ12)]{exp (−θ2α) exp [−(θ12) (z−α)]−1}

−exp [−θ1(z−α)] + 1

✭✽✮

❚❤✐s ❞✐str✐❜✉t✐♦♥ ✐s t❤❡ ♣r♦❞✉❝t ♦❢ t✇♦ ✉♥✐✈❛r✐❛t❡ ❡①♣♦♥❡♥t✐❛❧s ❛♥❞ t❤❡r❡❢♦r❡ ❞♦❡s ♥♦t ❛❧❧♦✇

❢♦r ❞❡♣❡♥❞❡♥❝❡✳ ❇✐✈❛r✐❛t❡ ❡①♣♦♥❡♥t✐❛❧s ✇✐t❤ ❞❡♣❡♥❞❡♥❝❡ ❤❛✈❡ ❜❡❡♥ ✐♥tr♦❞✉❝❡❞ ❜② ▼❛rs❤❛❧❧

❛♥❞ ❖❧❦✐♥ ✭✶✾✻✼✮✱ ❜✉t t❤❡② ✈✐♦❧❛t❡ t❤✐s ❛ss✉♠♣t✐♦♥ t❤❛t t❤❡ ♣r♦❜❛❜✐❧✐t② ♦❢ t✐❡s ✐s ③❡r♦✳

(6)

✇❤❡r❡θ1= θˆ1/β

✱θ2= ˆθ2✳ ❙✐♠✐❧❛r❧②✱

G2(z) =θ1θ2exp (θ1α)

z

ˆ

α w2

ˆ

α

exp (−θ1w1−θ2w2)dw1dw2

= [θ2/(θ12)]{exp (−θ2α) exp [−(θ12) (z−α)]−1}

−exp (−θ2z) + exp (−θ2α)

✭✾✮

❆❞❞✐♥❣ ✉♣✱ ✇❡ ✜♥❞

G(z) = exp (−θ2α) exp [−(θ12) (z+α)]−exp [−θ1(z−α)]

−exp (−θ2z) + 1

={1−exp [−θ1(z−α)]} {1−exp{−θ2z}}

✭✶✵✮

❚❤❡ ✐♥❝♦♠❡ ❞❡♥s✐t② ✇✐t❤✐♥ t❤❡ ♣✉❜❧✐❝ s❡❝t♦r ✐s ❣✐✈❡♥ ❜②

g1(z) =θ1exp [−θ1(z−α)] [e−exp (−θ2z)] ✭✶✶✮

❛♥❞ ✐♥ t❤❡ ♣r✐✈❛t❡ s❡❝t♦r ❜②

g2(z) =θ2exp (−θ2z){1−exp [−θ1(z−α)]} ✭✶✷✮

❍❡♥❝❡✱ t❤❡ ♦✈❡r❛❧❧ ✐♥❝♦♠❡ ❞❡♥s✐t② ✐s

g(z) =θ1exp [−θ1(z−α)] +θ2exp (−θ2z)

