• Keine Ergebnisse gefunden

“Das diesem Bericht

N/A
N/A
Protected

Academic year: 2022

Aktie "“Das diesem Bericht"

Copied!
88
0
0

Wird geladen.... (Jetzt Volltext ansehen)

Volltext

(1)

“ D as d iesem B ericht zurgrundeliegende V orhaben w u rd e mit M itteln d e s B u n d esm in isters für F o rsch u n g u n d T ech n o lo g ie u n te r d em F örderkennzeichen 03F0546A g e fö rd e rt. Die Ver­

a n tw o rtu n g für den Inhalt d ieser Veröffentlichung liegt bei den A u to ren ”.

(2)

Berichte aus dem Institut für Meereskunde an der Christian-Albrechts-Universität Kiel.

Nr. 238 1993

Spatial and Temporal Variability of Selected Trace Metals in Kiel Bight and Mecklenburg Bight

Räumliche und zeitliche Variabilität ausgewählter Spurenmetalle in der Kieler und Mecklenburger Bucht

- Data report from 1990/92 -- -- Datenbericht von 1990/92 -

by / von

J. J. Schultz Tokos, K. Kremling, P. Streu. L. Brügmann*, and U. Hennings*

•Institut für Ostseeforschung, Warnemünde

Copies of this work may be obtained from:

Kopien dieser Arbeit können bezogen werden von;

Dr. K. Kremling Institut für Meereskunde

Abt. Meereschemie Düstembrooker Weg 20

24105 Kiel

© O l ^ a s s / i f M . ^ R - . ^ S g ’

(3)

Summary Zusammenfassung... 1

Introduction... 2

Methods... ... 3

References... 5

List of Tables: Table 1. Station locations... ... 7

Table 2. Cruise information and summary of weather conditions...8

Table 3. Analytical precision of trace metal analysis by GF-AAS... 9

Table 4. Recovery of trace-metals from standard seawater... 10

Table 5. Mean hydrographic and hydrochemical parameters...11

Table 6. Significant differences: mean hydrographic and hydrochemical data...12

Table 7, Mean dissolved metal concentrations...13

Table 8. Significant differences: mean dissolved metal concentration data... 14

Table 9. Mean SPM and particulate metal concentrations on filters...15

Table 10. Significant differences: mean particulate metal content data... 17

Table 11. Summary of particulate metals in SPM collected by centrifuge...18

Table 12. Significant differences: particulate metals by centrifuge vs. filters...19

List of Figures: Figure 1. Map of station locations... 20

Figure 2-11. Mean hydrographic and hydrochemical data vs. station number.... 21

Figure 12-20. Mean dissolved metal concentrations vs. station number...31

Figures 21-39. Mean metals vs. hydrographic and hydrochemical data... 40

Figure 40. Dissolved Co, Cd, Fe, Zn, and Mn vs. % O2 saturation... 59

Figure 41-51. Mean SPM and particulate metals on filters... 61

Figure 52. Mean particulate Cd vs. mean POC...72

Figure 53. Mean particulate Zn vs. mean POC... ... 73

Figure 54-61. Mean particulate metal fractions (%) vs. station number... 74

Figure 62. Particulate Mn and Co fractions (%) vs. % O2 saturation...82

Figure 63. Particulate Fe and Zn fractions (%) vs. % O2 saturation...83

(4)

Sum m ary

Water samples from the surface layer (7 m depth) and from bottom water (2 m above the bottom) were collected on six separate cruises from a network of 27 stations in Kieler Bucht and Mecklenburger Bucht during a three year period (February 1990-July 1992) in order to estimate the spatial and temporal variability of Co, Pb, Cd, Cu, Ni, Fe, Zn, and Mn in the dissolved (< 0.4 pm diameter) and particulate phases. Total Hg in unfiltered water samples was also determined. Standard hydrographic parameters, nutrients, dissolved O2, particulate organic C and N, and suspended particulate matter (SPM) were also measured.

(The entire data base measures a total of approximately 10,200 data points). Results are presented in this report as summary tables of mean data for surface and bottom waters in summer and winter seasons, and in figures showing mean surface and bottom water concentrations seasonally at each station. Statistical differences at the p= 0.01 probability level are tabulated for hydrochemical parameters, dissolved metals, and particulate metals in four different comparison types (summer surface water vs summer bottom water, winter surface vs winter bottom, surface water in summer vs winter, and bottom water in summer vs winter). In addition, comparisons of dissolved and particular trace elements to hydrochemical and biological parameters are presented, in order to clarify the biogeochemical processes in the study area.

