• Keine Ergebnisse gefunden

Killip-Simon problem on two disjoint intervals

N/A
N/A
Protected

Academic year: 2022

Aktie "Killip-Simon problem on two disjoint intervals"

Copied!
27
0
0

Wird geladen.... (Jetzt Volltext ansehen)

Volltext

(1)

Killip-Simon problem on two disjoint intervals

Benjamin Eichinger

Institute of Analysis Johannes Kepler University Linz

July 20, 2015

(2)

Killip-Simon theorem

Theorem

Letdσ(x) =σ0(x)dx+dσsing(x) be the spectral measure of a one-sided Jacobi matrixJ+. Then the following are equivalent:

(op) J+−J+ ∈HS

(sp) The spectral measure dσ is supported on X∪[−2,2]and Z 2

−2

|logσ0(x)|p

4−x2dx+ X

xk∈X

q xk2−4

3

<∞.

(3)

Isospectral torus

LetE = [b0,a0]\Sg

j=1(aj,bj)and for a two-sided Jacobi matrixJ we define

r±(z;J) =D

(J±−z)−1e−1±1

2 ,e−1±1

2

E .

Definition

A Jacobi matrixJ is called reflectionlesson E if

a02r+(x+i0) = 1

r(x−i0) for almost allx ∈E. The classJ(E)is formed by Jacobi matrices, which are reflectionless on their spectral setE.

(4)

Spectral theory of periodic Jacobi matrices

Theorem

LetE = [b0,a0]\Sg

j=1(aj,bj).ThenE is the spectrum of a p periodic two-sided Jacobi matrixJ if and only of there exists a polynomialTp(z)such thatTp−1([−2,2]) =E with some additional properties.

Theorem (Magic formula) LetE = [b0,a0]\Sg

j=1(aj,bj)be the spectrum of a p periodic Jacobi matrix. Then

J ∈J(E)if and only if Tp(

J) =S−p+Sp.

(5)

Damanik-Killip-Simon theorem

Theorem (Damanik-Killip-Simon theorem) The following are equivalent:

(op) T(J+)−(S+p+ (S+)p)∈HS

(sp) The spectral measure dσ is supported on X∪E and Z

E

|logσ0(x)|p

dist(x,R\E)dx+ X

xk∈X

pdist(xk,E)3<∞.

Why does this Magic Formula only exist in the periodic case?

What can we do in the general case?

(6)

The Riemann surface R

E

From now on, we assume thatE = [b0,a0]\(a1,b1).

We define

s(z) = (z−a0)(z−b0)(z−a1)(z−b1)

and

RE ={(P = (z,w) : w2 =s(z)}∪{∞+,∞} the compactRiemann surfaceof

s(z).

It is convenient to imagine RE as a two-sheeted Riemann sur- face, where p

s(z) > 0, for z >a0 on R+.

a0

b0 a1 b1

a0

b0 a1 b1

+

-

(7)

The isospectral torus

By the reflectionless property we extendr+ to a meromorphic function onRE:

a20r+(P) =

(a20r+(z) ifP = (z,w)∈ R+

1

r(z) ifP = (z,w)∈ R. Let us define

DE ={(x, ) : x ∈[a1,b1], =±1}.

One can show that for anyJ ∈J(E) we have

a20r+((z,w)) = 1

2(w +w0

z −x0

−(z−q0)),

where(x0, 0)∈ DE,q0=q0((x0, 0))∈Randw0 =w0(x0, 0).

Moreover, each such a function definesJ ∈J(E).

(8)

The isospectral torus, Abel map

J(E)aa oo r //

!!

DE

>>

~~ A

T

a0

b0 a1 b1

(x0,1)

(x0,-1)

S+

(9)

The Abel map

There exists a conformal map fromRE onto a rectangle with vertices −1−τ2 ,1−τ2 ,1+τ2 ,−1+τ2 inC. It is given by

u(z) =C

z

Z

a0

dz ps(z),

x0

x1 S+

S-

u+

u-

u0

1/2 uc

τ/2

-1/2

-τ/2

(10)

The Abel map

u∞+

u-

u+

u-

We call the map

A:RE →C/L z 7→u(z),

whereL=Z+τZ, the Abel map.

(11)

Meromorphic functions on R

E

and elliptic functions

Definition

Meromorphic functions onC with periods 1 andτ bear the name elliptic functions.

Theorem

The properly counted (i.e., counted with multiplicity taking into account) number of poles of a nonconstant elliptic functionf(u) in a period parallelogram is equal to the properly counted number of zeros.

