• Keine Ergebnisse gefunden

Mass flow rate (kg/s)

N/A
N/A
Protected

Academic year: 2022

Aktie "Mass flow rate (kg/s)"

Copied!
68
0
0

Wird geladen.... (Jetzt Volltext ansehen)

Volltext

(1)

FER MELCOR Activities FER MELCOR Activities

Presenter: Davor Grgić

Vesna Benčik, Davor Grgić, Siniša Šadek, Štefica Vlahović

Faculty of Electrical Engineering and Computing (FER)

University of Zagreb, Croatia

(2)

• Development of NPP Krško input deck for MELCOR 1.8.6 and MELCOR 2.2 code

• Validation of NEK MELCOR 1.8.6 and MELCOR 2.2 input deck

• Modelling of Engineering Safety Features available for non-severe accident conditions and planned

mitigation actions

• Verification of MELCOR input deck by comparison of non-severe accident sequences with RELAP5/MOD 3.3 code.

• Equipment survivability use

FER MELCOR Activities

(3)

Content:

• NPP Krško nodalization for MELCOR 1.8.6 and MELCOR 2.2

• Verification of MELCOR input deck by comparison of 3 inch cold leg LOCA with RELAP5/MOD 3.3 code

• MELCOR 1.8.6 and MELCOR 2.2 analysis of SBO.

• Verification of containment model with Gothic

• Source term preparation

• Different ES applications

(4)

MELCOR nodalization scheme for NPP Krško

CV006 CV080 CV081 CV082 CV083 CV085

CV001

CV084 CV086

CV087

FL001 CV002

CV004 CV005 FL002

FL003 FL004

FL005

FL147 FL148

FL149 FL155 FL154

FL152 FL153

FL150 FL151

FL006 FL018

FL144 FL145

CV003 CV090

FL160

CV079

CV067 CV068 CV069 CV070 CV071 CV072 CV073 CV074 CV075 CV076 CV077 CV078

CV007 CV008 CV009 CV010 CV011 CV012 CV013 CV014 CV015 CV016 CV017 CV018

CV101 CV102

FL111 CV 105 CV103

FL102 FL301 FL302

CV301 CV302 CV303

FL304

FL303

CV304 CV305

FL307 FL306

CV308 CV307 CV306 FL305

FL106

FL107 CV 106

CV107 FL108 CV 108

RCP 1 FL164 CV110

FL 199 CV104

FL113 FL114

FL115 LOW COMP (CV702)

FL351

CV351 CV352 FL352

CV342

FL342 CV356

FL354

RPV

FL201 SG 1

CV201 CV202

FL202 FL401 FL402

CV401 CV402 CV403

FL407 FL406

CV408 CV407 CV406

FL206

FL207 CV 206

CV207 FL208

CV 208 RCP 2 FL264

CV210

FL 299 FL451

CV451 CV452

CV442

FL442 CV456

SG 2

PRZ

FL357

FL100 FL200

FL166 FL266

CV811 CV921

FL375 FL376 FL377 FL378 FL379 FL380

FL457

CV812 CV922

FL475 FL476 FL477 FL478 FL479 FL480

CV813 CV901

FL814

FL813

FL811 FL812

AFW 2

FL112

PRZ surge line

CV 105

FL736

RWST CV706

FL121 FL122

CV161 CV162

SG1C (CV708) FL157 CV706

FL716

ACC 1

CV 109 CV712 FL746 CV112

FL101

SG2C (CV709) FL257

ACC 2

CV 209

CV712 FL747FL726

CV212

FL265 FL165

FL748

CV712

Containment sump CV814

FL403 FL405

FL452

FL404 CV404

CV405 CV453 CV455

CV454 FL537

CV443

FL455 FL458

FL456

FL453 FL443

FL454

CV353 FL353

FL343 FL358

CV355

CV354 FL355

CV343

FL356

FL517

CV513

MFW 2

FL507

CV503

MFW 1

FL527

AFW 1

CV504 CV514

FL143

FL131

CV702 FL198

(5)

NEK containment nodalization The core and lower

plenum in COR package

(6)

NPP Krško 3 inch Cold Break LOCA Calculation using RELAP5/MOD 3.3

and MELCOR 1.8.6 Codes

(7)

Transient Description and Boundary Conditions

• Postulated accident is a 3 inch Loss of Coolant Accident (LOCA) in cold leg 1 (loop with pressurizer).

• Reactor trip from 100% power is actuated on low pressurizer pressure or high containment pressure signal.