−(θ12) exp (−θ2α) exp [−(θ12) (z−a)] ✭✶✸✮

◆♦t✐❝❡ t❤❛t ❛❧t❤♦✉❣❤✳ t❤❡ ❞❡♥s✐t② ❢✉r✐❝t✐♦♥ ♦❢ ❛❜✐❧✐t✐❡s ✐s ❏✲s❤❛♣❡❞ ❢♦r ❡❛❝❤

s❡❝t♦r✱ t❤❡ ❞❡♥s✐t② ♦❢ ✐♥❝♦♠❡ ✐♥ ❡❛❝❤ s❡❝t♦r ❧♦♦❦s ♠✉❝❤ ♠♦r❡ ❧✐❦❡ t❤❡ ✐♥❝♦♠❡

❞✐str✐❜✉t✐♦♥s ❡♥❝♦✉♥t❡r❡❞ ✐♥ r❡❛❧✐t② ✭s❡❡ ❋✐❣✉r❡ ✶ ❛♥❞ ▲②❞❛❧❧ ✶✾✻✽✮✳

❙✉♣♣♦s❡ ♥♦✇ t❤❛t t❤❡ ❣♦✈❡r♥♠❡♥t ✉♥❞❡rt❛❦❡s ❛ ♣r♦❣r❡ss✐✈❡ ✇❛❣❡ ♣♦❧✐❝②✱ t❤❛t

✐s✱ α >0✱ β <1✳ ■t ✐s ✐♠♠❡❞✐❛t❡❧② s❡❡♥ ❢r♦♠ ❊qs✳ ✭✽✮✲✭✶✷✮ t❤❛t t❤❡ ❡✛❡❝t ♦❢

s✉❝❤ ❛ ♣♦❧✐❝② ♦♥ t❤❡ ✐♥❝♦♠❡ ❞✐str✐❜✉t✐♦♥ ✇✐t❤✐♥ ❡❛❝❤ s❡❝t♦r ❛♥❞ ♦♥❡ t❤❡ ♦✈❡r❛❧❧

✐♥❝♦♠❡ ❞✐str✐❜✉t✐♦♥ ✐s ❛♠❜✐❣✉♦✉s✳ ❙✉❝❤ ❝♦♠♣❛r✐s♦♥s ❞❡♣❡♥❞✱ ♦❢ ❝♦✉rs❡✱ ♦♥ t❤❡

❝♦♥str❛✐♥ts ✐♠♣♦s❡❞ ♦♥α❛♥❞ β ❛s ✇❡❧❧ ❛s ♦♥ t❤❡ ♣❛r❛♠❡t❡rsθˆ1 ❛♥❞ θˆ2✳ ❚❤✐s

♣♦✐♥t ✇✐❧❧ ❜❡ ❝❧❛r✐✜❡❞ s❤♦rt❧②✳

■♥ ♦r❞❡r t♦ ❝❛❧❝✉❧❛t❡ ✐♥❡q✉❛❧✐t② ♠❡❛s✉r❡s ❞✐r❡❝t❧②✱ ♦♥❡ ✐s ❛❧s♦ ✐♥t❡r❡st❡❞ ✐♥

t❤❡ ❝✉♠✉❧❛t✐✈❡ ✐♥❝♦♠❡ ❞✐str✐❜✉t✐♦♥ ❢✉♥❝t✐♦♥ ❢♦r ❡❛❝❤ s❡❝t♦r✳ ▲❡t I1(z) =

z

ˆ

α

xg1(x)dx=α+ 1 θ1

− {exp [−θ1(z−α)]}

z+ 1

θ1

− θ1

θ12

[exp (−θ2α)]

α+ 1 θ12

− {exp [−(θ12) (z−α)]}

z+ 1 θ12

✭✶✹✮

(7)

I2(z) =

z

ˆ

α

xg2(x)dx= [exp (−θ2α)]

α+ 1

θ2

−[exp (−θ2z)]

z+ 1

θ2

− θ1

θ12

[exp (θ2α)]

exp [−(θ12)α]

α+ 1 θ12

− {exp [−(θ12)z]}

z+ 1 θ12

❉❡♥♦t❡ ❜② Ii = limz→∞Ii(z)✱ t❤❡ t♦t❛❧ ✐♥❝♦♠❡ ✐♥ s❡❝t♦r i✳ ❇② ❊qs✳ ✭✶✹✮✭✶✺✮

❛♥❞ ✭✶✺✮

I1=α+ 1 θ1

− θ1

θ12

[exp (−θ2α)]

α+ 1 θ12

✭✶✻✮

❛♥❞

I2= [exp (−θ2α)]

"

θ1

θ12α+ 1

θ2 − θ2

12)2

#

✭✶✼✮

❚❤❡ ▲♦r❡♥③ ❝✉r✈❡ ✐s t❤❡ ❝❡r✐✈❡❞ r❡❧❛t✐♦♥ ❜❡t✇❡❡♥Ii(z)/Ii❛♥❞Gi(z)/Gi(∞)

❚❤❡ ❡✛❡❝t ♦❢ ❛ ❣✐✈❡♥ ✏✇❛❣❡ ♣♦❧✐❝②✱✑ (α, β)✱ ♦♥ ♦✉t♣✉ts ✐♥ ❡❛❝❤ s❡❝t♦r✱ Yi✱ ✐s

❝❛❧❝✉❧❛t❡❞ ❛s ❢♦❧❧♦✇s✳ ■♥ t❤❡ ♣r✐✈❛t❡ s❡❝t♦r ✐♥❝♦♠❡s ❛r❡ ❡q✉❛❧ t♦ t❤❡ ♠❛r❣✐♥❛❧

♣r♦❞✉❝ts❀ ❤❡♥❝❡Y2=I2✳ ■♥ t❤❡ ♣✉❜❧✐❝ s❡❝t♦r✱ t❤❡ r❡❧❛t✐♦♥ ❜❡t✇❡❡♥ ♦✉t♣✉t✱a1

❛♥❞ ✐♥❝♦♠❡ ✐s ❣✐✈❡♥ ❜② ❊q✳ ✭✻✮✳ ❍❡♥❝❡✱ ♣r✐✈❛t❡ t♦t❛❧ ♦✉t♣✉t ✐s

Y1=

ˆ

α

z−α β

g1(z)dz

=1 β

"

1

θ1 − θ1

12)2exp (−θ2α)

# ✭✶✽✮

❆❣❣r❡❣❛t❡ ♦✉t♣✉tY ✐s Y =Y1+Y2= 1

βθ1

+ exp (−θ2α)

"

θ1

θ12

α+ 1 θ2

− θ2

12)2 − θ1

β(θ12)2

# ✭✶✾✮

❖♥❡ ❝❛♥ r❡❛❞✐❧② ❝❛❧❝✉❧❛t❡ t❤❛tα= 0✱β = 1✐s ❛ ❣❧♦❜❛❧ ♠❛①✐♠✉♠ ♦❢Y✳

❙♦♠❡ ◆✉♠❡r✐❝❛❧ ❊①❛♠♣❧❡s

❋♦r ♥✉♠❡r✐❝❛❧ ✐❧❧✉str❛t✐♦♥✱ ✇❡ s❤❛❧❧ t❛❦❡ ❛r❜✐tr❛r② ✈❛❧✉❡s✱θˆ1=.02❛♥❞θˆ2=.01✳

❚❤❡s❡ ✈❛❧✉❡s ✐♠♣❧② t❤❛t t❤❡ ❞✐str✐❜✉t✐♦♥ ♦❢ ❛❜✐❧✐t✐❡s ✐s ♠♦r❡ ❡q✉❛❧ ✐♥ ♣✉❜❧✐❝

❙✐♠♣❧② ❝❛❧❝✉❧❛t❡ t❤❛t ❛t α = 0 β = 1 ∂Y/∂α = ∂Y/∂β = 0✱ ❛♥❞ t❤❡ s❡❝♦♥❞✲♦r❞❡r

❝♦♥❞✐t✐♦♥s2Y/∂α2<02Y/∂β2<0 2Y/∂α2

2Y/2β

2Y/∂α∂β2

>0✱ ❤♦❧❞✳

(8)

s❡❝t♦r ❡♠♣❧♦②♠❡♥t✱ r❡❧❛t✐✈❡ t♦ ♣r✐✈❛t❡ s❡❝t♦r ❡♠♣❧♦②♠❡♥t✳ ❚❤✐s ❝♦rr❡s♣♦♥❞s t♦

♦❜s❡r✈❡❞ ❢❛❝ts ❛❜♦✉t ❞✐str✐❜✉t✐♦♥s ♦❢ s❦✐❧❧ ❛♥❞ ❡❞✉❝❛t✐♦♥ ❧❡✈❡❧ ✐♥ t❤❡ t✇♦ s❡❝t♦rs✳

