• Keine Ergebnisse gefunden

Monitoring Long-Term Changes in the Boreal Forest

N/A
N/A
Protected

Academic year: 2022

Aktie "Monitoring Long-Term Changes in the Boreal Forest"

Copied!
24
0
0

Wird geladen.... (Jetzt Volltext ansehen)

Volltext

(1)

W O R K / I V G P A P E R

,WNITORTL\IG I;O'L\IGTEXM CHAVGES

IN

THE BOREAL FOREST

M. Ja

.

A ~ t o n o v s k y H.H. S h u g a r t

November 1986 TQ-86-064

I n t e r n a t i o n a l I n s t i t u t e for Applied Systems Analysis

(2)

NOT FOR QUOTATION WITHOUT PERMISSION OF THE AUTHOR

MONITORING LONGTERM CHANGES IN THE BOREAL FOREST

M. J a . Antonovsky H.H. S h u g a r t

November 1986 WP-86-64

Working Papers are interim r e p o r t s on work of t h e I n t e r n a t i o n a l I n s t i t u t e f o r Applied Systems Analysis a n d h a v e r e c e i v e d only lim- ited review. Views o r opinions e x p r e s s e d h e r e i n do not neces- s a r i l y r e p r e s e n t t h o s e of t h e I n s t i t u t e o r of i t s National Member Organizations.

INTERNATIONAL INSTITUTE FOR APPLIED SYSTEMS ANALYSIS 2361 L a x e n b u r g , Austria

(3)

FOREWORD

This p a p e r was p r e s e n t e d by Michael Antonovsky at t h e Second Sympo- sium o n S p a c e and Global Change (October 9, 1986; I n n s b r u c k , Austria) s p o n s o r e d by t h e I n t e r n a t i o n a l Astronautical Federation. The r e s e a r c h r e p o r t e d is p a r t of t h e continuing happy collaboration between P r o f e s s o r Antonovsky and P r o f e s s o r S h u g a r t of t h e University of Charlottesville in t h e United S t a t e s .

As pointed o u t in t h e conclusion, ' T h e r e i s a g e n e r a l c o n v e r g e n c e of f o r e s t models being developed in t h e USSR a n d t h e USA in terms of t h e phi- losophy t h a t u n d e r l i n e s t h e modeling a p p r o a c h . " However, t h e r e are d i f f e r - e n c e s in r e a l i z a t i o n s o t h a t comparisons as given in t h e p a p e r r e p r e s e n t "a v e r y useful s c i e n t i f i c endeavour".

This Working P a p e r is a contribution to t h e monitoring r e s e a r c h a c t i v i t y being developed within t h e IIASA Environment P r o g r a m . The r e s u l t s are a l s o a c o n t r i b u t i o n t o t h e new ICSU Global Change Programme.

R.E. Munn L e a d e r

Environment P r o g r a m

(4)

MONITORING LONGTERM CHANGES IN THE BOREAL FOREST

M.Ja. Antonovsky* and H.H. Shugart**

F o r e s t ecosystems contain a complex web of interactions among physi- c a l , chemical and biological p r o c e s s e s . Because of this i n t e r a c t i v e com- plexity, d i r e c t changes in a given p r o c e s s c a n b e attenuated or amplified, and t h e r e s p o n s e s elicited f r o m a f o r e s t will b e manifested on many dif- f e r e n t time scales.

T r e e growth r e s u l t s f r o m t h e amount of photosynthate produced and t h e allocation of t h i s photosynthate within t h e tree. The growth of trees h a s been modelled using "mechanistic" r e p r e s e n t a t i o n s of physiological p r o c e s s e s , but t h e s e models have r a r e l y been used t o p r e d i c t r e s p o n s e s o v e r periods longer t h a n a y e a r .

I t i s important t o note: (1) t h a t t h e web of interactions is complex and t h e details of s o m e of t h e i n t e r a c t i o n s are not well known, and (2) t h a t t h e r e s p o n s e of t h e whole plant t o a stress may b e non-linear across t h e possi- ble r a n g e of t h a t stress. In g e n e r a l , t h e fast p r o c e s s e s t h a t o p e r a t e in f o r e s t ecosystems can only b e predicted o v e r t h e longer t e r m with a consid- e r a b l e d e g r e e of uncertainty.

T h e r e have been s e v e r a l attempts t o develop highly detailed

"mechanistic" models of n a t u r a l ecosystems including forests. These models are useful as h e u r i s t i c tools f o r integrating studies of different ecological p r o c e s s e s , but are much less useful for predicting long-term ecosystem behaviour.

.

On l e a v e f r o m Natural Environment and Climate Monitoring l a b o r a t o r y COSKOMGIDROMET and t h e USSR Academy o f S c i e n c e s .

m* P r o f e s s o r , Department o f Environmental S c i e n c e s , U n i v e r s i t y of C h a r l o t t e s v i l l e , Vir- ginia, USA.

(5)

Environmental c h a n g e c a n a f f e c t t h e growth rates of individual trees a n d t h e r e b y h a v e a cumulative e f f e c t in changing t h e amount of living m a t e r i a l in t h e f o r e s t system. However, t h e r e l a t i o n between t h e rate of individual tree growth a n d t h e rate of f o r e s t i n c r e a s e ( o r yield) i s more t h a n a simple additive e f f e c t . Relatively low levels of stress on trees c a n p r o d u c e l a r g e c h a n g e s in t h e dynamics a n d composition of f o r e s t s . F u r t h e r - more, t h e i n t e r a c t i o n s between t h e populations of trees a n d i n s e c t s (and o t h e r pests a n d d i s e a s e s ) a r e , in many c a s e s , mediated by climate a n d t h u s are of importance in assessing t h e possible e f f e c t s of climatic c h a n g e on f o r e s t s . F o r example, t h e oak-wilt d i s e a s e in t h e USSR appears t o b e d e p e n d e n t on t h e d e c r e a s e d ability of t h e trees t o resist leaf-eating i n s e c t s d u r i n g d r o u g h t ( I s r a e l et a l . 1983).

The p r e d i c t i o n of yield from growth h a s b e e n a n important t o p i c in modern f o r e s t r y ( F r i e s 1974). F o r e s t yield i s a consequence both of t h e growth of individual trees a n d of t h e rates of r e c r u i t m e n t a n d d e a t h of trees in t h e f o r e s t stand. F o r example, Figure 1 i l l u s t r a t e s t h e r e l a t i o n between s t a n d biomass a n d t h e a g e of s t a n d s of Picea glauca f o r e s t s (Yarie a n d Van Cleve 1983). Over t h e time p e r i o d indicated by t h e d i f f e r e n t a g e s , t h e growth increment of t h e trees was c o n s t a n t (diameter i n c r e a s e