• Trip of both RC pumps is actuated on reactor trip.

• Closure of main steam isolation valves and isolation of main feedwater are initiated on reactor trip.

• Emergency core cooling system is available (5 seconds delay for safety injection).

• Auxiliary feedwater system is available (60 seconds delay)

• Containment fan coolers and containment spray are available

in MELCOR.

(8)

Parameters of RELAP5/mod 3.3 nodalization

8

PARAMETER VALUE

1. NUMBER OF NODES

- primary side 300

- secondary side 206

- total 506

2. NUMBER OF JUNCTIONS

- primary side 313

- secondary side 230

- total 543

3. NUMBER OF HEAT STRUCTURES

- primary side 245

- secondary side 138

- total 383

4. OVERALL NUMBER OF MESH POINTS 2127 5. NUMBER OF CORE ACTIVE

STRUCTURES

12 6. HEAT TRANSFER AREA (m2)

- core region 3103.9

- steam generator U-tubes 7343.0

7. NUMBER OF MESH POINTS

- core slabs 16

- steam generator slabs 10

8. NUMBER OF CONTROL VARIABLES 732

9. NUMBER OF TRIPS

- variable 197

- logical 221

- total 418

10. OVERALL PRIMARY SIDE VOLUME (m3)

195.3

(9)

Parameters of MELCOR 1.8.6 nodalization

PARAMETER VALUE

1. NUMBER OF VOLUMES

- primary side 69

- secondary side 30

- containment 24

- total 123

2. NUMBER OF FLOW PATHS

- primary side 93

- secondary side 38

- containment 43

- total 174

3. NUMBER OF HEAT STRUCTURES

- reactor vessel 34

- primary side and SG U-tubes 46

- containment 20

- total 100

4. OVERALL NUMBER OF MESH POINTS 731 5. NUMBER OF CORE ACTIVE

STRUCTURES

27 6. NUMBER OF MESH POINTS IN SG

HEAT SLABS

12 7. NUMBER OF CONTROL FUNCTIONS

- real valued 189

- logical 91

- total 280

7. NUMBER OF TABULAR FUNCTIONS 47

(10)

RELAP5/mod 3.3 nodalization scheme for NPP Krško

10

313 213

(11)

MELCOR 1.8.6 nodalization scheme for NPP Krško

CV006 CV080 CV081 CV082 CV083 CV085

CV001

CV084 CV086

CV087

FL001 CV002

CV004 CV005 FL002

FL003 FL004

FL005

FL147 FL148

FL149 FL155 FL154

FL152 FL153

FL150 FL151

FL006 FL018

FL144 FL145

CV003 CV090

FL160

CV079

CV067 CV068 CV069 CV070 CV071 CV072 CV073 CV074 CV075 CV076 CV077 CV078

CV007 CV008 CV009 CV010 CV011 CV012 CV013 CV014 CV015 CV016 CV017 CV018

CV101 CV102

FL111 CV 105 CV103

FL102 FL301 FL302

CV301 CV302 CV303

FL304

FL303

CV304 CV305

FL307 FL306

CV308 CV307 CV306 FL305

FL106

FL107 CV 106

CV107 FL108 CV 108

RCP 1 FL164 CV110

FL 199 CV104

FL113 FL114

FL115 LOW COMP (CV702)

FL351

CV351 CV352 FL352

CV342

FL342 CV356

FL354

RPV

FL201 SG 1

CV201 CV202

FL202 FL401 FL402

CV401 CV402 CV403

FL407 FL406

CV408 CV407 CV406

FL206

FL207 CV 206

CV207 FL208

CV 208 RCP 2 FL264

CV210

FL 299 FL451

CV451 CV452

CV442

FL442 CV456

SG 2

PRZ

FL357

FL100 FL200

FL166 FL266

CV811 CV921

FL375 FL376 FL377 FL378 FL379 FL380

FL457

CV812 CV922

FL475 FL476 FL477 FL478 FL479 FL480

CV813 CV901

FL814

FL813

FL811 FL812

AFW 2

FL112

PRZ surge line

CV 105

FL736

RWST CV706

FL121 FL122

CV161 CV162

SG1C (CV708) FL157 CV706

FL716

ACC 1

CV 109 CV712 FL746 CV112

FL101

SG2C (CV709) FL257

ACC 2

CV 209

CV712 FL747FL726

CV212

FL265 FL165

FL748

CV712

Containment sump CV814

FL403 FL405

FL452

FL404 CV404

CV405 CV453 CV455

CV454 FL537

CV443

FL455 FL458

FL456

FL453 FL443

FL454

CV353 FL353

FL343 FL358

CV355

CV354 FL355

CV343

FL356

FL517

CV513

MFW 2

FL507

CV503

MFW 1

FL527

AFW 1

CV504 CV514

FL143

FL131

CV702 FL198

(12)

