• Keine Ergebnisse gefunden

T E C H N I S C H E UNIVERSIT ¨ AT DARMSTADT

N/A
N/A
Protected

Academic year: 2022

Aktie "T E C H N I S C H E UNIVERSIT ¨ AT DARMSTADT"

Copied!
1
0
0

Wird geladen.... (Jetzt Volltext ansehen)

Volltext

(1)

Fachbereich Mathematik Prof. Dr. W. Trebels Dr. V. Gregoriades Dr. A. Linshaw

T E C H N I S C H E UNIVERSIT ¨ AT DARMSTADT

A

20-05-2010

7th Tutorial Analysis II (engl.)

Summer Semester 2010

(T7.1) Consider the function f :R2 →R given by

f(x, y) = x3y2+ 4xy−2x2+y3.

1. Find the equation for the tangent plane to the graph of f at the point (1,1).

2. Write down the second-order Taylor approximation T2(x, y) to f at the point (1,1).

3. Use this polynomial to approximate the value of f(1.1,0.95).

(T7.2) Let M(n) be the set of n ×n-matrices over R, which we identify with Rn

2. Consider the function

F :M(n)→ M(n), F(A) = AAt,

where At is the transpose of the matrix A. Prove that F is differentiable, and compute F0(In), where In is the identity matrix.

Hint: Compute the directional derivativeDBF(A) forA, B ∈ M(n), B 6= 0n.

(T7.3) (Leibniz Formula)

Letα ∈Nn0 be a multi-index α= (α1, . . . , αn) and U ⊂Rn be an open set. Prove that

Dα(f g)(x) = X

β∈Nn0, β≤α

α β

Dβf(x)Dα−βg(x) (1)

for all f, g : U → R being |α|-times partial differentiable. By β ≤ α we mean βi ≤ αi for alli∈Nn0 and

α β

:= α!

β!(α−β)! :=

n

Y

i=1

αi! βi!(αi−βi)!, for all β ∈Nn0, β ≤α. Hint: Use induction on the dimension n.

Referenzen