Z usam m enfassung

Über einen Zeitraum von 3 Jahren (Februar 1990 - Juli 1992) wurden auf 6 verschiedenen Fahrten und von 27 Stationen in der Kieler und Mecklenburger Bucht Wasserproben aus der Deckschicht (7 m) und dem Tiefenwasser (2 m über Grund) entnommen, um die räumliche und zeitliche Variabilität der gelösten (< 0.4 pm) und partikulären Konzentrationen von Co, Pb, Cd, Cu, Ni, Fe, Zn, Mn in diesem Gebiet zu untersuchen.

Auch die gesamt-Hg Konzentrationen von unfiltrierten Wasserproben wurden bestimmt.

Außerdem sind die hydrochemischen Parameter (Temperatur, Salz-, Sauerstoff- und Nährstoffgehalte), der Gehalt an part, organischem C und N (POC/PON), sowie die Konzentrationen von Chlorophyll g und des suspendierten partikulären Materials (SPM) gemessen worden. (Die gesamte Datenbasis dieses Vorhabens umfaßt etwa 10.200 Einzelmessungen). Die Ergebnisse werden in diesem Datenbericht in Form von Tabellen und Abbildungen einmal als Vergleich d a - Stationsmittelwerte für vier verschiedene Wassermassen-Typen dargestellt (Oberflächenwasser im Sommer gegen Tiefenwasser im Sommer; Oberflächenwasser im Winter gegen Tiefenwasser im Winter; Oberflächenwasser im Sommer gegen Winter sowie Tiefenwasser im Sommer gegen Winter). Dabei wird für die Signifikanz der Differenzen eine Wahrscheinlichkeit von p = 0.01 angesetzt. Zum anderen werden die Konzentrationen der gelösten und partikulären Spurenelemente in den einzelnen Wassermassen gegen die hydrochemischen und biologischen Parameter aufgetragen, um die biogeochemischen Prozesse in diesem Gebiet zu verdeutlichen.

(5)

Introduction

A thorough understanding of the natural variability of trace metal concentrations in Baltic waters is lacking. Comprehending these fluctuations is of great interest, first, to gain more knowledge of the biogeochemical processes controlling the distribution of these elements in highly dynamic coastal zones, and secondly, in order to identify anthropogenic perturbations of the ecosystem on a medium- or long-term basis. We present here a large set of data collected during a three year program which should improve the understanding of trace metal behavior in this part of the Baltic (Kieler Bucht - Mecklenburger Bucht). An important aim of the investigations described here, a cooperative effort between IfM, Kiel and the Institut für Ostseeforschung, Warnemünde (IOW), is to develop a strategy of trace-metal sampling, i.e., where and how often specific metals should be sampled in continuing monitoring programs (e.g. the "Helsinki Commission Monitoring Programme") in this part of the Baltic. The central scientific questions that will be addressed by this project (in the final analysis) are the following:

1. What metals show conservative behavior, i.e., is there a relationship between trace metal variations and fluctuations of salinity (for example, differences between inflowing "North Sea waters” and outflowing Baltic surface waters) ?

2. How large is the fraction of particulate metals, and what enrichment factors exist during plankton blooms in the study area ?

3. Is there a seasonal fluctuation, similar to that of the nutrients, for dissolved trace metals such as Cd, Cu, Fe, Ni or Zn due to incorporation (or scavenging) into or onto planktonic organisms ? 4. What is the magnitude of the spatial and seasonal trace metal variability due to the special

hydrographic circumstances in the western Baltic (i.e., during stagnating periods in summer with strong thermoclines and anaerobic conditions in bottom waters) ?

Water samples from the surface lay» (at 7 m depth) and from bottom water (2 m above the bottom) were collected on six separate cruises from a network of 27 stations in the western Baltic Sea during a three year period (February 1990-July 1992) in order to determine the spatial and temporal variability of Co, Pb, Cd, Cu, Ni, Fe, Zn, and Mn in the dissolved and particulate phases (Table 1, Figure 1, Table 2). Standard hydrographic parameters, nutrients, dissolved Oj, particulate organic C and N, and suspended particulate matter were also measured. Previous studies (Kremling, unpublished) have indicated that the largest variability in concentrations occur between summer and winter seasons throughout the study area for most metals. The temporal variability o f the metals leads therefore to comparisons of the data after division into four separate data sets: summer surface, summa- bottom, winter surface and winter bottom waters. The results are presented here as summary tables and figures.