=

0.11 cm/year; r 2 of r e g r e s s i o n

=

0.87) but t h e rate of i n c r e a s e of t h e t o t a l biomass c l e a r l y declined as a function of a g e . In c o n t r a s t , t h e rate of biomass c h a n g e of a single t r e e , which was enlarging with a c o n s t a n t diame- ter increment, i n c r e a s e d with t h e s i z e of t h e tree ( b e c a u s e tree biomass is a power function of t h e diameter). Thus, t h e c h a n g e in biomass growth rate shown in Figure 1 was o p p o s i t e to t h a t of t h e individual trees t h a t comprised t h e f o r e s t . E f f e c t s s u c h as t h e s e p r e v e n t d i r e c t e x t r a p o l a t i o n of s h o r t - t e r m c h a n g e s in trees t o p r e d i c t t h e l o n g e r t e r m r e s p o n s e s of t h e f o r e s t . The modern t h e o r e t i c a l c o n c e p t f o r understanding t h e i n t e r m e d i a t e time s c a l e r e s p o n s e of a f o r e s t i s t o c o n s i d e r t h e f o r e s t e d l a n d s c a p e t o b e a mosaic with e a c h element of t h e mosaic scaled in r e l a t i o n to t h e dominant canopy tree ( c a . 0 . 1 h a , depending o n t h e s i z e of t h e t r e e s ) . This c o n c e p t was initially developed by Watt (1925, 1947) a n d h a s b e e n t h e t o p i c of a s e r i e s of papers a n d books (Raup 1957; Whittaker a n d Levin 1977; Bormann a n d Likens 1 9 7 9 a , b ; S h u g a r t 1984). The c o n c e p t , in b r i e f , i s t h a t t h e dynamic r e s p o n s e of t h e f o r e s t o c c u r s at a n a r e a l s c a l e of a l a r g e canopy tree a n d on a time s c a l e t h a t r e l a t e s to t h e longevity of t h e t r e e , as follows.

ll?ollowing t h e d e a t h of a l a r g e tree and i t s fall, a canopy g a p forms.

The area below t h i s g a p becomes t h e s i t e of i n c r e a s e d r e g e n e r a t i o n a n d s u r v i v a l of trees. T r e e s grow, t h e f o r e s t builds, t h e canopy c l o s e s , a n d t h e g a p d i s a p p e a r s . Eventually, t h e now mature f o r e s t in t h e vicinity of t h e f o r m e r g a p s u f f e r s t h e mortality of a l a r g e tree a n d a new g a p i s formed a n d t h e c y c l e is r e p e a t e d ( S h u g a r t 1984)."

The dynamics of a f o r e s t are t h e a g g r e g a t e d dynamics of a l a r g e number of s u c h individual gaps. When c o n s i d e r e d at i n t e r m e d i a t e time s c a l e s (ca. 1 0 0 y e a r s ) , t h e p a t t e r n of dynamics of a f o r e s t c a n b e s e e n as a c y c l e of r e c r u i t m e n t , d e a t h and growth p r o c e s s e s ; environmental c h a n g e a l t e r s t h e p a t t e r n within t h e c y c l e (Figure 2). The r e g e n e r a t i o n p h a s e of t h e f o r e s t c y c l e a n d t h e e x a c t timing of t h e d e a t h of a canopy tree t h a t pro- d u c e s a n o p p o r t u n i t y f o r r e g e n e r a t i o n are highly s t o c h a s t i c p r o c e s s e s . This i s p a r t i c u l a r l y t h e case in t h e r e g e n e r a t i o n p h a s e when t h e mortality

(6)

Stand Age (years)

25

Figure 1: The relationship of above-ground stand biomass t o stand a g e f o r white s p r u c e (Picea g l a u c a ) from t h e I n t e r i o r of Alaska (from Yarie and Van Cleve, 1983). A fully stocked stand h a s a s i t e density index (SDI) of 1000; a stand with one half t h i s density of trees h a s a SDI

=

500.

-

Biomass = -23.2105 + 0.0027 [ ( s D I ) ' . ~ ~ ' ~ ] + 4.9962 (InAGE) r 2 = 0.87

of small t r e e s is v e r y high. I t i s in this stochastic p a r t of t h e cycle t h a t climatic change and variability c a n have t h e l a r g e s t influence in producing change in t h e f o r e s t .

20 -

0 50 100

1

50 200 250

Change in t h e r a t e of soil development could a l s o g r e a t l y delay t h e response of a f o r e s t t o a climatic change. The soil at a given location d e r i v e s i t s c h a r a c t e r i s t i c s from t h e p a r e n t material (the geology at t h e site), t h e vege- tation and t h e climate. If both t h e climate and t h e vegetation at a given location were t o change, t h e r e might b e considerable delays in t h e develop- ment of t h e soils and, hence, t h e f o r e s t s which one would e x p e c t ultimately t o develop at t h e site.

Large climatic fluctuations have taken place during t h e l a s t one hun- d r e d y e a r s (Wright 1984).

While t h e u s e of models o f f e r s a means t o s c a l e up in both time and s p a c e , o u r p r e s e n t state of knowledge about t h e p r o c e s s e s involved i s insuf- ficient t o allow this t o b e done with any r e a l confidence in t h e results. Con- sequently, w e see a need f o r t h e c o n c u r r e n t development of models and

(7)

4

Competition

Growth

rnosr srochesric ) pen of

cycle

Alternate Composition o f Forests

Figure 2: Simulation of t h e long-term regeneration cycle of f o r e s t s

+

using t h e BRIND model (Shugart and Noble, 1981) f o r t h e Australian Eucalyptus f o r e s t . The determinism in t h e sys- tem i s g r e a t during t h e growth, competition and thinning p h a s e s but more stochastic in t h e death and regeneration phases.

empirical studies of t h e physiological and micrometeorological p r o c e s s e s t h a t determine t h e r e s p o n s e t o environmental change. Given t h e paucity of o u r p r e s e n t knowledge, such empirical studies a r e needed at e a c h spatial and temporal scale.

Determination of t h e response of a f o r e s t t o a climatic change involves evaluation of a complex system with many levels of response. One means of attempting t o handle t h i s complexity i s by t h e use of quantitative models of f o r e s t dynamics as investigative tools. There a r e s e v e r a l hundred extant models of f o r e s t dynamics t h a t simulate t h e growth of individual t r e e s t o determine t h e temporal response of a f o r e s t . These models seem t o b e most a p p r o p r i a t e t o "intermediate time scales" discussed e a r l i e r . There have been s e v e r a l reviews of t h e types and performance of detailed models of f o r e s t dynamics (Munro 1974; S h u g a r t and West 1980; S h u g a r t 1984). We will in t h i s p a p e r provide two examples of modeling t h e dynamics of f o r e s t s . The f i r s t discussion includes a specific example from a hiearchical model of successional dynamics in western Siberia. This example is from Antonovsky and Korzukhin [1986]. We a l s o will discuss t h e mapping of global change of f o r e s t s (Emanuel e t a1 1985) t o climate change as a second example.

(8)

J3'XAMPI.E 1. HIEARCHICAL SIMULATION OF VEGETATION DYNAMICS In conditions of technogenic impacts, t h e p r e d i c t i o n of t h e state of t h e b i o s p h e r e , as a whole, should c o n s i d e r t h e r e s p o n s e of vegetation t o chang- ing ecologic p a r a m e t e r s , global c h a n g e s of t h e s e p a r a m e t e r s following t h e c h a n g e s o c c u r r i n g in t h e state of vegetation.

This s e c t i o n of t h e p a p e r makes a n a t t e m p t t o f u r t h e r t h e e l a b o r a t i o n of t h e f o r m e r , i.e., t h e i n t e r n a l dynamics of t h e b o r e a l f o r e s t . Thus, w e d o n o t d e a l h e r e with t h e vegetation--*biospheric p a r a m e t e r s r e l a t i o n s h i p , b u t r e g a r d t h i s o r t h a t s c e n a r i o of c h a n g e s in global ecologic (climatic) param- eters as p r e s e t .

