• Keine Ergebnisse gefunden

the short-range part

N/A
N/A
Protected

Academic year: 2022

Aktie "the short-range part"

Copied!
1
0
0

Wird geladen.... (Jetzt Volltext ansehen)

Volltext

(1)Faculty of Mathematics. Silica melt. N -body problem. Cloud-wall. 3d-periodic. Task. N X X. φSp (r j ) := N = 12960 charged particles. N = 300 charged particles. 0. the short-range part.  de. cos.. 1d-periodic. 3dp:. N X X. 2α 0q erfc(αkr ij + Lnk) − √ qj i kr ij + Lnk π n∈Sp i=1. Θ3d(k). N X X erf(αkr ij + Lnk) L qi φSp (r j ) = . kr ij + Lnk. a. 0d-periodic. Computing the Fourier series of the long-range part φLSp (r j ) along periodic dimensions converts x → kx, y → ky , z → kz and yields the well known Ewald formulas. N  2πi q X X 3dp: φLS3 (r j ) = qi Θ3d kx2 + ky2 + kz2 e L (kxxij +ky yij +kz zij ). 0.2. α = 2.0 α = 1.5 α = 1.0 α = 0.5. 0.1 0 r. 5. Long-range evaluation. 0. where the analytically known, continuous Fourier transform of 2 1 2d 2d −v b Θ (k, ·) fulfills Θ (k, v) ∼ v2 e for v → ∞.. C. type A. h ≥ 2L. But the kink at r = ±h implies a rather slow 2nd order convergence in Fourier space.. type B. N X. Sk := φLSp (r j ) ≈. qi e2πik·ri. i=1 X. pd ck Sk e−2πik·rj k∈M. 3h L2 h h 2. −L −h 2. L h h−L 2. 3h 2. Type B2: Instead, we construct an interpolating polynomial within [L, h − L] that fits the first m derivatives of Θpd(k, r) at r = ±L. Then, the convergence rate will be m + 2. Final approximation. φLSp (r j ) ≈ 0 r. 5. 10. N X i=1. X pd qi ck e2πik·rij , k∈M. where k = (kx, ky , kz ) runs in a finite 3d mesh M.. Modularized algorithm structure. Fast particle-mesh algorithms. 3dp 2dp 1dp 0dp. P3M [Hockney, Eastwood 1988] PME [Darden et al. 1993] SPME [Essmann et al. 1995] Type B1 approximated fast Ewald [Martyna et al. 2002] Gaussian split Ewald [Shan et. al 2004] NFFT based fast summation [Nieslony, Potts, Steidl 2004] NFFT based fast Ewald [Hedman, Laaksonen 2006] Spectrally accurate Ewald [Lindbo, Tornberg 2011, 2012] P2NFFT [Nestler, Pippig, Potts 2013, 2015]. ! ! ! % ! % ! ! !. % % % ! % % % ! !. % % % ! % % % % !. % % % ! % ! % % !. One of the benefits of the P2NFFT is its highly modularized structure. All the performance critical steps are encapsulated and can be implemented by existing software libraries. Algorithmic modules P2NFFT. ⊃. NFFT. ⊃. FFT. ScaFaCoS. ⊃. PNFFT. ⊃. PFFT. Parallel software libraries. Massive parallelism Mz - mesh size along non-periodic dimensions. rms force error. 10−1. Mz = 40. 2dp. 10−3 Mz = 80 10−5 Mz = 158 10−7 Mz = 300 10−9 N = 300 10−11 L = 10 Mz = 588 h ≈ 25 10−13 0.2 0.5 0.8 1.1 1.4 1.7 2 splitting parameter α. Visit our software page or join us at Github! www.tu-chemnitz.de/~mpip/software.php.en www.github.com/mpip. Mz - mesh size along non-periodic dimensions. 10−1 rms force error. 3dp. 10−3 Mz = 32 10−5 Mz = 64 10−7 Mz = 128 10−9 10−11 N = 300 Mz = 256 L = 10 10−13 0.2 0.5 0.8 1.1 1.4 1.7 2 splitting parameter α. 3h 2. In summary, we can write the truncated series as. 0 −10 −5. We demonstrate the high accuracy of P2NFFT at the example of a cloud-wall test system with N = 300 particles. Mz = 16. B2. Cm. L h h−L −L h −22 L h h−L 2. 0.2. High accuracy independent of periodicity Mx - mesh size along periodic dimensions. B1. C0. −L −h 2. 0.4. 10. m. But what if Θpd(k, r) does not decay fast enough? Type B1: A first attempt is to repeat Θpd(k, r) with period. type B. 0.6. B1. Type B Fourier approximations. type B. Mz = 58. 1dp. 10−3 Mz = 112 10−5 Mz = 224 10−7 Mz = 424 10−9 N = 300 Mz = 832 10−11 L = 10 h ≈ 40 10−13 0.2 0.5 0.8 1.1 1.4 1.7 2 splitting parameter α. The P2NFFT software library was designed for massive parallelism with distributed memory. We demonstrate the scalabilty on a BlueGene/P up to 16384 cores. wall clock time in [s]. 2. The approximated long-range part is evaluated by non-equispaced fast Fourier transforms (NFFT) within O(N log N ) operations.. rms force error. type A. Historical context. If the particles are sufficiently homogeneously distributed, the short-range part φSSp (r j ) can be computed directly within O(N ) operations.. S0 = {0}3. kz ∈Z. n∈Z. −L h −2. type A. 0 −10 −5. Short-range evaluation. 10−1. type B. The decay of the smooth functions Θpd(k, r) for r → ∞ falls into two categories. Type A functions decay very fast, while type B functions do not decay at all or not fast enough.. How to convert the non-periodic dimensions to Fourier space?. 3d-NFFT:. 2 2 2 2 −π k /(α L) e. Decay of type A and B. 0.3. S1 = Z × {0}2. If Θpd(k, r) is neglible for |r| ≥ h ≥ 2L, we can use its h-periodization instead and apply the Poisson summation formula. E.g., in the 2d-periodic case we have  2πi  X X 1 b 2d k, kz e h kz z , Θ2d(k, z) ≈ Θ2d(k, z + hn) = Θ h h. All of these functions asymptotically tend to zero as k12 e−k for k → ∞, which justifies truncation of the Fourier series along periodic dimensions.. Remaining problem:. adjoint 3d-NFFT:. S2 = Z2 × {0}. 2. Θ1d(1, r). 0dp:. i=1 kx,ky ,kz N q  2πi X X φLS2 (r j ) = qi Θ2d kx2 + ky2 , |zij | e L (kxxij +ky yij ) i=1 kx,ky N q   2πi X X 2 + z2 L (kx xij ) φLS1 (r j ) = qi Θ1d |kx|, yij e ij i=1 kx N  q X 2 + z2 φLS0 (r j ) = qi Θ0d x2ij + yij ij i=1. 0dp:. L. Type A Fourier approximation. C. 1dp:. Fourier series along periodic dimensions. 1dp:. S3 = Z3. 2 πLk  √  2 π 1 −α2r2 √ 2d Θ (0, r) := − 2 e + πz erf(αr) α L   h 1 πk 2d 2πkr/L e erfc + αr Θ (k, r) := 2Lk  αL i πk −2πkr/L +e erfc − αr αL h i 1 γ + Γ(0, α2r2) + ln(α2r2) Θ1d(0, r) := − L  2 2 1 π k Θ1d(k, r) := K0 α2Lx2 , α2r2 L erf(αr) 0d Θ (r) := r. 2dp:. n∈Sp i=1. :=. L. L. The Fourier coefficients and their type of decay are given as follows.. and the long-range part. 2dp:. L. L. Θ1d(0, r). φSSp (r j ) =. qi , kr ij + Lnk. Analytically known Fourier coefficients. erfc(αr) erf(αr) 1 The identity r = r + r splits φSp (r j ) = φSSp (r j ) + φLSp (r j ) with. Fourier Approximations. c s . w ww. L. where r ij = (xij , yij , zij ) := r i − r j ∈ [−L, L)3.. Ewald splitting. P NFFT. . For N particles r j = (xj , yj , zj ) ∈ [−L/2, L/2)3 with charges qj compute the Coulomb potential under periodic boundary conditions along the first p dimensions. n∈Sp i=1. Numerical Results. 2d-periodic. icle Part - Par. 2. fa. P NFFT -. A versatile framework for computing NFFT based fast Ewald summation. - NFFT e l tic. P2 NF FT. Applied Functional Analysis Franziska Nestler and Michael Pippig. 101 100. 0dp. P2NFFT ideal scaling long-range part short-range part. Computing potential and field of a 0d-periodic silica melt −1 10 with N = 829440 particles. The rms potential error was tuned to 10−5. 6 8 10 12 14 2 2 2 2 2 number of BlueGene/P cores. Franziska Nestler franziska.nestler@mathematik.tu-chemnitz.de www.tu-chemnitz.de/~nesfr. Michael Pippig michael.pippig@mathematik.tu-chemnitz.de www.tu-chemnitz.de/~mpip.