(6)

Methods

SAMPLE COLLECTION

AH surface water samples were collected at 7 m depth using the underway, continuous pumping system of SchüBler and Kremling (1993). Uncontaminated surface water was supplied to laminar- flow clean benches installed on either F/S ALKOR or F/S POSEIDON by the pumping system.

Samples for the determination of trace metals were pressure filtered through acid-cleaned 0.4 jam Nuclepore filters into acid cleaned quartz-glass bottles using pure N2 gas, and acidified with quartz- distilled HNO3 (1 ml / 500 ml sample). Details o f the filtration procedure may be found in Kremling and Petersen (1984). Bottom-water samples (1-2 m above the bottom) were collected using acid cleaned 101 Go-Flo samplers (General Oceanics). Water from the Go-Flo samplers was forced to the clean benches through acid cleaned plastic tubing by filtered pure N2 gas. Standard hydrochemical parameters (temperature, salinity, nutrients) were collected by CTD-rosette, and from the bypass outflow of the underway pumping system. Samples for die determination of trace metal contents of SPM were collected on acid cleaned 0.4 pm Nuclepore filters, rinsed with deionized- distilled water, and frozen until analysis at IOW, Wamemiinde. Spatially integrated SPM samples from 1 - 3 m3 o f surface seawater were also collected in each of the study areas (Kieler Fôrde.

Eckemfôrder Bucht, Flensburger Bucht, Fehmam Belt, and Mecklenburger Bucht/Lubecker Bucht) over 2-3 hour periods while steaming along die cruise track using a high speed, flow-through centrifuge connectai to the underway pumping system (SchüBler and Kremling, 1993).

ANALYSES

Hydrographic and hydrochemical parameters:

Salinity and temperature profiles were obtained on each cruise by CTD. Profile data is available for each station, however, only data from the surface and bottom water layers are presented in this report.

Nutrient concentrations were determined on-board by standard wet-chemical methods methods (Grasshoff, Ehrhardt, and Kremling, 1983). POC/PON samples were processed using a total CHN analyzer at IfM, Kiel. Chlorophyll a concentration was determined by fluorometric analysis o f the acetone extracts o f particulate material trapped on glass fiber filters.

Dissolved trace metals;

Co, Pb, Cd, Cu, Ni, Fe and Zn were extracted from the filtered seawater samples using the carbamate (APDC/DDDC) freon method of Danielsson et al. (1979). A similar oxine (8-hydroxyquinoline) chloroform extraction method (Bender et al., 1977; Kremling et al., 1983) was used for Mn in surface waters. Metals were analyzed by graphite furnace, Zeeman atomic absorption spectrometry

(7)

(AAS) using a Perkin-Ehner Model 5000 in a Class 100 cleanroom. Precision and accuracy of the AAS analysis are presented In Tables 3 and 4. Precisions typically ranged from 6 - 25 % for all elements. Accuracy o f the extraction method was assessed by extractions performed on NASS-2 and CASS-2 certified seawater standards (National Research Council Canada). There were no statistical differences (p = 0.0 1) between measured and certified concentration for any of the metals investigated. Samples collected in bottom waters using Go-Flo samplers were analyzed for Mn either by the oxine-chloroform extraction method, or by injecting samples directly into the AAS after diluting 1:6 or more in 0,1-0.5 M quartz distilled HNO3 (Schultz Tokos, unpublished). Accuracy was > 80% based on recovery o f Mn from standard seawater reference material (CASS-2, National Research Council Canada). Multiple analysis of samples yielded precision ranging from 2 -2 3 %.

Particulate metals:

Trace metals in SPM were determined by the Institut fur Ostseeforschung, Wamemunde, from suspended particulate material collected on precleaned Nuclepore filters by leaching with 0.5 N HC1 for time periods > 3 weeks (Brugmann, 1986; Brugmann et al., 1992). Leaching was followed by complete digestion in teflon bombs by ashing with 2 ml HNO3 MX) pi HF for two hours at 180

°C, evaporating to dryness ami then redissolving in 1 ml HNO3. The acid solutions were analyzed using a Perkin-Elmer model 3030 AA spectrophotometer with Zeeman correction. Data for SPM, Co, Pb, Cd, Cu, Ni, Fe, Zn, Mn, and Al collected on 0.4 pm Nuclepore filters is reported as total particulate concentration (nmol/1) or total metal content of the particulate matter (fig/g). Precision of the analyses ranged from 9% for Cu to 30% for Al. The accuracy o f the filter digestion procedure was tested by measurements o f the BCSS-1 standard for trace metals in marine sediments (National Research Council Canada). Results were in full agreement with die certified values (better than 95%

recovery for most elements). Total Hg in unfiltered water samples was determined at IOW by permanganate oxidation and a cold-vapor reduction technique.