To assess t h e r e s p o n s e of vegetation t o c h a n g e s in ecologic p a r a m e t e r s o v e r p e r i o d s exceeding s e v e r a l y e a r s u n d e r possibly a l t e r e d a t m o s p h e r i c conditions, o n e must c o n s t r u c t mathematical models which make u s e of avail- a b l e information on p l a n t physiology and ecology, as well as o n t h e o r g a n i - s a t i o n a n d s t r u c t u r e of v e g e t a t i v e c o v e r . Due t o t h e complexity of t h e t a s k involved in t h e c o n s t r u c t i o n of models of b o r e a l f o r e s t dynamics, and t h e r e l a t i v e l y s h o r t p e r i o d of time elapsed s i n c e t h e beginning of i t s solution, t h e simulation of t h e s e f o r e s t s i s p r a c t i c a l l y at i t s s t a r t i n g point. F o r instance, no a d a p t a t i o n elements (adaptational r e s p o n s e of individuals t o changes in ecological p a r a m e t e r s ) are i n c o r p o r a t e d into existing p l a n t dynamics models.

A phytomass (m) dynamics equation f o r a n individual tree such as,

( F

-

rate of photosynthesis, R

-

i t s p r o d u c t s s p e n t f o r v a r i o u s needs) will become methodologically i n c o r r e c t if d i r e c t l y applied [Budyko, 1984; K r a - pivin, 19821, t o global o r zonal levels. W e believe t h a t t h e m o s t important f a c t o r to b e t a k e n into a c c o u n t when c o n s t r u c t i n g models of f o r e s t s , i s t h e h i e r a r c h i c a l (multilevel) organisation of vegetation [Razumovsky, 1981;

Delcourt, H.R., Delcourt, P.A. a n d Webb, 19831. The dynamic n a t u r e of t h e f o r e s t s and, as a r u l e , t h e multiple e f f e c t s of environmental f a c t o r s o f t e n r e s u l t in u n e x p e c t e d r e s p o n s e s t o changes in t h o s e f a c t o r s . Let us c o n s i d e r a n example b a s e d on t h e following considerations.

1. R e l a t i o n s h i p between i n d i v i d u a l and ecosystem o r g a n i s a t i o n levels. L e t t h e i n c r e a s e d values of a c e r t a i n f a c t o r $ --+ $

+

A$ (e.g. CO ) stimulate t h e growth of a n individual (a t r e e ) and t h e accumulation of i t s phytomass m f o r a n y value of a g e t (A$/ $

<<

1):

Then, l e t u s c o n s i d e r a population of N trees of t h e same a g e and t h e c h a n g e in i t s t o t a l phytomass M

=

N

.

m

As a r u l e , t h i s c h a n g e will b e l e s s t h a n c h a n g e s in individual phytomasses m , t h a t i s

a ( t )

>

b ( t ) will b e t r u e .

(9)

Such damping e f f e c t i s accounted f o r by ecological i n t e r a c t i o n : stimu- lation of a n individual's growth r e s u l t s in g r e a t e r competition a n d i n c r e a s e d mortality, i.e. in a d e c r e a s e d number of individuals in comparison with t h a t o b s e r v e d p r i o r t o t h e a l t e r a t i o n of f a c t o r $. T h e r e f o r e , as $ i n c r e a s e s , M grows m o r e slowly t h a n m . This r e s u l t h a s b e e n obtained in a s e r i e s of simulation model e x p e r i m e n t s using models f o r s e v e n d i f f e r e n t ecosystems u n d e r a condition of i n c r e a s e d growth of individual trees ( S h u g a r t 1984).

2 . ReLationship between v a r i o u s i m p a c t s of a g i v e n factor a t the i n d i v i d u a L LeveL. L e t u s refer t o a well-known example dealing with pho- tosynthesis: t h e i n c r e a s e d l e a f ' s e x p o s u r e t o light r e s u l t s in i t s h e a t i n g , i n c r e a s e d e v a p o r a t i o n a n d , in case of a lack of water in t i s s u e s

-

in t h e narrowing of stomata a n d , in t h e long r u n , in a s m a l l e r buildup of produc- tivity t h a n could b e e x p e c t e d in t h e case of i n c r e a s e d e x p o s u r e t o light and water e x c e s s in t i s s u e s .

3. ReLdtionship of v a r i o u s i m p a c t s of the g i v e n B c t o r a t the Landscape (regionaL) LeveL. Over t e r r i t o r i e s with e x c e s s i v e moisture, a t e m p e r a t u r e i n c r e a s e in b o r e a l f o r e s t s f a v o u r s t h e d e c r e a s e of swamp areas a n d t h e extension of f o r e s t c o v e r e d area. At t h e same time t h i s con- dition creates f i r e h a z a r d s which r e d u c e s t h e a v e r a g e f o r e s t a g e . S o , d e s p i t e t h e extension of f o r e s t c o v e r e d a r e a , t h e phytomass of b o r e a l vege- t a t i o n c a n e i t h e r i n c r e a s e or d e c r e a s e .

4. ReLationships between i n d i v i d u a l , phytocenotic a n d Landscape LeveLs. Over a r e g i o n with a lack of h e a t (such as t h e Boreal F o r e s t ) a warming promotes t h e growth of individuals, t o a l e s s e r d e g r e e i n c r e a s e s t h e phytomass of e a c h ecosystem ( s e e item 1 ) a n d p r o v o k e s f i r e s at t h e l a n d s c a p e level, with possible stimulation or s u p p r e s s i o n of t o t a l phytofage p r e s s u r e . The o v e r a l l e f f e c t r e s u l t i n g from t h e s e c h a n g e s c a n b r i n g a b o u t e i t h e r a n i n c r e a s e o r d e c r e a s e in t h e phytomass of trees.

The a b o v e examples show t h a t 1 ) I n t e r n a l f o r e s t i n t e r a c t i o n s , which i n c o r p o r a t e c a u s a t i v e r e l a t i o n s h i p s in t h e s t r u c t u r e a n d dynamics of vege- t a t i o n , should p o s s e s s s p e c i f i c f e a t u r e s f o r e a c h v e g e t a t i v e zone a n d 2 ) t h e c h a n g e s of t h e same global ecologic p a r a m e t e r s c a n r e s u l t in absolutely dif- f e r e n t a l t e r a t i o n s in vegetation p a r a m e t e r s

-

f o r e s t a r e a , f o r e s t phy- tomass, s p e c i e s composition, etc., f o r d i f f e r e n t vegetation zones (ecological conditions).

This situation, as well as g e n e r a l p r i n c i p l e s of simulation, b r i n g f o r t h t h e conclusion t h a t a p r e d i c t i o n model of Boreal forest should b e h i e r a r c h i - cal. As a f i r s t s t e p in t h e d e s c r i p t i o n of f o r e s t dynamics within a c e r t a i n t y p e of l a n d s c a p e l o c a t e d on a climatically homogeneous t e r r i t o r y , we c a n s u g g e s t a t h r e e - l e v e l "individual-phytocenosisecosystem-landscapef which, in g e n e r a l t e r m s , could b e w r i t t e n as

2 = f ( z , y , $ ) (1)

Y =

Q ( 2

,$I

(2)

=

h ( 2 , y ,z

,$I

(3)

which i s a n analogue of a h i e r a r c h i c a l model [Cherkashin, 19831, o r a d e t e r - ministic analogue of a s t o c h a s t i c model [Shugart, 19841. In model (1-3) $ r e p r e s e n t s ecologic p a r a m e t e r s a n d , f i r s t of a l l , climatic p a r a m e t e r s a c t i n g at t h e i n t r o d u c e d levels; z

-

v a r i a b l e s of a n individual, in t h e simplest case

(10)

one l i n e a r size o r t h e phytomass of a n individual; y

-

v a r i a b l e s of a n ecosystem, in t h e simplest case numbers of t h e t a r g e t t r e e species; z

-

v a r i a b l e s of t h e t e r r i t o r y (landscape), in t h e simplest case

-

sections of t h e t e r r i t o r y occupied by d i f f e r e n t types of phytocenoses.