Parameter Unit NEK cycle 28 reference

RELAP5 (1000 s)

MELCOR (1000 s)

1. Pressure MPa

Pressurizer 15.513 15.513 15.517

Steam generator 6.281 6.275/6.286 6.19/6.16

Accumulator 4.93 4.93 4.93

2. Fluid Temperature K

Cold leg 558.75 559.49/559.25 559.36/559.16 Hot leg 597.55 596.82/596.82 596.94/596.94

Accumulator 322.0 322.0 322.0

Feedwater 492.6 492.7 492.6

3. Mass Flow kg/s

Core 8899.7 8925.3 8876.5

cold leg 4697.4 4711.7/4710.7 4683.8 /4686.2 main feedwater 544.5 540.9/544.7 538.9/541.8 main steam line 544.5 538.9/541.8 DC-UP bypass (0%) 0.0 0.0 0.0 DC-UH bypass (0.346%) 32.5 (0.346%) 35.0 (0.371%) 32.38 (0.346%) Buffle-barrel flow (1.0939%) 102.8

(1.094%)

103.1 (1.094%) 102.49 (1.094%) RCCA guide tubes (3.32%) 311.9 (3.32%) 359.2 (3.812%) 358.5 (3.826%)

Core cavity (0.5067%) 47.6 - -

4. Liquid level %

Pressurizer 55.7 55.8 55.8

Steam generator narrow range 69.3 69.3/69.3 69.3/69.4

5. Fluid Mass t

Primary system - 131.3 131.8

Steam generator (secondary) 47.0 49.1/48.9 48.08/48.07

6. Power MW

Core 1994.0 1994.0 1994.0

(13)

Transient results

Accident starts with the opening of the valve simulating 3 inch break in cold leg 1 (volume 110 in MELCOR, volume 275 in RELAP5)

Following the break opening RCS rapidly depressurizes. Reactor trip is initiated on low pressurizer pressure signal. Following actions are actuated on reactor trip: turbine trip, main steam isolation valve closure, main feedwater isolation, RC pump trip.

-Safety injection signal is actuated on low-2 pressurizer pressure signal; SI pumps are enabled with 5 seconds delay. Accumulator injection starts when RCS pressure drops below 4.93 MPa.

-Auxiliary feedwater is actuated on main feedwater isolation (60 seconds delay) -At transient begin SG PORV open for a short time following turbine trip.

-The heat produced in the core is primarily removed through the break, although in the first phase of the transient heat is also removed by steam

generators thus coupling the primary and secondary pressure. Along with RCS inventory depletion the heat transfer in steam generators stops and the primary pressure continues to decrease and decouples from secondary side.

- Core dry-out occurs for a short period (260-500 s) in MELCOR but fuel

cladding oxidation did not occur.

(14)

3 inch cold leg 1 LOCA – Time table of events

14

Event RELAP5/mod 3.3 MELCOR 1.8.6

Transient begin 0.0 0.0

Reactor trip, RC pumps trip 12.8 s (on low PRZ pressure) 14.5 s (on low PRZ pressure) Turbine trip, MSIV isolation, Main

feedwater isolation

12.8 s (on reactor trip signal) 14.5 s (on reactor trip signal) Safety injection signal 17.4 s (on low-2 PRZ pressure) 18.8 s (on low-2 PRZ pressure) Safety injection enabled 22.4 s (5 seconds delay) 23.8 s (5 seconds delay)

RWST empty - 5852

Safety injection-recirculation from sump - 6152 (5 minutes delay) Auxiliary feedwater injection enabled 72.8 (60 seconds delay) 74.5 (60 seconds delay)

Accumulator injection 650.0 690.0

Containment fan coolers enabled - 88.1 (35 seconds delay)

Containment spray - -

PCT temperature 610 K (steady state value) 711 K

(15)

Break mass flow rate

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

T ime (s)

Mass flow rate (kg/s)

0 50 100 150 200 250 300 350 400

MELCOR RELAP5

N EK 3 inch cold leg 1 L O C A

(16)

16

Pressurizer pressure

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

T ime (s)

