• Keine Ergebnisse gefunden

Sediment depth [cm]

N/A
N/A
Protected

Academic year: 2022

Aktie "Sediment depth [cm]"

Copied!
17
0
0

Wird geladen.... (Jetzt Volltext ansehen)

Volltext

(1)

U. Kienel, 

B. Brademann, N. Dräger, P. Dulski, F. Ott, B. Plessen, A. Brauer

Linking diatom deposition 

with the spring temperature gradient

Lake Tiefer See (NE Germany) 

(2)

Phacotus

Formation of varves and seasonal layers

Sedimen t   depth   [cm]

Ca [cps]

0 4000

?  When, how much and which material 

?  Which conditions (Weather / Limnology)

?  Signal transfer

50µm

20µm

Annual layer = Varve

Diatoms Siliceous algae Calcite  Detritus

Si Ca

Si [cps] 100

Ti, K

Cyanobacteria

(3)

Subsample Material

Sequential trap 2‐Cylinder trap 4‐Cylinder trap (12 m + 5 m)

Monitoring station Weather staion Water probe T‐logger chain

Measure  conditions

Lake Tiefer See Monitoring – Instrumentation

(4)

Lake Tiefer See Monitoring – Instrumentation

Water depth [m]

Matter formation + deposition Weather / Lake conditions

30 d 2 h

10 min.

183 d 15 d

30 days

T P Wind PAR Chemistry T logger Production Deposition

Increment Interval

Sequential Trap

2- cylinder

Trap 4-cylinder

Traps

Water probe

12 h T pH EC Turb. Chla

DO redox

(5)

Trapped hypolimnion deposition

0 1000 2000 3000 4000 5000 6000 7000

0 92 183 275 366 458 549 641 732

S. neoastrea + parvus C. comensis

A. formosa F. crotonensis Fragilaria chains A. islandica

A. islandica Fragilaria F. crotonensis A. formosa

Deposition [g m

‐2

d

‐1

no datano data

6.4

0.0 1.0 2.0 3.0 4.0 5.0

0 92 183 275 366 458 549 641 732

Day since 01.01.2012

Deposition [g m-2 d-1 ]

Organic matter CaCO

3

non‐CaCO

3

IM

2012 2013

C. comensis Stephanodiscus

10

Diatoms [g m

‐2

d

‐1

]

Siliceous algae

(6)

IM deposition transferred to Diatom Si

0 1 2 3

0 92 183 275 366 458 549 641 732

0 1 2 3

0 92 183 275 366 458 549 641 732

Non‐CaCO

3

IM Deposition [g m

‐2

d

‐1

Silica

Deposition [g m

‐2

d

‐1

Stephanodiscus

log10[silica content] = 1.03 log10[biovolume] ‐2.45 (Conley et al. 1989)

Si 10‐12 g per cell S. neoastrea 1545

S. parvus 371 C. comensis 103

No diatoms Low detritus

no datano data

2012 2013

(7)

0

20

40

60

0 92 183 275 366 458 549 641 732

Weather and Lake conditions –> Lake mixing

0

400

800

1200

0 92 183 275 366 458 549 641 732

-20 -10 0 10 20 30

0 92 183 275 366 458 549 641 732

Wind 

fetch length  [m]

Air temperature [°C]

Water

temperature [°C]

2012 2013

Ice cover Water

depth

[m]

(8)

Lake mixing depth related to T water and wind

Wedderburn number W = 1  

depth to which water column is mixed by wind (Walsby & Schanz 2002)

W =  (g h

2

) / (

w

U*

2

L)

 water density difference surface and depth h  g gravitational acceleration

w

water density L wind fetch length

U* wind‐induced shear velocity (Spigel & Imberger 1987)

U*

2

(

a

/

w

) C

d

U

w2

a

/ 

w

density ratio air / water (0.0012) C

d

drag coefficient (0.0013)

U

w

wind speed

Buoyancy Wind action

L

(9)

Diatoms and Spring mixing ‐ transfer function

0 20 40

60

0 92 183 275 366 458 549 641 732

0 1 2 3

-20 -10 0 10 20 30

0 92 183 275 366 458 549 641 732

Mixing depth  [m]

T

Air

[°C]

Diatom Si

deposition [g m

‐2

d

‐1

] 2012 2013

0 °C 5 °C

T Duration 0 ‐ > 5 ° C

[days] 

Sediment  Si mean yr

‐1

Schwerin TDur since 1890

no data

(10)

Transfer : Diatom Si = 1/Tduration 0 ‐ ≥ 5 ° C

0 20 40 60 80 100 120

0 20 40 60 80 100

Spring warming

0 – 5°C [days]

y = ‐1.01x + 105.33 R² = 0.31

Diatom Si

[count average yr‐1]

r = 0.56 N = 86 p < 0.0001

0 20 40 60 80 100 120 140 160 180

1920 1930 1940 1950 1960 1970 1980 1990 2000 2010 0 20 40 60 80 100

Calculated from FLake

(Mironow 2008)