Out of t h e t h r e e introduced functions i t i s t h e organisation of f func- tion in (I) t h a t is b e s t known. Usually it i s a n equation which d e s c r i b e s t h e c a r b o n balance f o r a n individual

where t h e f i r s t item d e s c r i b e s photosynthesis t h e simulation of which is amply t r e a t e d in t h e l i t e r a t u r e (this problem i s f a r from being exhausted), and t h e second t e r m r e p r e s e n t s t h e c o s t s t o t h e individual f o r various needs. Argument y in F ( x , y ,$) d e s c r i b e s changes in t h e amount of c e r t a i n r e s o u r c e s used in ecosystems due t o a competitive interaction within phyto- cenosis. This relationship depends on t h e t y p e of t h e r e s o u r c e f o r which plants compete, on t h e morphology of plants and t h e i r s p a t i a l distribution.

Carbon s p e n t by a n individual g depend, in t h e f i r s t approximation, only on t h e s t a t e t h e individual itself, r a t h e r t h a n on y

.

Since v a r i a b l e s y are t h e numbers of c e r t a i n g r o u p s of individual trees, q-functions d e s c r i b e t h e dynamics from t h i s stress. If we analyse a population of trees of t h e s a m e s p e c i e s and t h e same a g e , function q will b e equal t o t h e individual's mortality. Unlike t h e t h e o r y of growth, t h e t h e o r y of t h i s phenomenon o c c u r r i n g in perennial plants i s but slightly developed, and, in simulations, one h a s t o make use of empirical relationships. If w e deal with a t r e e population of t h e same a g e which is divided into g r o u p s (usually in terms of size) o r populations of different a g e s without r e p r o d u c - tion, functions q will b e still equal t o mortality in r e s p e c t i v e groups, and t h e problem of deducing t h e right-hand p a r t s of e.g. (2) remains basically t h e same. However, t h e task becomes quantitatively more i n t r i c a t e if we consider a population of various a g e s with reproduction. In such a c a s e we come against a problem of age-related dynamics, and function q d e s c r i b e s both fecundity and mortality. The t h e o r y of growth, reproduction and mor- tality r e q u i r e d f o r such a case is practically non-existent.

The description of landscape dynamics by means of equation (3) i s usu- ally based on t h e idea discussed in S h u g a r t et al. (1973) whereby t h e t e r r i - t o r y i s divided into "cells", e a c h occupied by a n ecosystem in a c e r t a i n state (stage of development); and t h e dynamics of sections t h e t e r r i t o r y occupied by similar ecosystem (components of v e c t o r z ) i s described by Markov's l i n e a r system

where matrix elements C ( x , y ,$) are equal t o frequencies of transitions from one s t a t e into a n o t h e r o c c u r r i n g during endogenesis (successional dynamics) and u n d e r t h e impact of e x t e r n a l f a c t o r s . The fact t h a t t h e sys- t e m is z-linear (e.g. (5)) means t h a t we adopted t h e s t r o n g hypothesis according t o which a cell's dynamics i s independent of t h e dynamics of neighboring cells. L a t e r in t h i s p a p e r , we shall use system (5) in a simula- tion example.

(11)

N o w , after providing a g e n e r a l d e s c r i p t i o n of a h i e a r c h i c a l l y o r g a n - ised system (1-3), w e s h a l l d i s c u s s two examples of i t s a p p l i c a t i o n which c o r r e s p o n d t o situations d e s c r i b e d above.

1. L e t u s formulate a simple ecological-physiological model which a c c o u n t s for t h e i n t e r a c t i o n of t h e individual a n d ecological levels. W e s h a l l assume t h a t photosynthesis depends on o n e ecologic global f a c t o r , f o r example, on C02, a n d d e s i g n a t e c

=

[C02]. W e s h a l l assume t h a t a n ecological i n t e r a c t i o n i s r e v e a l e d in competition o v e r a c e r t a i n f a c t o r ( r e s o u r c e ) R , which a l s o g o v e r n s photosynthesis; i t could b e light, w a t e r , mineral ele- ments. O t h e r f a c t o r s are implicitly i n c o r p o r a t e d i n t o t h e models. Suppose, R ( y ) i s a unit amount of t h e r e s o u r c e ( p e r unit of a b s o r b i n g area S ) ; i t would b e n a t u r a l t o s u p p o s e t h a t without competition t h e amount of a v a i l a b l e r e s o u r c e i s a maximum, R (o )

=

Rmax. W e u s e t h e simplest, multiplying, d e p e n d e n c e of unit rate of phytosynthesis F on t h e introduced f a c t o r s

t h i s i s a r e a s o n a b l e assumption b e a r i n g in mind t h a t t h e estimations t o b e obtained will b e a p p r o x i m a t e and comparative.

We s h a l l s t u d y t h e simplest ecological system

-

a population comprising y individuals of t h e same a g e . L e t S b e t h e a b s o r b i n g s u r f a c e of a n indivi- d u a l (leaf area o r t h e a c t i v e r o o t system a r e a ) , and m i s i t s phytomass depending o n S , m

=

pSW (actually w

>

1). To obtain a n a l y t i c a l r e s u l t s , l e t u s assume t h a t c a r b o n s p e n t by t h e individual in (4) are p r o p o r t i o n a l t o t o t a l photosynthesis, g-SF. Hence, t h e individual growth equation will b e

To obtain t h e s t r e n g t h dynamics equation w e assume t h a t t h e population i s in a n ecological optimum, s o t h a t mortality c a u s e d by unfavourable climatic f a c t o r s i s r e d u c e d t o a minimum a n d o n e c a n s u p p o s e t h a t i t i s c a u s e d only by competition; t h a t mortality in (2) depends on t h e a v a i l a b l e r e s o u r c e v i a a r g u m e n t W

=

R ( y )/Rmax, q

=

q (W), with q (1)

=

0 , a q / B w

<

0. In c o n c r e t e calculations, f o r lack of a c o n s t r u c t i v e t h e o r y , w e u s e empirical r e l a t i o n s h i p s q (W). So, w e h a v e in f r o n t of u s a n ecological-physiological model of t h e t a r g e t o b j e c t :

s

= r S a R ( y ) ; y

=

-q[R(y)/Rmax]y

.

(6)

Various h y p o t h e s e s a b o u t t h e t y p e of a limited r e s o u r c e , t h e morphol- ogy of t h e a b s o r b i n g s u r f a c e and s p a t i a l location of individuals yield a definite form R ( y ) obtained e i t h e r t h e o r e t i c a l l y o r by simulation. F o r example, if trees compete f o r water, of t h e individual's r o o t system occu- p i e s a r i n g of area S , if t h e individuals are l o c a t e d on t h e p l a n e indepen- dently of o n e a n o t h e r , a n d in t h e area where root systems o v e r l a p , water i s d i s t r i b u t e d equally between a l l overlapping individuals, t h e n o n e c a n show t h a t function R ( y ) i s

R ( y )

=

RmaX(l, -2asy)/2d& (7)

w h e r e d is a n empirical f a c t o r which d e s c r i b e s t h e e x t e n t t o which r o o t

(12)

ends fill t h e ring.