❆s ❛❧r❡❛❞② ♥♦t❡❞✱ ❛❧t❤♦✉❣❤ t❤❡ ❞❡♥s✐t② ❢✉♥❝t✐♦♥ ♦❢ ❛❜✐❧✐t✐❡s ✐s ❏✲s❤❛♣❡❞ ❢♦r ❡❛❝❤

s❡❝t♦r✱ t❤❡ ❞❡♥s✐t② ♦❢ ✐♥❝♦♠❡ ✐♥ ❡❛❝❤ ❧♦♦❦s ❧✐❦❡ t❤❡ ✐♥❝♦♠❡ ❞✐str✐❜✉t✐♦♥s ❡♥❝♦✉♥✲

t❡r❡❞ ✐♥ r❡❛❧✐t② ✭❋✐❣✉r❡✳ ✶✮✳ ❚❤❡ ❝♦♠♣❛r✐s♦♥ ♦❢ ❛❧t❡r♥❛t✐✈❡ ✇❛❣❡ ♣♦❧✐❝✐❡s ❝❛♥

❜❡ ♠❛❞❡ ✉♥❞❡r ❛❧t❡r♥❛t✐✈❡ ❛ss✉♠♣t✐♦♥s ❛❜♦✉t t❤❡ r❡str✐❝t✐♦♥s ✐♠♣♦s❡❞ ♦♥ t❤❡

♣❛r❛♠❡t❡rs ✭❛✱ ❇✮✳ ❚❤❡ ❝❛❧❝✉❧❛t✐♦♥s ❤❛✈❡ ❜❡❡♥ ❝❛rr✐❡❞ ♦✉t ✉♥❞❡r t❤❡ ❛ss✉♠♣✲

t✐♦♥ t❤❛t✳ t❤❡ s✐③❡ ♦❢ ❡♠♣✐♦②♠❡♥t ✐♥ t❤❡ ♣r✐✈❛t❡ s❡❝t♦r ✭❛♥❞ ❤❡♥❝❡ ✐♥ t❤❡ ♣✉❜❧✐❝

s❡❝t♦r ❛s ✇❡❧❧✮ ✐s ❝♦♥st❛♥t✳

❲❤❡♥α= 0✱β = 1✱ ✉s✐♥❣ t❤❡ ❝❤♦s❡♥ ✈❛❧✉❡s ❢♦rθˆ1 ❛♥❞θˆ2✱ ✇❡ ❤❛✈❡ ❢r♦♠ ✭✾✮

z→∞lim G2(z) = θˆ1

θˆ1+ ˆθ2

= 2

3 ✭✷✵✮

■♥ ❣❡♥❡r❛❧✱ ❢♦r ❛♥②(α, β)✱

z→∞lim G2(z) = θ1

θ12

= exp (−θ2α)

❲❡ t❤❡r❡❢♦r❡ r❡str✐❝t t❤❡ ♣❛r❛♠❡t❡rs(α, β)❜② t❤❡ r❡❧❛t✐♦♥

θ1

θ12exp (−θ2α) = 2

3 ✭✷✶✮

✇❤✐❝❤ ✐♠♣❧✐❡s t❤❛t t✇♦✲t❤✐r❞s ♦❢ t❤❡ ❧❛❜♦r ❢♦r❝❡ ✐s ❡♠♣❧♦②❡❞ ✐♥ t❤❡ ♣r✐✈❛t❡ s❡❝t♦r✳

❋r♦♠ ❚❛❜❧❡ ✷ ❛♥❞ ❋✐❣✉r❡ ✶ ♦♥❡ ♦❜s❡r✈❡s t❤❡ r❡♠❛r❦❛❜❧❡ ❡✛❡❝t ♦❢ ❝❤❛♥❣❡s ✐♥

β ♦♥ ✐♥❝♦♠❡ ❞✐str✐❜✉t✐♦♥ ✇✐t❤✐♥ ❡❛❝❤ s❡❝t♦r ❛♥❞ ♦♥ t❤❡ ❡❝♦♥♦♠② ❛s ❛ ✇❤♦❧❡✳

■♠♣♦s✐t✐♦♥ ♦❢ ❛ ♣r♦❣r❡ss✐✈❡ ✇❛❣❡ s❝❤❡❞✉❧❡✱ ✇✐t❤ β = .7 ✭α = 10.5✮✱ r❡❞✉❝❡s s✐❣♥✐✜❝❛♥t❧② ✭❜② ❛ ❢❛❝t♦r ♦❢ t❤r❡❡✮ t❤❡ ✉♣♣❡r t❛✐❧ ♦❢ t❤❡ ✐♥❝♦♠❡ ❞❡♥s✐t② ✐♥ t❤❡