(2)

Referenzen

ÄHNLICHE DOKUMENTE

Or in demography: If fertility and mortality remained at their present level, then the population size of Finland would decline to 3.6 million by the year 2050 and 2.3 million by

02/25/2022 Computer Vision I: Fourier Transform 4.. Superposition = representation as linear combination

Build up the Fourier transform from the projections P(Θ) , than transform this back to get the original object. In 3D this is

FUr die UberfUhrung der Proben aus irgendeiner Patrone auf die chromatographische Saule wird die Patrone zwischen einem Presskopf angeordnet, welcher eine dichte Verbindung mit

wahrend dann anschlieBend die Hammerachse 6 iiber den Zylinder 13 nachgeschoben wird, kann iiber eine Zugvorrichtung 19 bei- spielsweise ein iiber die Holle 18 gefuhrtes Seil,

Verfahren zum Herstellen von magnetischen Aufzeichnungs- schichten auf Substraten durch Zerstaubung von ferro- magnetischen Targets mittels einer mit einem Magnet-

Zerstaubungs-Katodenanordnung zur Durchfiihrung des Ver- fahrens nach Anspruch 1, bestehend aus einem Katoden- grundkbrper mit einer Auf1agef1 ache fur mindestens ein Target,

Kombüse / Küche (zirka) 2,07 m Eigner Kabine (zirka) 1,94 m Badezimmer / Toilette (zirka) 2,02 m Vordere Kabine (zirka) 2,05 m Badezimmer / Toilette (zirka) 2,13 m Kabinen (zirka)