2. E x p e r i e n c e obtained from c o n c r e t e calculations with system ( 6 ) shows t h a t in populations of trees which are long-lived, mortality caused by competition p e r unit time (1 y e a r ) is small enough, i.e. t h a t W is close t o 1.

In such a case if w e use (7), 6Sy

<<

1 will b e fulfilled and

Then system ( 6 ) t u r n s into

This system provides a qualitatively c o r r e c t description of basic e f f e c t s in t h e combined dynamics of a n individual's numbers and size, and makes i t possible t o d i r e c t l y examine t h e e f f e c t of ecological damping of growth a c c e l e r a t i o n mentioned in 1.

First l e t u s consider a case of tree growth, i.e. system S

=

rSa ;

y =

- 0 6 a 2

Its solution, with initial conditions being S ( 0 )

=

So , y ( 0 )

=

y o , is as fol- lows:

Bearing in mind t h a t t h e phytomass of a n individual is m ( t )

=

p S ( t ) w w e obtain

In a c t u a l dynamics t h e system quickly f o r g e t s t h e initial value of size S o , which allows us to consider a simplified case when

Now l e t us suppose t h a t photosynthesis intensity h a s changed as a r e s u l t of a change in t h e global C02 concentration r '

=

r

+

Ar Ar / r

<<

1, From formula ( 9 ) one c a n find t h a t

(13)

A s c a n b e s e e n , t h e c o r r e c t i o n f o r M is less than t h a t f o r m , which d e s c r i b e s in t h e framework of t h e model, t h e e f f e c t under consideration.

The analysis of model (8) with t h e relationship between a n individual's growth and competitive interaction, yields formulae similar t o (10) where A r depends only weakly on time (for t h e s a k e of brevity possible estimates f o r A r (t ) are not cited h e r e ) . Since t h e s t r u c t u r e of dependence of m , M on A r remained t h e same, t h e e f f e c t under consideration is p r e s e r v e d in model (9) as well.

To provide a model-oriented description of t h e n e x t e f f e c t (item 4) l e t us look at a t e r r i t o r y which is homogeneous from t h e viewpoint of soil and climate conditions. This means t h a t landscape "cells" are occupied by ecosystems r e p r e s e n t i n g one succession line and d i f f e r only by t h e s t a g e of development (age). Let us consider t h e situation [ S p u r r , Barnes and Barnes, 19811 typical f o r boreal f o r e s t s , when a f i r e which completely or almost completely wipes o u t f o r e s t s on s o m e p a r t of t h e t e r r i t o r y , i s t h e principal exogenic f a c t o r . N e w trees occupy t h i s area, which r e s u l t s in t h e development of endogenic succession whose a g e count starts from t h e time of t h e f i r e . So, t h e formed cells are of pyrogenic origin; and t h e i r size and p h a s e are determined by t h e state of neighbouring cells or by accidental f a c t o r s which put a n end to t h e f i r e . Since t h e notion "development s t a g e "

of a n ecosystem i s d i s c r e t e , i t is convenient to use t h e d i s c r e t e analogue from system (5). Let us look at a simple case when t h e probabilities of being b u r n t down uk f o r e a c h state k

=

2 ,

. . .

, Q of t h e ecosystem, are equal and depend on one global exogenic f a c t o r u

=

u (9). Duration of o n e s t a g e will b e chosen as a time unit. Then, t h e dynamics of those p a r t s of t h e t e r r i t o r y which are occupied by ecosystem at d i f f e r e n t succession s t a g e s k

=

1 ,

. . .

, Q will b e d e s c r i b e d , f o r non-interacting cells, by t h e following system:

Assuming t h a t e a c h cell i s occupied by a population of individuals of t h e same a g e , one c a n d e s c r i b e i t s dynamics by t h e system (discrete analogue (6)):

where t h e rate of photosynthesis depends on t h e s a m e f a c t o r $.

System (11-12) is a n example of a three-level system of t h e

"individual-ecosystem-landscape" type.

4. Let u s assume t h a t t h e t e r r i t o r y , as a whole, is in a state of equili- brium, i.e. portions z k a r e constant and equal z i ( 9 ) . A s f a c t o r

9

changes t o A*, t h e phytomass of a cell will become equal t o

(14)

t h e p r o b a b i l i t y of being b u r n t down

equilibrium p o r t i o n s of t h e t e r r i t o r y

Let u s i n t r o d u c e t h e a v e r a g e phytomass p e r unit area of t h e t e r r i t o r y

which, in a c c o r d a n c e with (13) will c h a n g e following v a r i a t i o n s of

9:

Our p u r p o s e i s t o e s t i m a t e t h e sign of c o r r e c t i o n f o r p. D i r e c t estima- tion WM(k ) in (10) r e q u i r e s t h e s e t t i n g of s e v e r a l c o n s t a n t s a n d d o e s n o t p r o v i d e t h e d e s i r e d a c c u r a c y . Let f o r c o n c r e t e n e s s

+

b e mean t e m p e r a t u r e T. Let u s try a s i m p l e r a p p r o a c h : i t is known t h a t in case of b o r e a l f o r e s t s t h e v a r i a t i o n of AT

=

+ l o i n c r e a s e s t h e rate of photosynthesis by 5-18%.

Let u s assume t h a t t h i s estimation i s a p p l i c a b l e t o M (i.e., t h a t t h e e f f e c t of ecosystem damping d o e s not involve qualitative changes). Then

P r o b a b i l i t i e s u (T), which h a v e t h e o r d e r of magnitude of l / y e a r f o r b o r e a l f o r e s t s , mostly c h a n g e following t h e c h a n g e s in t h e f r e q u e n c y of d r y y e a r s . Analysis of c o r r e s p o n d i n g d a t a shows t h a t when AT

=

+ l o t h e f r e q u e n c y of d r o u g h t s f o r t h e E u r o p e a n T e r r i t o r y of t h e USSR a n d Western S i b e r i a will i n c r e a s e approximately from 0.3 to 0.4 l / y e a r . L e t u s assume t h a t p r o b a b i l i t i e s u will i n c r e a s e in t h e same p r o p o r t i o n :

With a n a c c u r a c y r e q u i r i n g only s l i g h t c o r r e c t i o n s , s t a t i o n a r y magni- t u d e s f r o m (11) are e q u a l to:

5. L e t u s look at a c o n c r e t e situation

-

a p y r o g e n i c c e d a r succession in Western S i b e r i a [Sedykh, 19741, in which t h e ecological phytomass ( t o n / h e c t a r ) f o r twenty-year long s t a g e s k

=

1 ,

. . . ,

9 is e q u a l to

k . . 1 2 3 4 5 6 7 8

M(k,T)

...

3 0 5 0 8 0 1 1 0 210 300 340 370 400

Let u s assume t h a t t h e p r o b a b i l i t y of being b u r n t down during 2 0 y e a r s u ( T )

=

0.2. Calculations of z: a n d t h e i r d e r i v a t i v e s yield t h e following e x p r e s s i o n f o r mean phytomass

p(T+AT)

=

p ( T )

+

50(3WM-Wu)AT

.

As c a n b e s e e n , t h e c o r r e c t i o n c h a n g e s sign when passing t h r o u g h

(15)

Estimations W M (15) and Wu (16) show t h a t this r a t i o i s quite reliable, i.e. t h e e f f e c t of phytomass growth at t h e ecosystem level h a s t h e same o r d e r of magnitude as t h e e f f e c t of its d e c r e a s e a t t h e landscape level.