Pressure (MPa)

2 4 6 8 10 12

14 MELCOR

RELAP5

N EK 3 inch cold leg 1 L O C A

(17)

Nuclear power

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

T ime (s)

Nuclear power (MW)

0 200 400 600 800 1000 1200 1400 1600

1800 MELCOR

RELAP5

N EK 3 inch cold leg 1 L O C A

(18)

18

Pressurizer and SG pressure

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

T ime (s)

Pressure (MPa)

2 4 6 8 10 12

14

PRZ pressure-MELCOR

SG 1 pressure-MELCOR SG 2 pressure-MELCOR PRZ pressure-RELAP5 SG 1 pressure-RELAP5 SG 2 pressure-RELAP5

N EK 3 inch cold leg 1 L O C A

(19)

Containment pressure

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

T ime (s)

Pressure (kPa)

110 120 130 140 150 160 170 180 190 200 210

MELCOR RELAP5

N EK 3 inch cold leg 1 L O CA

(20)

20

ECCS flow

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

T ime (s)

Mass flow rate (kg/s)

0 100 200 300 400 500 600 700 800 900 1000

MELCOR RELAP5

N EK 3 inch cold leg 1 L O C A

SI flow from RWST (MELCOR) SI flow from sump (MELCOR)

(21)

Cold leg temperature

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

T ime (s)

Temperature (K)

320 340 360 380 400 420 440 460 480 500 520 540 560

Tcold 1-MELCOR Tcold 2-MELCOR Tcold 1-RELAP5 Tcold 2-RELAP5

N EK 3 inch cold leg 1 L O C A

(22)

22

Hot leg temperature

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

T ime (s)

Temperature (K)

460 480 500 520 540 560

580 Thot 1-MELCOR

Thot 2-MELCOR Thot 1-RELAP5 Thot 2-RELAP5

N EK 3 inch cold leg 1 L O C A

(23)

Auxiliary feedwater flow

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

T ime (s)

Mass flow rate (kg/s)

0 2 4 6 8 10 12 14 16 18 20 22

AFW 1-MELCOR AFW 2-MELCOR AFW 1-RELAP5 AFW 2-RELAP5

N EK 3 inch cold leg 1 L O C A

(24)

24

SG mass

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

T ime (s)

Mass (kg)

45000 50000 55000 60000 65000 70000 75000

SG 1 mass-MELCOR SG 2 mass-MELCOR SG 1 mass-RELAP5 SG 2 mass-RELAP5

N EK 3 inch cold leg 1 L O C A

(25)

Fuel cladding temperature

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

T ime (s)

Temperature (K)

450 500 550 600 650 700

COR-TCL_0314-MELCOR COR-TCL_0114-MELCOR COR-TCL_0214-MELCOR COR-TCL_0414-MELCOR HTTEMP 111901016-RELAP5 HTTEMP 111901116-RELAP5 HTTEMP 111901216-RELAP5

N EK 3 inch cold leg 1 L O C A

(26)

3 inch cold leg break LOCA, Conclusion

• In MELCOR calculation larger break flow than in RELAP5 was obtained. This difference is mainly due to different choked flow models. Containment back pressure is lower in MELCOR than in RELAP5 due to fan coolers operation but this has a small influence on break flow.

• In MELCOR, lower RCS pressure and larger safety injection flow (LPIS) than in RELAP5 was obtained. This has influenced RCS temperatures.

• After reactor trip different heat transfer conditions in steam generator for RELAP5 and MELCOR were obtained. In MELCOR heat transfer from secondary to primary side was larger than in RELAP5 thus

resulting in lower secondary pressure. Pressure drop on secondary side was stopped first after terminating the auxiliary feedwater flow.

• In MELCOR, fuel cladding temperature has increased (max.

temperature=711 K) in the first phase of the transient, but fuel cladding oxidation did not occur.