♣✉❜❧✐❝ s❡❝t♦r✱ ❛♥❞ ✐♥❝r❡❛s❡s✱ t❤♦✉❣❤ ❧❡ss ❞r❛♠❛t✐❝❛❧❧②✱ t❤❡ ✐♥❡q✉❛❧✐t② ✐♥ t❤❡

♣r✐✈❛t❡ s❡❝t♦r✳ ■t ❛❧s♦ s❡❡♠s ✉s❡❢✉❧ t♦ ❞r❛✇ t❤❡ ▲♦r❡♥③ ❝✉r✈❡s ❢♦r t❤❡ t✇♦

s❡❝t♦rs✳ ■♥ ❜♦t❤ s❡❝t♦rs✱ t❤❡ ❝✉r✈❡s ♣❡rt❛✐♥✐♥❣ t♦ t❤❡β = 1 ❛♥❞β =.7 ❝❛s❡s

✐♥t❡rs❡❝t✱ ✇❤✐❝❤ ✐♠♣❧✐❡s t❤❛t ❛♥ ❡✈❛❧✉❛t✐♦♥ ♦❢ ❛❧t❡r♥❛t✐✈❡ ♣♦❧✐❝✐❡s ❞❡♣❡♥❞s ♦♥ t❤❡

s♦❝✐❛❧ ✇❡❧❢❛r❡ ❢✉♥❝t✐♦♥ ♦♥❡ ❛❞♦♣ts✳ ■t ✐s ✐♥t❡r❡st✐♥❣ t❤❛t t❤❡ ♦✈❡r❛❧❧ ✐♥❡q✉❛❧✐t②

❛s ♠❡❛s✉r❡❞ ❜② t❤❡ G✐♥✐ ❝♦❡✣❝✐❡♥t ✐♥❝r❡❛s❡s ✭❢r♦♠ .31 t♦ .32✮ ❛s β ❞❡❝r❡❛s❡s

❢r♦♠1t♦ .7✳

❋♦r ❝❧❛r✐t②✱ t❤❡ ✈❡rt✐❝❛❧ ❛①✐s ✐♥ ❋✐❣✉r❡ ✶ ✐s ❜❧♦✇♥ ✉♣ t♦ ❛ ❢❛❝t♦r ♦❢ ✶✵✵✳

(9)