EXAMPLE 2. GLOBAL-SCALE RESPONSE OF VEGETATION

A t a global-scale, one a p p r o a c h t o examining t h e possible changes in t h e size and a r e a l e x t e n t of t h e world's f o r e s t s is t o use empirical models of climate and vegetation in a spatial context and t o superimpose scenarios of climatic change. Emanuel e t al. (1985) used t h e Holdridge life zone classifi- cation (Holdridge, 1947, 1964) t o map t h e distribution of potential vegeta- tion on t h e E a r t h ' s t e r r e s t r i a l surface. The Holdridge classification p r e d i c t s expected vegetation as a function of a t e m p e r a t u r e and moisture index. By interpolating monthly temperature and precipitation d a t a from 8000 meteorological stations o n t o a 0.5 d e g r e e latitude by 0.5 d e g r e e longi- tude grid and applying t h e Holdridge classification scheme to t h e s e d a t a , Emanuel et al. produced a map of world vegetation. Each of t h e meteorolog- ical r e c o r d s was t h e n a l t e r e d by a change in t h e annual a v e r a g e tempera- t u r e t a k e n from Manabe and Stouffer's (1980) simulation experiment f o r a C02-doubling. The initial p r o c e d u r e w a s then r e p e a t e d t o obtain a map of t h e potential vegetation t o be expected a f t e r t h e climatic change.

In a subsequent critique of t h e p r o c e d u r e , Rowntree (1985) noted t h a t t h e use of mean annual t e m p e r a t u r e s w a s l e s s a p p r o p r i a t e than t h e use of seasonally varying temperatures. I t w a s also noted t h a t i t would have been more a p p r o p r i a t e t o use t h e difference between t h e 2 x CO s c e n a r i o and t h e General Circulation Model control r u n ( r a t h e r than Zhe difference between t h e 2 x CO s c e n a r i o and observed data) t o d e r i v e t h e magnitude of t h e t e m p e r a t u r e c i a n g e s from which t o calculate t h e e f f e c t s of climatic change on vegetation. Based on t h e s e criticisms, Emanuel et al. (1985b) revised t h e maps of t h e Holdridge life zones f o r both t h e base c a s e (present-day conditions as r e f l e c t e d in t h e meteorological station d a t a s e t ) and t h e 2 x C02 s c e n a r i o a s shown in Table 1 (Shugart et al., 1986).

A t a global scale, t h e life zone designations of 34% of t h e 0.5" by 0.5"

grid cells were a l t e r e d . In t h e higher latitudes, t h e generally higher tem- p e r a t u r e s resulted in a 37% d e c r e a s e in t h e a r e a l extent of tundra (see Table 1 in Emanuel et al., 1985). Boreal moist f o r e s t w a s replaced by cool temperate s t e p p e and, t o a l e s s e r d e g r e e , by cool temperate f o r e s t and b o r e a l d r y bush. Boreal wet f o r e s t w a s replaced by cool temperate f o r e s t and b o r e a l moist f o r e s t . The b o r e a l f o r e s t zone shifted north and r e p l a c e d about 42% of t h e 0.5" by 0.5" grid cells designated as "tundra" in t h e base c a s e . The n o r t h e r n e x t e n t of t h e tundra w a s also increased.

Because t h e t e m p e r a t u r e changes in t h e Manabe and Stouffer s c e n a r i o were smaller toward t h e equator, t h e r e were smaller changes in t h e tropi- c a l life zones. Nevertheless, t h e a r e a l extents of t h e subtropical and tropi- c a l life zones increased by 8%. The a r e a of subtropical f o r e s t life zones d e c r e a s e d by 22%, while t h e subtropical thorn woodland and subtropical d e s e r t s increased by 37% and 26%, respectively.

(16)

Table 1: Summary of Changes in Life-Zone Extents (lo6 km2)

Area

Base c a s e Elevated CO F o r e s t s

Tropical:

Rain Wet Moist Dry

Subtropical:

Rain Wet Moist Dry

Warm Temperate:

Rain Wet Moist Dry

Cool Temperate:

Rain Wet Moist

Boreal:

Rain Wet Moist

G r a s s l a n d s

Tropical:

Very Dry Forest Thorn Woodland

(17)

-

14

-

Subtropical Thorn Woodland

Warm Temperate Thorn Steppe

Cool Temperate Steppe

D e s e r t s

Tropical:

Desert Bush Desert

Subtropical:

Desert Bush Desert

Warm Temperate:

Desert Bush Desert

Cool Temperate:

Desert Bush Desert

Boreal:

Dry Bush Desert

T u n d r a

Rain

(18)

Wet Moist Dry

I c e 2.218 0.567

Total 131.372 131.368

Table from Emanuel et al., 1985.

In t h e analysis described above, precipitation was l e f t unchanged and thus a v e r a g e evapotranspiration increased. If precipitation were allowed t o change, however, a reduction of boreal f o r e s t would still r e s u l t from t h e higher temperatures, according t o t h e Holdridge life zone classification.

D r i e r conditions would only f u r t h e r d e c r e a s e t h e a r e a l extent. Wetter con- ditions would allow t h e expansion of b o r e a l f o r e s t s into a r e a s classified as

"boreal d e s e r t " (Table I ) , but t h e a r e a of b o r e a l d e s e r t is s o small t h a t t h e s e gains would do little t o offset t h e reduction in boreal f o r e s t s caused by w a r m e r temperatures. In c o n t r a s t , t h e proportions of grasslands (including t h o r n woodlands and thorn steppe) and d e s e r t s would be expected t o change considerably under different precipitation regimes. Increased precipitation would have little e f f e c t on t h e a r e a of tropical f o r e s t s , but d e c r e a s e d precipitation would diminish t h e a r e a greatly.

Emanuel et a l . (1985) identified s e v e r a l s o u r c e s of uncertainty in t h e s e s o r t s of assessments, including t h e choice of climate scenario, t h e choice of mapping algorithm and t h e r e l a t i v e coarseness of t h e d a t a grid. Nonethe- less, t h e simulated effects of a warmer climate on t h e a r e a l e x t e n t of t h e coniferous b o r e a l f o r e s t s are not inconsistent with t h e conclusions one might draw from a casual inspection of t h e position of t h e b o r e a l f o r e s t s in relation t o key t e m p e r a t u r e variables. Throughout North America and Eurasia, t h e n o r t h e r n limit of t h e b o r e a l f o r e s t i s delineated by t h e mean 13°C isotherm in July (Larsen, 1980). The southern limit of t h e forest i s bounded by t h e mean 18°C isotherm in July in regions with favourable mois- t u r e conditions (where d r i e r conditions prevail t h e limit i s situated north of t h i s isotherm). Although spatial correlations between climate variables and vegetation do not necessarily establish cause and effect, i t is important t o note t h a t , with r e s p e c t t o growing season temperatures (indicated by t h e July isotherms), t h e b o r e a l f o r e s t has a r a n g e of only about 5°C under favourable moisture conditions and l e s s than 5°C under d r i e r conditions.

Thus, i n c r e a s e s in a v e r a g e summer s u r f a c e temperatures of just a f e w d e g r e e s , a s p r o j e c t e d by GCMs f o r a C02 doubling, might b e expected t o dis- place markedly t h e p r e s e n t boundaries of boreal f o r e s t s .