26

(27)

NPP Krško Station Blackout (SBO) Calculation using MELCOR 1.8.6 and

MELCOR 2.2 Codes

(28)

28 Parameter Unit NEK cycle 28

reference

MELCOR 1.8.6 (1000 s)

MELCOR 2.2 (1000 s)

1. Pressure MPa

Pressurizer 15.513 15.517 15.517

Steam generator 6.281 6.19/6.16 6.19/6.16

2. Fluid Temperature K

Cold leg 558.75 559.36/559.16 559.36/559.16 Hot leg 597.55 596.94/596.94 596.94/596.94

Feedwater 492.6 492.6 492.6

3. Mass Flow kg/s

Core 8899.7 8876.5 8876.5

cold leg 4697.4 4683.8 /4686.2 4683.8 /4686.2 main feedwater 544.5 538.9/541.8 538.9/541.8 main steam line 544.5 538.9/541.8 538.9/541.8 DC-UP bypass (0%) 0.0 0.0 0.0 DC-UH bypass (0.346%) 32.5 (0.346%) 32.38 (0.346%) 32.39 (0.346%) Buffle-barrel flow (1.0939%) 102.8

(1.094%)

102.49 (1.094%) 102.49 (1.094%) RCCA guide tubes (3.32%) 311.9 (3.32%) 358.5 (3.826%) 358.6 (3.827%)

Core cavity (0.5067%) 47.6 - -

4. Liquid level %

Pressurizer 55.7 55.8 55.8

Steam generator narrow range 69.3 69.3/69.4 69.3/69.4

5. Fluid Mass t

Primary system - 131.8 131.8

Steam generator (secondary) 47.0 48.08/48.07 48.08/48.07

6. Power MW

Core 1994.0 1994.0 1994.0

Steam generator 1000.0 997.1/1002.6 997.1/1002.6

(29)

Transient Description

• Time=0: Reactor trip from 100% power, turbine trip, Main steam line isolation, Loss of main feedwater, RC pump trip, RC pump seal leakage

• Engineering Safety features (Auxiliary feedwater, Safety

Injection, Containment fan coolers, Containment Spray) are not available.

• Only passive components are available: Accumulators, Passive Autocatalytic Recombiners and Passive

Containment Filtered Vent System.

• SG safety valves and pressurizer safety valves are available.

• Accumulators will inject its content into RCS after RCS

pressure drop (either RPV failure or creep failure – hot leg,

PRZ surge line or SG tube)

(30)

NEK SBO: Time table of events

Event MELCOR 1.8.6 MELCOR 2.2

Transient begin 0.0 0.0

SG empty 3920 sec 3920 sec

Lower head failure 12438 sec 11768 sec

Begin of melt ejection 13950 sec 11800 sec

PCFV actuation 15020 sec 13350 sec

Begin of PCFV ON/OFF behavior 18170 sec 16440 sec

(31)

Lower head failure SG

depletion

Mass (t) 51015202530354045

0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000 T ime (s)

Pressure (MPa) 246810121416

PRZ pressure-MELCOR 1.8.6 PRZ pressure-MELCOR 2.2 SG 1 mass-MELCOR 1.8.6 SG 2 mass-MELCOR 1.8.6 SG 1 mass-MELCOR 2.2 SG 2 mass-MELCOR 2.2

N EK SB O

(32)

32

MELCOR 1.8.6: Fuel temperature 3rd ring

0 5000 10000 15000 20000 25000 30000

T ime (s) Temperature (K) 02004006008001000120014001600180020002200

COR-TCL_0314 A1 COR-TCL_0313 A1 COR-TCL_0312 A1 COR-TCL_0311 A1 COR-TCL_0310 A1 COR-TCL_0309 A1 COR-TCL_0308 A1 COR-TCL_0307 A1 COR-TCL_0306 A1 N EK SBO , M EL CO R 1.8.6

0 5000 10000 15000 20000 25000 30000

T ime (s) Temperature (K) 02004006008001000120014001600180020002200

COR-TCL_0314 A1 COR-TCL_0313 A1 COR-TCL_0312 A1 COR-TCL_0311 A1 COR-TCL_0310 A1 COR-TCL_0309 A1 COR-TCL_0308 A1 COR-TCL_0307 A1 COR-TCL_0306 A1 N EK SB O , M EL C O R 2.2

MELCOR 2.2: Fuel

temperature 3rd ring

(33)

0 50000 100000 150000 200000 250000 300000 T ime (s)

Pressure (kPa)

150 200 250 300 350 400 450 500 550

CVH-P_0701-MELCOR 1.8.6

CVH-P_0701-MELCOR 2.2

N EK SB O

(34)

34

0 50000 100000 150000 200000 250000 300000

T ime (s)

Temperature (K) 340360380400420440460

CVH-TVAP_0701-MELCOR 1.8.6 CVH-TVAP_0701-MELCOR 2.2

N EK SB O

(35)