(11)

Transfer : Diatom Si = 1/Spring warming

Spring warming

0 – 5°C [days]

Bucket  elevator  1984‐1995 Lifestock

farming  since 1975

0 20 40 60 80 100 120

0 20 40 60 80 100

y = ‐1.21x + 109.96 R² = 0.41

Diatom Si

[count average yr‐1]

(12)

Testing the stability of the Diatom – T relation

BLZ Diatom Si * 10

‐1

count average yr‐1

Spring warming

0 – 5°C [days]

Si avg count yr-1 TSK vs. BLZ*10-1

y = 0.53x + 27.98 R2 = 0.33 0

20 40 60 80 100

0 20 40 60 80 100

y = -1.25x + 114.03 R2 = 0.22

0 20 40 60 80 100 120

0 20 40 60 80 100

y = ‐1.25x + 114.03 R² = 0.22

Breiter Luzin

*10

‐1

Tiefer See

TSK

-20 0 20 40 60 80 100 120

1945 1955 1965 1975 1985 1995 2005 2015

0 20 40 60 80 100

y = 0.53x + 27.98

R² = 0.33

(13)

First‐step conclusions

Questions

TDuration 0 to ≥ 5°C 1/Diatom Si deposition

Process: Mixing depth ‐> Nutrients Light availablity Systematic?:  Breiter Luzin

Chance: Nutrient threshold Problem: Detrital Si

Are the relations systematic?

Anthropogenic thresholds for climate signal transfer?

Stationarity of proxies?

What are the system response times?

~

(14)

Outlook: Carbonate 18 O preserves July temperature?

y = -0.16x - 1.69 R2 = 0.56

-6 -5 -4 -3

14 19 24

14 16 18 20 22 24

1975 1980 1985 1990 1995 2000 2005 2010 2015

-6

-5

-4

-3

Tair JUL [°C]

d18Ocarb ‰ BLZ

-0.04 0.00 0.04 0.08 0.12

1975 1980 1985 1990 1995 2000 2005 2010 2015

0 3 6 9

TP [mg/l] 5m CaCO3 [mg/l] 5m

18

O

carb 

[%

o

PDB]

T

Air

[°C]

July T

Air

[°C]

0 1 2 3

0 0 0 0 0 0 0 1 1 1 1 1 1J  F M A M J  J  A S O N D

Month TP [mgL

‐1

] 5m

1993 – 2012 y = ‐0.16x ‐0.69 R

= 0.56

CaCO

3

[mgL

‐1

] 5m

Threshold: eutrophic

(15)
(16)

0 40 80 120 160

0 50 100 150 200 250 300 350 400 450 500 550 600 650 700

Spring warming 0 –> 5°C [days]

100 days 20 days

Si

[cps]

Varved

Potential for T ‐ transfer in TSK long core

Detrital Si

Age [yr BP] 

(17)

Site map: Lakes and their varved sediments

Alt Gaarz

63 m / 65 m a.s.l.

Sophienhof Blücherhof

93.8 m a.s.l.

93.3 m a.s.l.

1 km

Lakes Tiefer See (TSK) Varved sediments [yr AD] since 1924

Lake volume [106m3] 14

Lake area [km²] 0.76

Lake depth max [m] 63

El. Conduct. [µS cm‐1] 520 / 560

TP [µg L‐1] 47 (0)

TN [mg L‐1] 1.3

Trophic state / reference Mesotr. / Oligotr.

Referenzen

ÄHNLICHE DOKUMENTE

Ribotype A diverged early with high support (ML bootstrap: 100/BI posterior probability: 0.89) and included strains from the Arctic and temperate areas.. Ribotype B included

Domoic acid production in Namibian Pseudo-nitzschia species Two (P. plurisecta) out of seven Namibian Pseudo- nitzschia species were found to produce DA under the experimental

The reduction in escape response of copepods will increase co- pepod mortality by predation and thereby reduce grazing pressure on the toxic diatoms and consequently promote

Ribotype A was recorded in Western Mediterranean Sea, but at that time only one strain was available for sequencing (Luo et al., 2017a), and a large number of strains are ne- cessary

Total yessotoxin cell quota of Lingulodinium polyedra strain LP30-7B cultured at di ff erent salinities over the growth cycle in batch culture; the ca- tegory high salinity

The species Azadinium caudatum (as Amphidoma caudata) was described from the Norwegian Sea (Halldal, 1953), and this species is known to be common and fairly numerous along

Results from a global Finite Element Sea ice–Ocean Model (FESOM; Timmermann et al., 2009) are evaluated using eulerian and lagrangian datasets We demonstrate that the model

• Pseudo-nitzschia lineola dominated despite heavy grazing pressure because of its exceptionally high growth rates. • Grazers discriminated between morphological similar species of