❚❛❜❧❡ ✷✿

■♥❝♦♠❡ ❉❡♥s✐t✐❡s ✇✐t❤✐♥ ❊❛❝❤ ❙❡❝t♦r ❛♥❞ t❤❡ ❖✈❡r❛❧❧

■♥❝♦♠❡ ❉❡♥s✐t②

β= 1 β =.7

z g1 g2 g g1 g2 g

✷✵ ✳✷✹✸ ✳✷✼✵ ✳✺✶✸ ✳✸✾✺ ✳✶✾✹ ✳✺✽✾

✹✵ ✳✷✾✻ ✳✸✻✾ ✳✻✻✺ ✳✹✵✻ ✳✸✽✶ ✳✼✽✼

✻✵ ✳✷✼✷ ✸✽✸ ✳✻✻✺ ✳✸✶✹ ✳✹✶✺ ✳✼✷✾

✽✵ ✳✷✷✷ ✳✸✺✽ ✳✺✽✶ ✳✷✶✻ ✳✸✽✼ ✳✻✵✹

✶✵✵ ✳✶✼✶ ✳✸✶✽ ✳✹✽✾ ✳✶✹✶ ✳✸✸✾ ✳✹✼✾

✶✷✵ ✳✶✷✼ ✳✷✼✸ ✳✹✵✶ ✳✵✽✶ ✳✷✽✽ ✳✸✼✺

✶✹✵ ✳✵✾✷ ✳✷✸✶ ✳✸✷✸ ✳✵✺✸ ✳✷✹✵ ✳✷✾✹

✶✻✵ ✳✵✻✺ ✳✶✾✸ ✳✷✺✾ ✳✵✸✷ ✳✶✾✾ ✳✷✸✶

✶✽✵ ✳✵✹✺ ✳✶✻✵ ✳✷✵✻ ✳✵✶✾ ✳✶✻✹ ✳✶✽✸

✷✵✵ ✳✵✸✷ ✳✶✸✷ ✳✶✻✹ ✳✵✶✶ ✳✶✸✺ ✳✶✹✻

❖♥❡✲t❤✐r❞ ♦❢ t❤❡ ❧❛❜♦r ❢♦r❝❡ ✐s ✐♥ t❤❡ ♣✉❜❧✐❝ s❡❝t♦r✳

❋✐❣✉r❡ ✶✿ ❚✇♦ ❣r❛♣❤s s❤♦✇ t❤❡ ❝✉♠✉❧❛t✐✈❡ ♣r♦♣♦rt✐♦♥ ♦❢ ✐♥❝♦♠❡ r❡❝✐♣✐❡♥ts✿ ✭❛✮

✐s t❤❡ ♣✉❜❧✐❝ s❡❝t♦r✱ ✭❜✮ ✐s t❤❡ ♣r✐✈❛t❡ s❡❝t♦r

❚❤❡ ❡✛❡❝ts ♦❢ ✇❛❣❡ ♣♦❧✐❝✐❡s ✐♥ t❤❡ ♣✉❜❧✐❝ s❡❝t♦r ♦♥ t❤❡ s✐③❡ ♦❢ r❡❛❧ ♦✉t♣✉ts

❛r❡ ♣r❡s❡♥t❡❞ ✐♥ ❚❛❜❧❡ ✸ ✳ ❆s β ❞❡❝r❡❛s❡s ❢r♦♠ ✉♥✐t② t♦ .5✱ t❤❡ ♦✉t♣✉t ♦❢ t❤❡

♣✉❜❧✐❝ s❡❝t♦r ❞❡❝r❡❛s❡s ❜② ❛❜♦✉t ✶✽✪✱ ✇❤❡r❡❛s t❤❡ ♦✉t♣✉t ♦❢ t❤❡ ♣r✐✈❛t❡ s❡❝t♦r

✐♥❝r❡❛s❡s ❜② ❛❜♦✉t ✸✳✺✪✳ ❚♦t❛❧ ♦✉t♣✉t ❞❡❝r❡❛s❡s✱ ❤♦✇❡✈❡r✱ ❜② ♠❡r❡❧② ❧✪✳

❚❤❡ ❛❜♦✈❡ r❡s✉❧ts ❝❧❡❛r❧② ❞❡♣❡♥❞ ♦♥ t❤❡ ❝♦♥str❛✐♥t t❤❛t t❤❡ ❛❧❧♦❝❛t✐♦♥ ♦❢

t❤❡ ❧❛❜♦r ❢♦r❝❡ ❜❡t✇❡❡♥ t❤❡ s❡❝t♦rs r❡♠❛✐♥s ❝♦♥st❛♥t✳ ❆♥ ❛❧t❡r♥❛t✐✈❡ ❝♦♥str❡✐♥t

✇♦✉❧❞ ❜❡ t♦ ✜① t❤❡ ❧❡✈❡❧ ♦❢ ♦✉t♣✉t ✐♥ ♦♥❡ ♦❢ t❤❡ s❡❝t♦rs✱ ♦r t❤❡ r❛t✐♦ ❜❡t✇❡❡♥ t❤❡

♦✉t♣✉ts ♦❢ t❤❡ t✇♦ s❡❝t♦rs✳ ❚❤❡ r❡s✉❧ts ♣❡rt❛✐♥✐♥❣ t♦ t❤❡s❡ ❛❧t❡r♥❛t✐✈❡ ❛ss✉♠♣✲

t✐♦♥s ❛r❡ ❛s ❡①♣❡❝t❡❞✳ ❲❤❡♥ t❤❡ s✐③❡ ♦❢ t❤❡ ♦✉t♣✉t ♦❢ t❤❡ ♣✉❜❧✐❝ s❡❝t♦r ✐s ✜①❡❞✱

t❤❡♥ ❛ ♣r♦❣r❡ss✐✈❡ ✭β <1✮ ✇❛❣❡ ♣♦❧✐❝② ✐♥ t❤❡ ♣✉❜❧✐❝ s❡❝t♦r ❤❛s ❛ r❡♠❛r❦❛❜❧❡

(10)

♥❡❣❛t✐✈❡ ❡✛❡❝t ♦♥ t❤❡ ♦✉t♣✉t ♦❢ t❤❡ ♣r✐✈❛t❡ s❡❝t♦r✱ r❡✢❡❝t✐♥❣ t❤❡ ✐♥❝r❡❛s❡❞ ♣r♦✲

♣♦rt✐♦♥ ♦❢ t❤❡ ❧❛❜♦r ❢♦r❝❡ ❛❧❧♦❝❛t❡❞ t♦ t❤❡ ♣✉❜❧✐❝ s❡❝t♦r✱ ♥❡❡❞❡❞ t♦ ♠❛✐♥t❛✐♥ ✐ts

♦✉t♣✉t✳ ■♥ ❛❧❧ ❝❛s❡s✱ t♦t❛❧ ♦✉t♣✉t ❞❡❝r❡❛s❡s ✭❞❡♣❡♥❞✐♥❣ ♦♥ t❤❡ t②♣❡ ♦❢ ❝♦♥str❛✐♥t

✐♠♣♦s❡❞✱ ✐♥ s♦♠❡ ❝❛s❡s ✈❡r② s✐❣♥✐✜❝❛♥t❧②✮✱ ✐♥❝♦♠❡ ✐♥❡q✉❛❧✐t② ❞❡❝r❡❛s❡s ✐♥ t❤❡

♣✉❜❧✐❝ s❡❝t♦r ❛♥❞ ✐♥❝r❡❛s❡s ✐♥ t❤❡ ♣r✐✈❛t❡ s❡❝t♦r✱ ✇❤❡r❡❛s t❤❡ ♦✈❡r❛❧❧ ❡✛❡❝t ♦♥

✐♥❝♦♠❡ ❞✐str✐❜✉t✐♦♥ ✐s ❛♠❜✐❣✉♦✉s✳

❚❤❡ ♥❡①t ♥❛t✉r❛❧ st❡♣ ✐♥ t❤❡ ❛♥❛❧②s✐s ✐s t♦ ✜♥❞ t❤❡ s♦❝✐❛❧❧② ♦♣t✐♠✉♠ ✇❛❣❡

♣♦❧✐❝②✱ t❤❛t ✐s✱ ❛ ✇❛❣❡ ♣♦❧✐❝② t❤❛t ♠❛①✐♠✐③❡s✱ s❛②✱ ❛ ✉t✐❧✐t❛r✐❛♥ s♦❝✐❛❧ ✇❡❧❢❛r❡

❢✉♥❝t✐♦♥W✱

maxα,b W =

ˆ

0

u(z)g(z)dz ✭✷✷✮

❍♦✇❡✈❡r✱ t❤❡ ❝♦♥str❛✐♥ts ♦❢ t❤❡ ♣r♦❜❧❡♠ ❛r❡ ♥♦t ♦❜✈✐♦✉s✳ ❚❤❡ ❣♦✈❡r♥♠❡♥t

♠❛② ❝❤♦♦s❡ ✇❛❣❡ s❝❤❡❞✉❧❡s t❤❛t s❛t✐s❢② t❤❡ ❝♦♥str❛✐♥t t❤❛t t❤❡ ✈❛✐✉❡ ♦❢ t❤❡

♣✉❜❧✐❝ s❡❝t♦r✬s ♦✉t♣✉t ✐s ❡✉q❛❧ t♦ t❤❡ t♦t❛❧ ✐♥❝♦♠❡s ♦❢t❤♦s❡ ❡♠♣❧♦②❡❞ ✐♥ t❤✐s s❡❝t♦r ✭❛ss✉♠✐♥❣ t❤❛t t❤❡ ❣♦✈❡r♥♠❡♥t✬s ♦✉t♣✉t ✐s s♦❧❞✮✱