MELCOR 1.8.6: Pressurizer pressure, ejected mass to cavity

MELCOR 2.2: Pressurizer pressure, ejected mass to cavity

COR-MEJEC-TOT_0000 (kg) 01000020000300004000050000600007000080000

0 5000 10000 15000 20000 25000 30000

T ime (s) Pressurizer pressure (MPa) 246810121416

CVH-P_0103 A1 COR-MEJEC-TOT_0000 A2 N EK SB O , M EL C O R 1.8.6

COR-MEJEC-TOT_0000 (KG) 01000020000300004000050000600007000080000

0 5000 10000 15000 20000 25000 30000

T ime (s) Pressurizer pressure (MPa) 246810121416

CVH-P_0103 A1 COR-MEJEC-TOT_0000 A2 N EK SB O , M EL CO R 2.2

(36)

36

Cavity mass Removed hydrogen by PARs

0 10000 20000 30000 40000 50000 60000 70000 80000 90000 100000 T ime (s)

Mass (t) 0102030405060708090100110120

CVH-MASS.1_0704-MELCOR 1.8.6 CVH-MASS.1_0704-MELCOR 2.2 N EK SBO

0 50000 100000 150000 200000 250000 300000

T ime (s) Mass (kg) 0100200300400500600700

ESF-PAR-IMH2_0001-MELCOR 1.8.6 ESF-PAR-IMH2_0002-MELCOR 1.8.6 ESF-PAR-IMH2_0003-MELCOR 1.8.6 ESF-PAR-IMH2_0004-MELCOR 1.8.6 ESF-PAR-IMH2_0001-MELCOR 2.2 ESF-PAR-IMH2_0002-MELCOR 2.2 ESF-PAR-IMH2_0003-MELCOR 2.2 ESF-PAR-IMH2_0004-MELCOR 2.2 N EK SB O

(37)

SBO, Conclusion

• MELCOR 2.2: Lower head failure at time=11768 sec and an immediate melt ejection to cavity that blocks flow path: sump pit- cavity. Water from the accumulators stays trapped in the cavity.

• MELCOR 1.8.6: Lower head failure at time=12438 sec and delayed melt ejection to cavity. Flow path: sump pit – cavity is free to expell a large amount of water from cavity to sump pit.

• As a consequence, in MELCOR 2.2 a larger amount of water

evaporated in cavity and lead to larger first peak in containment

pressure than in MELCOR 1.8.6. That has lead to delay in PCFV

activation in MELCOR 1.8.6. Later, the ON/OFF PCFV operation

had the same frequency for both codes.

(38)

38

FL 9

CV 3

CV 4 CV 4

CV 5

CV 10 CV 13 CV 6

CV 2

CV 1

CV 8 FL 21

FL 18 FL 7

FL 23 FL 24

FL 25

FL 10

FL 22

FL 8

FL 28 FL 26 FL 27 FL 4

FL 20

FL 16

FL 3

FL 15 FL 5

FL 2

CV

11 CV

9 CV

12

FL 29

FL 6 FL 34

FL 37

FL 30

FL 32

FL 31 FL 17

FL 33 Upper compartment sph

PRZ comp SG1 comp SG2 comp

Annulus

Lower comp Reactor

pool

ARV

Cavity Upper compartment cyl

CV 7

FL 35 FL 36

FL 1 FL 11

FL 19

FL 12

FL 14

FL 13 PCFV

Containment Failure

TS leak TS leak

RSump CSump

Sump pit

Door Failure FL 38

(39)

Cavity Modelling

Cavity Layout and the MCCI

Concrete decomposition

(at temperatures 873 – 1173 K):

CaCO

3

CaO + CO

2

(endothermic reaction) Iron rebar oxidation

(600 kg of iron in the 1 m

3

of the concrete):

Fe + H

2

O + 3.0 kJ/kg

(Fe)

FeO + H

2

Fe + CO

2

+ 480 kJ/kg

(Fe)

FeO + CO

(40)

40

0 50000 100000 150000 200000 250000 300000 350000 400000 450000 500000 550000 600000 T ime (s)

Containment dome pressure (PA) 100000150000200000250000300000350000400000450000500000550000

CAV door open ARHR CAV door open Ref CI CAV door closed + 4in hole CAV door closed SB O - RB CO O L IN G AT 24 H - CI , ARHR, M HX - ES

(41)

0 50000 100000 150000 200000 250000 300000 350000 400000 450000 500000 550000 600000 T ime (s)

Containment dome temperature (K) 340360380400420440460480500520

CAV door open ARHR CAV door open Ref CI CAV door closed + 4in hole CAV door closed SB O - RB CO O L IN G AT 24 H - CI , ARHR, M HX - ES