SPM collected by the flow-through centrifuge was analyzed for total trace metal contents (pg/g dry weight) at MM after digestion following the method ofLwing and Rantala (1989). Acidic solutions fiom the digested samples were analyzed for Co, Ni, Cu, Fe, Zn, and Mn by inductively coupled plasma-emission spectrometry (ICP) at IfM. Additional elements were also measured by ICP as supporting data (e.g. P, Na, Ti, Ca, Al). Pb, Cd, and Co were measured by GF-AAS. Results reported here are connected for digestion efficiencies < 1 0 0% by comparison to recoveries o f metals from coastal-zone sediments (BCSS-1, National Research Board Canada). Method development for the complete digestion o f suspended matter was being performed simultaneously by another group in our laboratory. The iMthod to be used in the future (yielding recoveries o f > % 90 for most of die metals studied here) is:

(8)

1. Grind an aliquot of (fried sample to a fine powder in an agate mortar. Weigh 100-200 mg sample into a teflon bomb.

2. Add 1 ml deionized-distilled HzO and 3 ml concentrated quartz-distilled HN03. Bring to diyness on a hotplate.

3. Add 3 ml hot concentrated distilled HNOj, 1 ml deionized-distilled H20 , 3 ml Suprapur HCI and 3 ml Suprapur HF. Close bomb and cook at 165 °C for 12 hours.

4. Allow samples to cool to room temperature. Add 1 ml Suprapur HCIO4 and bring to diyness on a hotplate. Repeat this step if necessary.

5. Add 2 ml HNO3 and 1 ml deionized-distilled H20 and bring to dryness on a hotplate.

6. Add 1 ml hot HNO3 and enough deionized-distilled H20 to reach the desired end volume (12 ml H20 for this work). Place into clean tubes for analysis.

Acknowledgements

We acknowledge the help of U. Beckmann, R. Bruhn, B. Hussel, H. Johannsen, U. Karbach, G.

Lippert, A. Löffler, J. Petersen, C. Pohl, T. Viergutz, F. Wehner, and A. Wenk with sample collection and analysis during the research cruises. We thank U. Schußler for technical assistance with the high-speed centrifuge, and for helpful comments and discussions of the data. The project could not have been carried out without the expat seamanship and organization provided by Captains Sichau and Gross, and the crews o f the research vessels ALKOR and POSEIDON. Support for this research was provided by the Bundesministerium für Forschung und Technologie (03F0546A).

(9)

R eferences

Bender, M. L., G. P. Klinkhammer and D. W. Spencer, 1977. Manganese in seawater and the marine manganese balance. Deep-Sea Res, 24:799-812.

Briigmann, L., 1986. Particulate trace metals in waters of the Baltic Sea and parts of the adjacent NE Atlantic. Beitr. Meeresk., 55:3-18.

Briigmann, L., P. C. Bernard, and R. van Grieken, 1992. Geochemistry o f suspended matter from the Baltic Sea, 2. Results of bulk trace metal analysis by AAS. Mar. Chem., 38: 303-323.

Danielsson, L.-G., B. Magnusson, and S. Westerlund, 1979. An improved metal extraction procedure for the determination of trace metals in seawater by atomic absorption spectrometry with electrothermal atomization. AnaL Chim. Acta, 90:47-57.

Grasshoff, K_, M. Ehrhardt, and K. Kremling, eds., 1983. Methods o f Seawater Analysis, Verlag Chemie GmbH, Weinheim.

Kremling, K., J. Olafsson, M. O. Andreae, and F. Koroleff, 1983. Determination of trace metals. In:

Methods o f Seawater Analysis, K. Grasshoff, M. Ehrhardt and K. Kremling, eds., Verlag Chemie GmbH, Weinheim, pp. 189-246.

Loriog, D. H., and R. T. T. Rantaia, 1989. Total and partial methods o f digestion for estuarine and coastal sediments and suspended particulate matter. ICES Techniques in Marine Environmental Science, 1-15.

SchuBler, U, and K. Kremling, 1993. A pumping system for underway sampling o f dissolved and particulate trace elements in near-surface waters. Deep-Sea Research, 40:257-266.