(19)

CONCLUDING REMARKS

To conclude o u r discussions w e would like to identify t h r e e themes t h a t w e f e e l are important with r e g a r d to t h e monitoring of t h e b o r e a l f o r e s t . These are:

1. The usefulness of mathematical models t o p r e d i c t t h e l o n g e r t e r m consequences of c h a n g e in t h e b o r e a l f o r e s t .

2. The a p p a r e n t sensitivity of t h e b o r e a l zone t o c h a n g e p a r t i c u l a r l y t o t h e c u r r e n t s c e n a r i o s being p r o d u c e d by g e n e r a l c i r c u l a t i o n models f o r a climatic warming induced by C02 and o t h e r g r e e n h o u s e g a s e s . 3. The p o t e n t i a l e f f e c t of t h e b o r e a l f o r e s t o n t h e global systems, p a r - t i c u l a r l y t h e global a t m o s p h e r i c b a l a n c e of g a s e s .

W e will treat t h e s e t h r e e points in o r d e r . 1. Utility of Models

In t h i s p a p e r , w e h a v e i n t r o d u c e d a s u b s t a n t i a l s e c t i o n involving t h e a n a l y s i s of a model by Antonovsky a n d Korzukhin. This analysis identifies a c e n t r a l point t h a t i s important in t h e understanding of c h a n g e in t h e b o r e a l f o r e s t

-

c h a n g e i n one level of a h i e r a r c h i c a l l y - s t r u c t u r e d s y s t e m , s u c h as t h e boreal f o r e s t , d o e s n o t t r a n s l a t e a t a n o t h e r level of t h e h i e r a r c h y as a c h a n g e of t h e s a m e m a g n i t u d e o r e v e n of t h e s a m e s i g n . This point i s c l e a r l y evidenced in t h e example case of a climate warming on w e s t e r n S i b e r i a n f o r e s t w h e r e a warming i n c r e a s e d individual t r e e g r o w t h rates a n d i n c r e a s e d r e g i o n a l wildfire rates. The magnitudes of t h e s e two p r o c e s s e s , o n e t h a t i n c r e a s e s biomass a n d o n e t h a t d e c r e a s e s biomass, were of t h e same o r d e r .

T h e r e i s a g e n e r a l c o n v e r g e n c e of f o r e s t models being developed in t h e USSR antl t h e USA in t e r m s of t h e philosophy t h a t u n d e r l i e s t h e modeling a p p r o a c h . W e h a v e p r e s e n t e d a USSR example in t h i s t e x t a n d r e a d e r s are r e f e r r e d t o S h u g a r t (1984) f o r a g e n e r a l review of a USA modeling a p p r o a c h . The point of c o n v e r g e n c e i s t h a t in both c o u n t r i e s ( a s i s a l s o t h e case e l s e w h e r e ) , t h e importance of recognizing t h e a g e s t r u c t u r e of t h e f o r e s t in formulating a p r o p e r f o r e s t dynamics model i s being r e c o g n i e d a n d included in t h e models. In t h e USA-case, t h i s recognition h a s been in t h e development of individual-tree b a s e d f o r e s t models a n d a n emphasis on digi- t a l c o m p u t e r simulation. In t h e USSR-case, t h i s recognition h a s been in t h e formal i n c o r p o r a t i o n of a g e a n d s i z e s t r u c t u r e in non-linear systems of dif- f e r e n t i a l equations t h a t d e s c r i b e f o r e s t dynamics. Thus, while t h e models h a v e a common b a s i s in philosophy t h e y d i f f e r in t h e i r realization. W e see comparisons across t h e s e a p p r o a c h e s as a v e r y useful s c i e n t i f i c e n d e a v o u r .

(20)

2. THE SENSITIVITY OF THE BOREAL ZONE TO CHANGE

In t h e p r e s e n t p a p e r , w e h a v e shown r e s u l t s o r a s t a t i c mapping e x p e r - iment using t h e Holdridge (1947, 1964) Life Zone classification a n d t h e Manabe a n d S t o u f f e r (1980) climate-change s c e n a r i o . This example identi- fied t h e b o r e a l zone as a f o c a l zone f o r seeing c h a n g e . W e f e e l t h a t t h e s e r e s u l t s should b e e x p l o r e d using o t h e r classification systems. The Hol- d r i d g e classification i s b a s e d upon a logarithmic t e m p e r a t u r e x logarithmic moisture classification. Since t h e b o r e a l zone i s in t h e p a r t of t h i s doubly logrithmic s c h e m e t h a t i s small with r e s p e c t t o both dimensions, t h e sensi- tivity t o c h a n g e could b e a consequence of scaling. Frankly, w e doubt t h i s i s t h e c a s e (based on t h e c o r r e l a t i o n between Holdridge classifications and o t h e r g e o g r a p h i c vegetation classification schemes).

Eventually o n e would l i k e t o see a n ability to develop dynamic equa- tions of f o r e s t (and o t h e r ecosystem change) t h a t would c o v e r t h e domain of t h e Holdridge Life Zone s p a c e . One s t e p in t h i s d i r e c t i o n could b e a n i n t e r - comparison of vegetation in t h e b o r e a l zones at a global s c a l e using satellite-based, remote-sensing of t h e sort developed by T u c k e r et al. f o r t h e African continent. This mapping/reclassification work would involve a c o n s i d e r a b l e d e g r e e of i n t e r n a t i o n a l cooperation.

3. THE EFFECT OF THE BOREAL FOREST ON THE GLOBAL SYSTEMS But t h e b o r e a l f o r e s t is not n e c e s s a r y a p a s s i v e p l a y e r in t h e global c h a n g e i n t e r a c t i o n s . The work of T u c k e r a n d Fung r e p o r t e d in t h e last (1986) I n t e r n a t i o n a l C o n g r e s s of Ecology points to a possible role of ter- r e s t r i a l ecosystems in controlling t h e annual oscillation in a t m o s p h e r i c C02.

This e v i d e n c e i s b a s e d only on c o r r e l a t i o n a n d i s m o s t convincing in t h e case of h i g h e r n o r t h e r n latitudes. The e x i s t e n c e of c o r r e l a t i o n is n o t proof of t h e e x i s t e n c e of a mechanism

-

b u t w e would suggest t h a t f u r t h e r s t u d i e s of t h e e f f e c t of t h e b o r e a l f o r e s t on t h e global a t m o s p h e r e are c e r t a i n l y indicated by t h i s work.

In t h e c a s e of o t h e r trace g a s e s ( p a r t i c u l a r l y methane), w e see t h e p r o c e s s e s of swamp formation a n d swamp r e f o r e s t a t i o n as a function of climatic c h a n g e as having a potential to c h a n g e t h e p e r c e n t a g e of t h e global s u r f a c e t h a t g e n e r a t e s methane. The understanding of t h e global budgets of carbon-containing g a s e s ( c a r b o n dioxide, methane, etc.) must of n e c e s s i t y c o n s i d e r t h e b o r e a l systems ( t h a t contain almost 50% of t h e living c a r b o n in t h e e a r t h ) t o a c o n s i d e r a b l e d e g r e e . I t h a s been pointed o u t in t h e c a s e of t h e t r o p i c a l f o r e s t t h a t t h e l a r g e rate of f o r e s t c l e a r i n g should b e slowed until t h e global r o l e of t h i s f o r e s t i s b e t t e r understood. I t i s a l s o t h e case t h a t t h e b o r e a l f o r e s t , t h e v a s t woods t h a t c o v e r s t h e n o r t h e r n p a r t of t h r e e continents, may a l s o h a v e a major r o l e in t h e functioning of global systems. The potential i m p o r t a n c e of t h e b o r e a l f o r e s t s at t h e global s c a l e i n d i c a t e s t h a t t h e y should b e b e t t e r understood in t h e global c o n t e x t b e f o r e t h e y are g r e a t l y a l t e r e d or c l e a r e d d u e t o more regional or local con- s i d e r a t i o n s .