(42)

Gothic Multivolume Model

42

• Nodalization:

– 10 control volumes – 2 boundary conditions – 27 flow paths

– 74 heat structures – 2 RCFC units

(volumetric fan + HX)

– 1 spray train

(43)

Results

100 101 102 103

Time (s)

RCFC power (kW)

-18000 -16000 -14000 -12000 -10000 -8000 -6000 -4000 -2000 0

G 7.2b M 1.8.6

100 101 102 103

Time (s)

HTC steel liner inside (W/m2-K)

0 10 20 30 40 50 60 70 80 90 100

G 7.2b M 1.8.6

100 101 102 103

Time (s)

Containment dome pressure (kPa)

150 200 250 300 350 400

G 7.2b M 1.8.6

100 101 102 103

Time (s)

Containment dome temperature (C)

50 60 70 80 90 100 110 120 130

G 7.2b M 1.8.6

(44)

RN - Core AST for 3 NEK Cycles

44

(45)

Plant/time specific isotopic AST for core and SFP

0 100 200 300 400 500 600 700

Time (hr)

Activity (MCi)

0 10 20 30 40 50 60 70 80 90 100 110 120

N EK C Y C 29 M A A P AST

KR 85 KR 85M KR 87 KR 88 XE131M XE133 XE133M XE135 XE135M XE138 I131 I132 I133 I134 I135 CS134 CS136 CS137 RB 86 RB 88

(46)

46

0 100 200 300 400 500 600 700

Time (hr)

Actvity (MCi)

0 10 20 30 40 50 60 70 80 90 100

N EK C Y C 29 M A A P AST

RB 89 Y 90 Y 91 Y 92 Y 93 ZR 95 ZR 97 NB 95 MO 99 TE127 TE127M TE129 TE129M TE131M TE132 TE134 SB127 SB129 SR 89 SR 90

(47)

0 100 200 300 400 500 600 700 Time (hr)

Activty (MCi)

0 10 20 30 40 50 60 70 80 90

N EK C Y C 29 M A A P AST

SR 91 SR 92 BA139 BA140 RU103 RU105 RU106 RH105 TC 99M CE141 CE143 CE144 PU238 PU239 PU240 PU241

(48)

MAAP 4.0.9 and RADTRAD 3.03

www.nek.si, Vrbina 12, 8270 Krško 48

WGBST (KG/S) 0.511.522.533.544.55

60000 65000 70000 75000 80000 85000 90000 95000 100000 105000 110000 115000 120000 T ime (s)

() 0.10.20.30.40.50.60.70.80.90

FREL(1) A1 FREL(2) A1 FREL(3) A1 FREL(4) A1 FREL(5) A1 FREL(6) A1 FREL(7) A1 FREL(8) A1 FREL(9) A1 FREL(10) A1 FREL(11) A1 FREL(12) A1 FREL(13) A1 WGBST A2 REL EASE CAT EG O RY 8B = SG T R

0 .5 1 1.5 2 2.5 3

Time (day)

Leakage (%Vcont)

0 5 10 15 20 25 30 35 40 45 50

N EK SG T R

VOLFLOW_SGTR.dat

0 100 200 300 400 500 600 700

Activity (MCi)

0 50 100 150 200 250

N EK ES BB 1

Total activity released Activity in environemnt (decay) Activity containment

0 100 200 300 400 500 600 700

Activity in environment + plume (MCi)

0 .2 .4 .6 .8 1 1.2 1.4 1.6

N EK ES BB 1

activity_ecr01a_02.dat

(49)

RADTRAD and ARCON96 release and dispersion

Time interval ECR/TSC intake χ/Q (s/m3)

ECR/TSC roof χ/Q (s/m3)

0 – 2 h 2.15E-04 3.09E-04

2 – 8 h 1.46E-04 2.05E-04

8 – 24 h 6.91E-05 9.90E-05

1- 4 days 6.71E-05 9.05E-05

4 -30 days 5.18E-05 7.18E-05

(50)

RADTRAD compartment model used in calculation

www.nek.si, Vrbina 12, 8270 Krško 50

CONTAINMENT COMPARTMENT

(ECR) ENVIRONMENT

1 3 2

2 4 1

Leak to environment

Inflow (F2)

Intake F4

Recirculation filter F1

3

Exhaust (F3)

0 100 200 300 400 500 600 700

Time (h)

Immersion gamma dose (Gy)