Theorem

Let{αk}Nk=1,{βk}Nk=1 are a system of points in a period parallelogram. Thenαk are the zeros on βk are the poles of an elliptic function, if and only if

N

P

k=1

αk − PN

k=1

βk ∈L.

(12)

Meromorphic functions on R

E

and elliptic functions

u+

u-

u0

uc

u1 τ/2

-1/2 1/2

-τ/2

one-to-one correspondence between meromorphic functions on RE and elliptic functions w.r.t. L.

r+, meromorphic function on RE with poles at {∞,x0}and zeros at {∞+,x1}.

u+ +u1−(u+u0)∈Z

(13)

Shift on J(E ) and on T

One can show that

r+(z,w) =− 1

b0−z+r+(1)(z,w). Thus, the zero of r+ is the pole ofr+(1).

Let µ=u+ −u. Thenu1 =u0−µ mod Z.

J(E)aa oo r+ //

!!

DE

>>

~~ A

T

μ

u0 u1

(14)

Functional models for Jacobi matrices

Theorem (Jacobi theta function)

There exists an analytic functionθ1 onC with the following properties:

θ1(u±1) =−θ1(u)

θ1(u±τ) =−e−iπτe∓2πiuθ1(u) Moreover, the zeros ofθ1 are given by

v =m+nτ, m,n ∈Z.

Recall, thatr+ is a meromorphic functions onRE with poles at {∞,x0}and zeros at {∞+,x1}. Thus, it is given by

r+(z,w) =Cθ1(u−u+1(u−u1) θ1(u−u1(u−u0).

(15)

Functional models for Jacobi matrices

Now we set

B(u) = θ1(u−u+) θ1(u−u) and

kα(u) =C θ1(u−u0)

θ1(u−uc), Kα(u) = kα(u) pkα(u+), wherec=x+iκ2 is a certain normalization point.

This functions are no elliptic functions! We have

B(u+1) =B(u) and Kα(u+1) =Kα(u), and

B(u+τ) = θ1(u−u++τ)

θ1(u−u+τ) = θ1(u−u+) θ1(u−u)

e−i(u−u+) e−i(u−u∞−). Thus, we see that

B(u+τ) =eB(u).

(16)

Functional models for Jacobi matrices

Similarly, we can show that

Kα(u+τ) =eKα(u), whereα=u0−uuc. In general, we define

Kα−kµ(u) = θ1(u−(u0−kµ)) θ1(u−uc) . Again, we see that

Kα−kµ(u+τ) =ei(α−kµ)Kα−kµ(u).

(17)

The space H

2

(α)

LetΩ =C\E. For α∈T, we define H2(α) as the space of multivalued, analyticfunctions fα(z) inΩ, which satisfy:

|fα|2 has a harmonic majorant in Ω,

gα(u) =fα(z), satisfiesgα(u+τ) =egα(u).

Note, that|fα|2 is single-valued. The norm is given by the value at infinity of the least harmonic majorant of|fα|2. The corresponding scalar product is given by

hf1α,f2αi= Z

E

f1α(x)f2α(x)ω(dx,∞),

whereω(dx,∞) denotes the harmonic measure of infinity of the domainΩ.

It is given by

ω(dx,∞) = i 2π

x−c ps(z).

(18)

Functional models for Jacobi matrices

Theorem Let

enα(z) =Bn(z)Kα−kµ(z) Then

enn ∈N is a ONB of H2(α) enn ∈Z is a ONB of L2(α)

Theorem

Letenα be defined as above, then the multiplication operatorz in L2(α) with respect to the basis{enα}is a Jacobi matrix J =J(α):

zenα =an(α)en−1α +bn(α)enα+an+1(α)en+1α ,

(19)

Sketch of the proof

We only sketch, why the multiplication byz is a Jacobi matrix. We have

r+(z) =− 1

z −b0+a12r(1)(z) =Cθ1(u−u+1(u−u1) θ1(u−u1(u−u0). That is,

a0r+ =−BKα−µ

Kα and a1r+(1)=−BKα−2µ Kα−µ. Thus we have

a0Kα

BKα−µ = (z −b0)−a1BKα−2µ Kα−µ ⇔ zBKα−µ=a0Kα+b0BKα−µ+a1B2Kα−2µ⇔ ze1α =a0e0α+b0e1α+a1e2α

(20)

Proof of the magic formula

S−2JS =J ⇔2µ∈Z. This is only a property of the spectrum not ofJ! Consider, in this case the basis{enα} has the following form

{. . . ,B−1Kα+µ,Kα,BKα+µ,B2Kα, . . .}.

Recallµ=u+ −u. There exists a function ψ(z,w) =

θ1(u−u+) θ1(u−u)

2

=B(u)2, on RE. ψ+ψ−1 is a function on Ω =C\E. Thus,

ψ(z,w) + 1

ψ(z,w) =T2(z).