ˆ

0

zg(z) =

ˆ

0

z−α β

g(z)dz

♦r

α= (1−β)I1/G1 ✭✷✸✮

✇❤❡r❡G1= limz→∞G1(z)✳

■❢ t❤❡ ❣♦✈❡r♥♠❡♥t ❤❛s ❛✈❛✐❧❛❜❧❡ t❛①✲s✉❜s✐❞② ✐♥str✉♠❡♥ts t❤❡♥ t❤❡ ❛♥❛✐②s✐s

❜❡❝♦♠❡s ♠♦r❡ ❝♦♠♣❧✐❝❛t❡❞ s✐♥❝❡ t❤❡ ♦♣t✐♠✉♠ ✇❛❣❡ ♣♦❧✐❝② ✇✐❧❧ ❞❡♣❡♥❞ ♦♥ t❤❡

♥❛t✉r❡ ♦❢ t❤❡s❡ ✐♥str✉♠❡♥ts ✭s✉❝❤ ❛s✱ ❢♦r ❡①❛♠♣❧❡✱ ✐♥❝♦♠❡ t❛①❛t✐♦♥✮ ❛♥❞ t❤❡

✐ss✉❡ ♦❢ t❤❡ ♦♣t✐♠✉♠ ♠✐① ♦❢ ✇❛❣❡ ❛♥❞ t❛① ♣♦❧✐❝✐❡s ❛r✐s❡s✳ ❚❤❡s❡ ✐ss✉❡s ❛r❡ ♥♦t

❛♥❛②③❡❞ ✐♥ t❤✐s ♣❛♣❡r✳

❚❛❜❧❡ ✸✿

❖✉t♣✉t ✐♥ t❤❡ P✉❜❧✐❝ ❛♥❞ Pr✐✈❛t❡ ❙❡❝t♦rs

❛♥❞ ❚♦t❛❧ ❖✉t♣✉t

β Y1 Y2 Y

✶✳✵ ✷✼✳✽ ✽✽✳✾ ✶✶✻✳✼

✳✾ ✷✼✳✵ ✽✾✳✻ ✶✶✻✳✻

✳✽ ✷✻✳✷ ✾✵✳✸ ✶✶✻✳✺

✳✼ ✷✺✳✸ ✾✶✳✵ ✶✶✻✳✸

✳✻ ✷✹✳✹ ✾✶✳✻ ✶✶✺✳✾

✳✺ ✷✸✳✸ ✾✷✳✶ ✶✶✺✳✺

(11)

❋✐❣✉r❡ ✷✿ ❚✇♦ ❣r❛♣❤s s❤♦✇ t❤❡ ❝✉♠✉❧❛t✐✈❡ ♣r♦♣♦rt✐♦♥ ♦❢ ✐♥❝♦♠❡ r❡❝✐♣✐❡♥ts✿ ✭❛✮

✐s t❤❡ ♣✐❜❧✐❝ s❡❝t♦r✱ ✭❜✮ ✐s t❤❡ ♣r✐✈❛t❡ s❡❝t♦r

❘❡s❡r✈❛t✐♦♥ ❛♥❞ P♦ss✐❜❧❡ ●❡♥❡r❛❧✐③❛t✐♦♥s

❲❡ ❤❛✈❡ ❡①❛♠✐♥❡❞ t❤❡ ❡✛❡❝ts ♦❢ ✇❛❣❡ ♣♦❧✐❝✐❡s ✐♥ t❤❡ ♣✉❜❧✐❝ s❡❝t♦r ♦♥ t❤❡ s❡❝t♦r❛❧

❞✐str✐❜✉t✐♦♥ ♦❢ t❤❡ ❧❛❜♦r ❢♦r❝❡ ❛♥❞ ♦♥ ✐♥❝♦♠❡s✳ ❆❧t❤♦✉❣❤ t❤❡ ✉♥❞❡r❧②✐♥❣ ♠♦❞❡❧

❤❛s ❜❡❡♥ ❡①tr❡♠❡❧② s✐♠♣❧❡✱ ✐t s❡❡♠s t♦ ②✐❡❧❞ q✉✐t❡ r❡❛❧✐st✐❝ ❝♦♥❝❧✉s✐♦♥s✳ ❍♦✇❡✈❡r✱