(10)

Table 1. Station locations

Station _________2N_________ °E ________Water depth (m) (see Fig. 1)

1 54° 28.0 9° 51.9 17

2 54° 29.2 9° 57.1 24

3 54° 30.7 10° 01.8 24

4 54° 32.5 1D° 07.0 22

5 54° 34.5 10° 13.0 21

8 54° 51.8

9 54° 49.6

10 54° 50.0

11 54° 47.7

12 54° 44.5

13 54° 39.5

9° 37.5 24

9° 42.5 26

9° 52.0 30

1 0° 0 2 . 0 26

10° 05.5 23

10° 11.0 23

18 54° 25.0

19 54° 28.0

20 54° 33.0

21 54° 36.0

22 54° 38.5

23 54° 41.5

12° 03.0 16

11° 47.0 20

11° 24.0 25

1 1° 0 1 . 0 26

10° 47.0 >20

10° 30.0 >20

24 54° 17.0

25 54° 21.0

26 54° 16.0

27 54° 09.0

28 54° 05.0

11° 45.0 ca.20

11° 34.0 ca.20

1 1° 26.0 ca. 2 0

11° 14.0 ca.20

1 1° 0 0 . 0 ca. 2 0

33 Kieler Leuchtturm c a 13

34 54° 28.5 10° 13.3 18

35 54° 23.1 10° 11.6 17

36 54° 21.4 10° 10.0 14

37 Schwentine Mündung 12

______ Locale Eckemforder Bucht

w

M

tt tt

Flensburger Förde

ff

tt

« ft

«

Mecklenburger Bucht tt

Fehmarn Belt tt Kieler Bucht

K

Mecklenburger Bucht tr

tt

Lübecker Bucht

Kieler Förde tt tt n ff

(11)

T a b le ! Cruise information and summary of weather conditions.

H Ü T 5 E .- ... "BÄTO " H H E K f f T T O ... ÀTMÔSPttËRlt!

PRESSURE (mb)

"W T O SPËEb aW DIRECTION

CO M M EN T ....

T w m m m m .r m....

(P 169)

"winter"

6 - 9 February 1990 min. 6 - max. 1 0 min. 989 - max. 1025

light (SW) rising to bft.

9-10 (SW)

latter part ot cruise under winter storm conditions

W Ä E E Ö I 'S...

(AS)

"summer" 15 - 20 August 1990 m ia 12 - max. 23 min. 996 - max. 1018

light (SW) rising to feft.

6 (SW), higher at end of cruise

summertime conditions, water column stratified W FÔ 'S Ë ÎB Ô N 176

(P 176)

"winter"

6 - 9 November 1990 min. 2 - max. 9 min. 1023 - max. 1028 maximum Bit 5 (W)

water column partially stratified

T7SÄLRÖ& 15 1 (A 19)

"summer"

19 -3 0 August 1991 min 1 2 - max. 2 2 min, 1011 - max. 1017 maximum Bft. 7 (W)

upwelling observed in Flensburger Förde.

F / S a l k o r S6 (A26)

"winter"

3 - 7 February 1992 min. 2 - max. 6 min. 1 0 0 0 - max. 1 0 1 0

light (W) rising to 6 ft.

5 (SW), then back to Bft. 2 (SW)

overall conditions mild, water column mixed except at deepest stations

R S ALkÖft 32 (A 32)

"summer"

30 June- 7 July 1992 min. 16 - max. 32 m ia 1007 - max. 1015 maximum Bft. 6 (W)

summertime conditions, water column strongly stratified

(12)

Surface waters (depth = 7 m):

A. Summer cruises (A8, A19, A32)

Metal ... T o ... 7 6 --- T T ... Cu Ni Fe Zn Mn

n samples 25 26 32 2 5 ... ^8 "24 1 20 8

precision ± o 10.9 ± 9.9 J T T 'i W n 9.1 ± ?.l 9.2 ±7.9 7.8 ±6.8 12.3 ± 12.7 T I T ±17.2.T j T ± V.'4 B. Winter cruises (P169, P176» A26)

l i T .... Co Pb Cd 'C5...... ... Ni Fe Zn Mn

n samples 11 Id l i 12 10 12 11 13

precision ±a 6.4 ± (5.9 27.2 ± 19.6 6.2 ± 6.6 Î.Ô ± 8.4 7.9 ± 8.6 46.4 ± 19.8 16.8 ± 16.9 35.9 ± 15.2

Bottom waters (2 m above bottom);