This is the magic formula.

`2 en S2 J(α) L2(α) enα ψ z

(21)

Functional models in the general case

Now let us consider the case 2µ /∈Z. In this case we define

ψ= θ1(u−u+1(u−uc+)

θ1(u−u1(u−uc) =B(u)Bc(u), whereµ+µc ∈Z. In this case we have

ψ(z,w) + 1

ψ(z,w) =λ0z +d0+ λ1

d1−z = ∆(z).

(22)

Functional models in the general case

Letkα(z,c) =kcα(z) be the reproducing kernels of the space H2(α). We defineKψ(α) =H2(α) ψH2(α). Kψ is spanned by:

f0α(z) =λ(α) kdα

1(z) kkdα

1(z)k and f1α(z) =Bd1(z)kα+µ(z) kkαµk , Thus,H2(α) =Kψ(α)⊕ψKψ(α) +ψ2Kψ(α)⊕. . . .

Theorem

The system of functions

fnα =

mf0α, n=2m ψmf1α, n=2m+1

forms an orthonormal basis in H2(α) forn ∈Nand forms an orthonormal basis in L2(α) forn ∈Z.

(23)

Functional models in the general case, SMP-matrices

Definition

We call the operatorA(α)∈L(`2), which corresponds to the multiplication byz in this basis a SMP-matrix.

A(α) is two periodic. σ(A(α)) =E

A=

. ..

. .. ... A A B A

A B A A . .. ...

. ..

 ,

A=

0 0 p0 p1

, B=

p0q0+d0 p1q0

p1q0 p1q1

.

(24)

Byconstruction, we obtain the magic formula for SMP matrices.

`2 en S2 A(α) L2(α) fnα ψ z

Theorem

LetA(E) be the set of all SMP matrices of period two with their spectrum on E. Then we have:

A∈A(E) ⇔ ∆(A) =λ0A+d01(A−d1)−1 =S2+S−2

(25)

The Jacobi flow on SMP-matrices

Definition

We define the mapF : A(E)→J(E), by F(A(α)) =J(α).

Lemma

LetkP+A(α)e−1k2 and{ak,bk}be the Jacobi parameters of J(α).

Then we have

p1q1=b−1, p20+q02=a02 It follows immediately, sincee−1α =f−1α .

(26)

The Jacobi flow on SMP-matrices

Definition

The Jacobi flow inA(E)is defined by J(A(α)) =A(α−µ).

A F //

J

J

S

A F //J

(27)

Explicit formulas for the Jacobi flow

Theorem

LetU(α)be the periodic 2×2-block diagonal unitary matrix given by

U(α)

e2m e2m+1

=

e2m e2m+1

u(α), (1) where

u(α) = 1

q

p20(α) +p12(α)

p0(α) p1(α) p1(α) −p0(α)

(2)

Then

JA(α) :=A(µ−1α) =S−1U(α)A(α)U(α)S. (3)

Referenzen

ÄHNLICHE DOKUMENTE

Andrea Kollmann, Dieter Puchta, Johannes Reichl, Friedrich Schneider and Robert Tichler, 2006.. Berlin Economic Simulation Tool

Die Einholung eines ausländischen Gutachtens wird grundsätzlich begrüßt, es wird jedoch darauf hingewiesen, daß eine solche Einholung wohl unbedingt auch die

- Gedruckte Auflage von 1.300 Stück an der Johannes Kepler Universität - Onlineversion auf der Kepler Society Homepage und Jobbörse. - Bewerbung über die Social Media Kanäle -

165 The Canon of the Holy Scriptures 1401 Birth of Nikolaus Cusanus 1473 Birth of Copernicus 1483 Birth of Martin Luther 1492 Discovery of America 1509 Birth of John Calvin 1533

In dem Projekt „Smart Exergy Leoben“ wurde für die industriell geprägte Stadt Leoben sondiert, welche Primärenergieeinsparungen durch die smarte Nutzung von bestehenden

Die Gesellschaft hat mich beauftragt, auf der Grundlage der von einem Abschlussprüfer geprüften Buchführung/Aufzeichnungen und des geprüften Jahresberichtes für die

In diesem Bewusstsein begründen die Univer- sität für angewandte Kunst und die Johannes Kepler Universität eine solche Allianz, um gemeinsam Neues in die Welt zu bringen und

Eine medizinische Fakultät mit einer Uniklinik ist ein höchst komplexes Unternehmen: es sind komplexe Beziehungen zwischen konkreten Menschen, zwischen WissenschafterInnen,