(21)

ACKNOWLEDGEMENT

The authors wish t o thank R.E. Munn f o r his valuable support and use- ful comments when writing this paper.

(22)

REFERENCES

Antonovsky, M.Ja. and Korzukhin, M.D. (1983) Mathematical modeling of economic and ecological-economic processes. Proceedings 2 n d Inter- n a t i o n a l S y m p o s i u m , Tbilisi, 1981; "Integrated Global Monitoring of Environmental Pollution", Leningrad, Gidromet.

Antonovsky, M.Ja., Korzukhin, M.D. and Ter-Mikaelyan, M.T. (1984) Mathematical modeling of anthropogenic changes in f o r e s t ecosystem.

Proceedings 1 s t Soviet-French S y m p o s i u m , Moscow, Gidrom.

Antonovsky, M. Ja. and Korzukhin, M.D. (1986) Hierarchical simulation of vegetation dynamics. Proceedings 3 r d International Conference o n Integrated Global Monitoring, Tashkent, October, 1985, Leningrad, Gidromet. and WMO.

Borman, F.H. and Likens, G.E. (1979) P a t t e r n and P r o c e s s in a Forested Ecosystem. Springer-Verlag, N e w York, p. 253.

Budyko, M.I. (1984) Evolution of t h e biosphere, Leningrad, Gidrometeoizdat.

Cherkashin, A.K. (1983) Simulation of natural and anthropogenic dynamics of biocenoses in taign geosystems. Candidate's thesis, Irkutsk.

Delcourt, H.R., Delcourt, P.A. and Webb, T. (1983) Dynamic plant ecology:

t h e spectrum of vegetational change in s p a c e and time. Q a u n t e r n a r y Science Reviews, Vol. 1,153-175.

Emanuel, W.R., S h u g a r t , H.M. and Stevenson, M.P. (1985) Climate change and t h e broad-scale distribution of t e r r e s t r i a l ecosystem complexes.

limatic Change, 7, 29-43; 457-60.

Fries, J. (Ed.) (1974) Growth Models f o r T r e e and Stand Simulation, Research Notes 30, Department of Forest Yield Research, Royal Col- lege of F o r e s t r y , Stockholm.

(23)

Holdridge, L.R. (1947) Determination of world plant formations from climatic d a t a , Science, 105, 367-368.

Holdridge, L.R. (1964) Life Zone Ecology. Tropical Science Center, San J o s e , Costa Rica.

Impact of climatic cchanges on t h e biosphere. (1975) In: Climate Impact Assessment P r o g r a m , N e w York, Department of Transportation, 14-42.

Izrael, Yu.A., Filipova, L.M., Insarov, G.E., Semenov, S.M. and Semevski, F.N.

(1983) The background monitoring and analysis of t h e global change in biotic state, Problems of' Ecological Monitoring, IV, 4-15.

Krapivin, V.F., Svirizhev, Yu.M. and Tarko, A.M. (1982) Mathematical simula- tion of global biospheric p r o c e s s e s , Nauka, Moscow.

Larsen, J.A. (1980) The Boreal Ecosystem, Academic P r e s s , N e w York.

Manabe, S. and Stouffer, R.J. (1980) Sensitivity of a global climate model t o a n i n c r e a s e of CO concentration in t h e atmosphere, J. of' G e o p h y s i c . Res., 85, 5529-5584.

Munro, D.O. (1974) F o r e s t growth models. A prognosis. In: J. Fries, Department of F o r e s t Yield Research, Royal College of F o r e s t r y , Stockholm, 7-21.

Ramp. (1957) Vegetational adjustment to t h e instability of f i r e . Proc.Pap.Union.Consv. N a t u r e Nat.Resour., 36-48.

Razumovsky, S.M. (1981) Regularities in t h e dynamics of biocenoses. Nauka, Moscow.

Sedykh, V.N. (1974) Formation of c e d a r f o r e s t s in t h e Ob area. Nauka, Novosibirsk.

S h u g a r t , H., Crow, T.R. and Hett, G.M. (1973) F o r e s t succession models. A r a t i o n a l and methodology f o r modeling f o r e s t succession o v e r l a r g e regions. Forest Science, 49(3)203-213.

S h u g a r t , H.H. and West, D.C. (1980) Forest succession models, B i o s c i e n c e , 30, 308-313.

S h u g a r t , H.H. and Noble, I.R. (1981) A computer model of succession and f i r e r e s p o n s e of t h e high altitude Eucalyptus f o r e s t of t h e Brindablla Range, Australian Capital T e r r i t o r y , Aust. J.Ecol., 6, 149-164.

S h u g a r t , H.H. (1984) A Theory of F o r e s t Dynamics, N e w York, S p r i n g e r - Verlag.

S h u g a r t , H.H., Antonovsky, M.Ja., J a r v i s , P.G. and Sandford, A.P. (1986) CO , climatic change and forest ecosystems, In: The Greenhouse

~ f f e c t . Climatic Change and Ecosystems. B. Bolin. J. J a e g e r . B.R. Doos and R.A. Warrick (Eds.), J. Wiley & Sons, Chichester.

S p u r r , S.H., Barnes and B.V. Barnes. Forest Ecology, N e w York, (1981).

Watt, A.S. (1925) On t h e ecology of British beech woods with special refer- e n c e t o t h e i r r e g e n e r a t i o n . 11. The development and s t r u c t u r e of beech communities on t h e Sussex Downs, J. Ecol., 13, 27-73.

Watt, A.S. (1947) P a t t e r n and p r o c e s s in t h e plant community, J. Ecol., 35, 1-22.

Whittaker, R.H. and Levin, S.A. (1977) The role of mosaic phenomena in n a t u r a l communities, Theor.Pop.Biol., 12, 117-139.

(24)

Wright, H.E. (1984) Sensitivity a n d r e s p o n s e time of n a t u r a l systems t o climatic c h a n g e in L a t e Q u a t e r n a r y , Q u a t e r n a r y Science R e v i e w s , 3, 91-131.

Yarie, J. a n d Van Cleve, K . (1983). Biomass p r o d u c t i v i t y of white s p r u c e s t a n d s in i n t e r i o r Alaska, Can.J. for Res., 13, 767-772.

Referenzen

ÄHNLICHE DOKUMENTE

Because unfertilized meadows harbor the most species-rich plant communities (K. Stöcklin, unpublished data), and because the higher land use diversity in Romanic

These publications include studies on the drivers of changes in forest use in the northern part of the canton (Bürgi 1999), the driving forces of forest management throughout

[r]

[r]

Analysis of the changes in the flows of compounds in the system formed by the atmosphere, forest soil, trees, and groundwater, gives the time development of the

(1975) Influence of Environmental Factors on Dynamics of Popu- lation (Mathematical Models): Comprehensive Analysis of t h e Environment.. Hydrometeoizdat, Leningrad

ON SPATIAL YODELLING OF LONGTERM FOREST FIRE DYNAMICS M.Ya.. THE APPROACHES

We hypothesized that: (1) the mineral soil would become the dominant 15 N sink after 2 decades, (2) long-term increased N deposition would lead to lower 15 N recovery levels in the