t❤❡ ❛ss✉♠♣t✐♦♥s ❛r❡ t♦♦ s✐♠♣❧❡ t♦ ♣r♦✈✐❞❡ ❛ ❢r❛♠❡✇♦r❦ ❢♦r ❝❡rt❛✐♥ ✐♠♣♦rt❛♥t

✐ss✉❡s✱ t❤r❡❡ ♦❢ ✇❤✐❝❤ ❛r❡ ❞✐s❝✉ss❡❞ ❤❡r❡✳

❋✐rst✱ ♦♥❡ ❡①♣❡❝ts ❛ ♣♦s✐t✐✈❡ ❝♦rr❡❧❛t✐♦♥ ❜❡t✇❡❡♥ ✐♥❞✐✈✐❞✉❛❧ ❛♣t✐t✉❞❡s ✐♥ ❞✐❢✲

❢❡r❡♥t ♦❝❝✉♣❛t✐♦♥s✳ ❲❡ ❤❛✈❡ ❛ss✉♠❡❞ ✐♥ ♦✉r ❡①❛♠♣❧❡s t❤❛t ❛♣t✐t✉❞❡s ❛r❡ ❞✐s✲

tr✐❜✉t❡❞ ✐♥❞❡♣❡♥❞❡♥t❧②✳ ■t ✇♦✉❧❞ ❤❡ ✐♥t❡r❡st✐♥❣ t♦ st✉❞② t❤❡ ❡✛❡❝ts ♦❢ ✇❛❣❡

♣♦❧✐❝✐❡s ❢♦r ✈❛r②✐♥❣ ❞❡❣r❡❡s ♦❢ ❝♦rr❡❧❛t✐♦♥ ❜❡t✇❡❡♥ ❛♣t✐t✉❞❡s✳

❙❡❝♦♥❞✱ t❤❡ ✉♥❞❡r❧②✐♥❣ ♣r♦❞✉❝t✐♦♥ ❢✉♥❝t✐♦♥s ❤❛✈❡ ❜❡❡♥ ♦✈❡r❧② s✐♠♣❧✐✜❡❞✳ ■♥

♣❛rt✐❝✉❧❛r✱ ♠❛r❣✐♥❛❧ ♣r♦❞✉❝tsa1❛♥❞a2❛r❡ ✐♥❞❡♣❡♥❞❡♥t ♦❢ t❤❡ ❛❧❧♦❝❛t✐♦♥ ♦❢ t❤❡

❧❛❜♦r ❢♦r❝❡✳ ▼♦r❡ ❣❡♥❡r❛❧❧②✱ ♦♥❡ s❤♦✉❧❞ ❡①♣❧♦r❡ t❤❡ ✐♥t❡r❛❝t✐♦♥ ♦❢ ❡♠♣❧♦②♠❡♥t

✐♥ t❤❡ ♣✉❜❧✐❝ s❡❝t♦r ♦♥ ♠❛r❣✐♥❛❧ ♣r♦❞✉❝t✐✈✐t② ✐♥ t❤❡ ♣r✐✈❛t❡ s❡❝t♦r✱ ❡♥❞ ✈✐❝❡

✈❡rs❛✳ ▼♦r❡ s♣❡❝✐✜❝❛❧❧②✱ s✉♣♣♦s❡ t❤❛t t♦t❛❧ ♦✉t♣✉tY ✐s ❛ ❢✉♥❝t✐♦♥ ♦❢ t✇♦ t②♣❡s

♦❢ ❡♠♣❧♦②♠❡♥ts✿ ♣✉❜❧✐❝L1❛♥❞ ♣r✐✈❛t❡ L2✿ Y =F(L1, L2)✳ ◆♦✇✱ s✉♣♣♦s❡

Li=

ˆ

0

aiXi(ai)dai

✇❤❡r❡ Xi(ai)✐s t❤❡ ♥✉♠❜❡r ♦❢ ❧❛❜♦r❡rs ✐♥ s❡❝t✐♦♥ i✇✐t❤ ❛♣t✐t✉❞❡ ai✳ ❚❤❡

❢✉♥❝t✐♦♥Xi(ai)✐s ❞❡t❡r♠✐♥❡❞ ❜② ✐♥❞✐✈✐❞✉❛❧ ♠❛①✐♠✐③❛t✐♦♥ ❛s ✐♥ t❤❡ ❜❛s✐❝ ♠♦❞❡❧✳

❈♦♠♣❡t✐t✐♦♥ ✐♥ t❤❡ ♣r✐✈❛t❡ s❡❝t♦r ✐♠♣❧✐❡s t❤❛tw1(a1) =a1F1(L1, L2)✱ ✇❤❡r❡❛s w2 =w2(a2)✐s ❛ ❝❤♦✐❝❡ ❢✉♥❝t✐♦♥✳ ❈❧❡❛r❧②✱ ✐♥ ❛♥❛❧②③✐♥❣ t❤✐s ♠♦❞❡❧✱ t❡r♠s s✉❝❤

❛s F12 =2Y/∂L1∂L2✱ t❤❛t ✐s✱ ❝♦♠♣❧❡♠❡♥t❛r✐t② ♦r s✉❜st✐t✉t✐♦♥ ❜❡t✇❡❡♥ ♣✉❜❧✐❝

❛♥❞ ♣r✐✈❛t❡ ❡♠♣❧♦②♠❡♥t✱ ✇✐❧❧ ❜❡ ❝r✉❝✐❛❧✳

❋✐♥❛❧❧②✱ ✐t ❤❛s ❜❡❡♥ ❛ss✉♠❡❞ t❤r♦✉❣❤♦✉t t❤❛t t❤❡ ❣♦✈❡r♥♠❡♥t ✭♣❧❛♥♥❡r✮✱ ❛s

✇❡❧❧ ❛s ♣r✐✈❛t❡ ❡♠♣❧♦②❡rs✱ ❝❛♥ ✐❞❡♥t✐❢② t❤❡ tr✉❡ ❛♣t✐t✉❞❡ ♦❢ ❡❛❝❤ ✐♥❞✐✈✐❞✉❛❧✳

❚❤✐s ✐s ❛ r❛t❤❡r ❡①tr❡♠❡ ❛ss✉♠♣t✐♦♥✱ ♣❛rt✐❝✉❧❛r❧② ✇❤❡♥ ✐t ❝♦♥❝❡r♥s t❤❡ ♣✉❜❧✐❝

✶✵

(12)