.000 .005 .010 .015 .020 .025 .030 .035

N EK ES SG T R EC R

case01 case02 case03 case04

0 100 200 300 400 500 600 700

Time (h)

Gamm dose (Gy)

.00 .05 .10 .15 .20 .25 .30 .35 .40 .45 .50 .55

BB 1 SG T R ES Immersion gamma dose

bb1_sgtr_001n_gdose.dat bb1_sgtr_002n_gdose.dat bb1_sgtr_003n_gdose.dat bb1_sgtr_004n_gdose.dat bb1_sgtr_005n_gdose.dat bb1_sgtr_017n_gdose.dat bb1_sgtr_018n_gdose.dat

(51)

ECR HVAC filter doses, 4th HVAC sequence

100 101 102

Time (h)

Total filter activity (Ci)

0 100 200 300 400 500 600 700 800 900 1000 1100 1200

N EK ES SG T R EC R

sum_activity_ecr01d.dat sum_activity_ecr02d.dat sum_activity_ecr03d.dat sum_activity_ecr04d.dat

0 100 200 300 400 500 600 700

Gamma dose (Gy)

0 10 20 30 40 50 60 70 80 90 100 110 120

BB 1 M R dose from filter side extended

ecr01d_far_side_dose_100cm ecr01d_far_side_dose_200cm ecr01d_far_side_dose_400cm ecr01d_far_side_dose_600cm ecr01d_far_side_dose_800cm ecr04d_far_side_dose_100cm ecr04d_far_side_dose_200cm ecr04d_far_side_dose_400cm ecr04d_far_side_dose_600cm ecr04d_far_side_dose_800cm

(52)

Dose at BB1 top (hemisph R=200, 500m, homogenouse or X/Q)

www.nek.si, Vrbina 12, 8270 Krško 52

0 100 200 300 400 500 600 700

Time (h)

Dose (Gy)

0 2 4 6 8 10 12 14 16

B B 1 external dose SG T R ES, roof

external_ecr01d_xq_500m_bdose.dat external_ecr01d_xq_500m_gdose.dat external_ecr01d_500m_bdose.dat external_ecr01d_500m_gdose.dat external_ecr01d_200m_bdose.dat external_ecr01d_200m_gdose.dat

0 100 200 300 400 500 600 700

Time (h)

Dose (Gy)

0 2 4 6 8 10 12 14 16 18

B B 1 external dose SG T R ES, roof

external_ecr01d_xq_500m_bdose external_ecr01d_xq_500m_gdose external_ecr01dr_xq_500m_bdose external_ecr01dr_xq_500m_gdose

10-3 10-2 10-1 100 101 102

Time (h)

Concentration (Bq/m3)

100 101 102 103 104 105 106 107

B B 1 external dose SG T R ES, roof

external_ecr01d_200m_conc_Bq_m3 external_ecr01d_500m_conc_Bq_m3 external_ecr01d_xq_500m_conc_Bq_m3

(53)

0 100 200 300 400 500 600 700 Time (h)

Filter activity (Ci)

0 10 20 30 40 50 60

N EK ES SG T R ECR

filter_activity_ecr01d_Cs-134.dat filter_activity_ecr01d_Cs-136.dat filter_activity_ecr01d_Cs-137.dat

Referenzen

ÄHNLICHE DOKUMENTE

Figure 26: Injection pressures of the tensile specimens for all three materials in dependence of the mold temperature with linear approximations for all used injection volumes

Near wellbore effects and fluid behavior such as saturation pressure, in the region of high pressure around an injector and low pressure surrounding a

Coupling Poynting-Robertson Effect in Mass Accretion Flow Physics PhD Candidate: Vittorio De Falco.. The transitional millisecond pulsar IGR J182 45–2452 during its 2013 outburst

Figure 16 (a) shows the evaluated velocity field of a fuel spray measured at 150 MPa injection pressure by high speed SIV for the similar injector, where the OCM and the

Volume flow rate measurements for in-plant account- ing or planning a compressor system do not justify the cost of parallel measurements of the ambient temperature, humidity

„Untersuchungen zeigen, dass viele Patienten eine sogenannte Typ A-Persönlichkeit haben, die mit erhöhter Konzentration des Stresshormons Cortisol im Blut einhergeht“,

• Each control volume within the LHSI pipe model had the turbulent deposition model enabled..

None of the information or data is intended by AREVA to be a representation or a warranty of any kind, expressed or implied with respect to the design and sustainability of the