• Keine Ergebnisse gefunden

T E C H N I S C H E UNIVERSIT ¨ AT DARMSTADT

N/A
N/A
Protected

Academic year: 2022

Aktie "T E C H N I S C H E UNIVERSIT ¨ AT DARMSTADT"

Copied!
1
0
0

Wird geladen.... (Jetzt Volltext ansehen)

Volltext

(1)

Fachbereich Mathematik Prof. Dr. W. Trebels Dr. V. Gregoriades Dr. A. Linshaw

T E C H N I S C H E UNIVERSIT ¨ AT DARMSTADT

A

15-04-2010

1st Homework Sheet Analysis II (engl.)

Summer Semester 2010

(H1.1)

Compute the following integrals.

1.

Z 1

0

x2·exdx

2.

Z 1/2

0

x2 x2−1dx 3.

Z 2

0

1 x2+ 4dx (H1.2)

1. Suppose that f : [0,+∞) → R is a periodic function with period a > 0 and that f is jump continuous on [0, a] - notice that f must be jump continuous on every closed interval I. Prove that for all k ∈N we have thatRa

0 f(x)dx=R(k+1)a

ka f(x)dx.

Conclude that Ra

0 f(x)dx=Rb+a

b f(x)dx for all b > 0.

2. Find all continuous functions g : [1,∞) → R such that the function hg defined by hg(x) :=Rx

1 t·g(t)dt−(x+x2),x∈[1,∞), is constant. What are the possible values of any such hg?

(H1.3)

1. Suppose that the functions g, h : R → R are differentiable and that the function f : R → R is continuous. Prove that the function F : R → R which is defined by F(x) =Rh(x)

g(x) f(t)dtsatisfies thatF0(x) =f(h(x))·h0(x)−f(g(x))·g0(x) for allx∈R. Hint. It is true that Rh(x)

g(x) f(t)dt = Rh(x)

0 f(t)dt−Rg(x)

0 f(t)dt. Then refer to (1) of G1.3.

2. Compute the limit lim

x→0+x· Z 1

x

et

t dt. Hint. Try to bound only the quantity et, for x≤t≤1.

Referenzen