s❡❝t♦r✳ ❖♥❡ ❝♦✉❧❞✱ ❤♦✇❡✈❡r✱ ♠♦❞✐❢② t❤❡ ♠♦❞❡❧ t♦ ✐♥❝❧✉❞❡ ✐♠♣❡r❢❡❝t ✐♥❢♦r♠❛t✐♦♥✳

❍♦✉t❤❛❦❦❡r ✭✶✾✼✹✮✱ ❢♦r ❡①❛♠♣❧❡✱ ❤❛s ♣♦st✉❧❛t❡❞ t❤❛t t❤❡ ♣r♦❜❛❜✐❧✐t② t❤❛t ❛♥

✐♥❞✐✈✐❞✉❛❧ ✇✐t❤ ❛♣t✐t✉❞❡s(a1, a2)✇✐❧❧ ✇♦r❦ ✐♥✳ s❡❝t♦ri✱ P❴✐ ✱ ✐s ❣✐✈❡♥ ❜② Pi= exp (kai)

exp (ka1) + exp (ka2)

❈❧❡❛r❧②✱ ✇❤❡♥ k = 0✱ ❛❧❧ s❡❝t♦rs ❤❛✈❡ ❛♥ ❡q✉❛❧ ♣r♦❜❛❜✐❧✐t② ♦❢ ❜❡✐♥❣ ❝❤♦s❡♥✱

✇❤❡r❡❛sk→ ∞✐s t❤❡ ❝❛s❡ ❥✉st ❛♥❛❧②③❡❞✳

❘❡❢❡r❡♥❝❡s

❬✶❪ ❍❛♥♦❝❤✱ ●✳ ✶✾✻✸✳ ■♥❝♦♠❡ ❞✐✛❡r❡♥t✐❛❧s ✐♥ ■sr❛❡❧✳ ❚❤❡ ❋❛❧❦ ■♥st✐t✉t❡✳

❬✷❪ ❍♦✉t❤❛❦❦❡r✱ ❍✳ ✶✾✼✹✳ ❚❤❡ s✐③❡ ❞✐str✐❜✉t✐♦♥ ♦❢ ❧❛❜♦✉r ✐♥❝♦♠❡s ❞❡r✐✈❡❞ ❢r♦♠

t❤❡ ❞✐str✐❜✉t✐♦♥ ♦❢ ❛♣t✐t✉❞❡s✳ ■♥ ❊❝♦♥♦♠❡tr✐❝s ❛♥❞ ❡❝♦♥♦♠✐❝ t❤❡♦r②✱ ❡❞✳ ❙❡❧❧✲

❡❦❛❡rts✱ ♣♣✳

❬✸❪ ▲❡✈②✱ ❍✳ ✶✾✼✺✳ ▲✐❢❡t✐♠❡ ✐♥❝♦♠❡ ♣❛tt❡r♥s ✐♥ ❞✐✛❡r❡♥t ♦❝❝✉♣❛t✐♦♥s ✐♥ ■sr❛❡❧✳

❇❛♥❦ ♦❢ ■sr❛❡❧✳

❬✹❪ ▲②❞❛❧❧✱ ❍✳ ❋✳ ✶✾✻✽✳ ❚❤❡ str✉❝t✉r❡ ♦❢ ❡❛r♥✐♥❣s✳ ❖①❢♦r❞✳

❬✺❪ ❘♦②✱ ❆✳ ❉✳ ✶✾✺✶✳ ❙♦♠❡ t❤♦✉❣❤ts ♦♥ t❤❡ ❞✐str✐❜✉t✐♦♥ ♦❢ ❡❛r♥✐♥❣s✳ ❖①❢♦r❞

❊❝♦♥♦♠✐❝ P❛♣❡rs✱ ✶✸✺✲ ✶✹✻✳

❬✻❪ ❙♠✐t❤✱ ❙✳ P✳ ✶✾✼✻✳ ❊q✉❛❧ ♣❛② ✐♥ t❤❡ ♣✉❜❧✐❝ s❡❝t♦r✳ Pr✐♥❝❡t♦♥✳

❬✼❪ ❚✐♥❜❡r❣❡♥✱ ❏✳ ✶✾✺✶✳ ❙♦♠❡ r❡♠❛r❦s ♦♥ t❤❡ ❞✐str✐❜✉t✐♦♥ ♦❢ ❧❛❜♦✉r ✐♥❝♦♠❡s✳

■♥t❡r♥❛t✐♦♥❛❧ ❡❝♦♥♦♠✐❝ P❛♣❡rs✱ ✶✾✺✲✷✵✼✳

✶✶

Referenzen

ÄHNLICHE DOKUMENTE

La tasa de ganancia en la agricultura está determinada únicamente por las condiciones de producción de trigo ( ) B 1 ; mientras que para el sector industrial ( ) B 2

Propositions 2 contains results that are not attainable with the baseline Dinopoulos and Segerstrom model, and are directly related to our asymmetric-industry setting. In fact,

Now, we turn to the ubiquitous search environment. To simplify, consider the case where the discount rate r tends to 0. Then, the efficient allocation maximizes the stationary

Now, we turn to the ubiquitous search environment. To simplify, consider the case where the discount rate r tends to 0. It follows that the optimal number of matching places is in

European Commission, 2011) union density ratios and bargaining coverage rates, two basic indicators for any description and evaluation of institutionalized employment relations,

Using the Bank of Italy SIM data, we analyse the sector of the Italian economy which has shown the most widespread adoption of firm-level contracts – manufacturing firms with

based on the 1994 household survey. These tables yield the following importnt observations: 1) the share of wages and salaries in total income for the highest quintile was

Indenfor denne models rammer er det alts&#34; muligt at finde virkningen af en mere lige mdkomstfordeling ved at finde ds/dR. Del viser sig, at der ikke kan drages nogen