A. Summer cruises (A8, A19, A32)

Metai r^o ... Pb r < r .... Cu Ni Fe Zn Mn Mn<*

n samples 7 " " 7 7 7 6 8 Î 12

precision ± o 9.4 ±9,0 Z\)t£ X ¿J.U 18.2 ±23.9 8.6 ± 4.3 4.5 ±3.» ' 7.9'± 5'0... 9.8 ± 9.8 '3 T ± T 2 — T r r ± m r B, Winter cruises (P169, P176, A26)

Metai Co ... Pb c a -.— ....~ "Cu... ... Ni Pq Zn Mn Mn*

n samples 7 7 7 7 ■ 1 7 3 8

precision ± 0 -26T±i"0:9. 2Ô.2 ±20.8 6.3 ±4.7 5.4 ± 4.3 TTTTH TT” "Ï6.7TÏT0""' 1Û.8 ± 9.1 '2 ÏÏI.'F27.Ü'" ■'20'' ± 'O T

& Analyses by direct injection technique (no extraction performed; see text).

(13)

Table 4, Recovery of trace-metals from standard seawater reference materials by solvent extraction.

NASS-2 (North Atlantic S tsw U tr Standard)*

Metal TcT"... w ... .... T 3 T ... Tu ... N ! ... Fe Mn certified cone.

(nmol/I ±0) 0068 ±0.017 0.188 ±0.029 0.258 ±0.036 1.72 ±0.17 4.38 ± 0.46 4.01 ±0.61 0.40 ±0.13 Measured ( f ± a) 0.071 ± 0 0 0 8 0.174 ± 0021 0.240 ± 0.062 1.75 ±0.14 4.44 ± 1.02 7.00 ±0.72 0.39 ±0.06

n 5 14 16 10 12 3 4

CASS-2 (Coastal Atlantic Seawater Standard)*

M35T ... T o --- ---1're... ....~ r a — ... T u... ~ Ni ’Fe... 7 n ” ... ' certified conc.

(nmol/1 ± a) 0.424 ±0.102 0.092 ±0.029 0.169 ±0.036 10.62 ±0.61 5.07 ±0.61 21.5 ±2.15 35.8 ±2.18 Measured (x ± a) 0.411 ±0.085 0.071 ± 0.019 0.144 ±0.021 9.33 ±1.82 4.90 ±0.42 16.4 ±2.18 31.6 ±6.21

n 5 4 5 5 5 4 5

& Reference materials from National Research Council Canada,

(14)

Table 5 Mean hyfibrographic and hydrochemical parameters by layer and season (± cr). AH stations.

A. Surface water (depth = 7 m):

Summer cruises (A8, A19, A32). See Table 2 for cruise dates

Tem p'T TSaKTKT W u 'S b W "51TOS51JT" P64 Mmol/1 TETPSat. T W ig /T chl-a ug/1

f 1519 7 0 3 1 " ¥ 0 6 ... T H T... 0.22 7U 8... 0.40 910 453.06 ST97 " 1.43 t a 132 TS35"... T O ... ' 0.14 "015 ” 0.24 0.49 21.7 T73~90‘.... 134.40 T 7 T ' "

n 78 yq 11 73 74 n 76 27 79 T T " " 7 8 ...

Winter cruises (PI60, PI 76, A26)

U5im~P3U

T O T — y r g n

W 2 MmSW T O —

KHTjj'mof/r T Y T ---

SiO u mo 1/1 1f*04 pmol/l m

icmn

J T T V>

7 ^

$

0 2 T - SiT TOTiliTT

T O # " M>N Mg/1 chl-a Mgfl

TW

W

■yy... IT T

TT-

TTT 7 T "

m s u * 55---

ins

i m

± a

W T T

029

7 T ~ TT

B. Bottom water (2 m above bottom):

Summer cruises (A8, A19, A32)

lernp v S S R iT W T O T » T "^753 MmoUT NlH4 pmot/1 SiO Mmol/1 Pu4 Mmol/1 O ro f3 & pO Cmr/T PON Mg/1 chl-a jjg/1

X I r a ... 20.150 020... 1.07 34 00 1.67 33.6 ...

T T J r '0 W i o T W ...i r m ... 0 15 3.07 T 5 F * “ ' T7'50... 1.08 25.6 IfS O O "*' 1 1 8 0 " 1.49

n 79 '' 76 77 75 77 78 77 "7g --- 71 71

Winter cruises (PI69. PI76, A26)

Satin. f»St TJ02 j] tnoT/r"NWMmof/i NH4 j.imol/1 SiO Mmol/1 P04 Mmol/l W"W-S'£ W mI F POs ijg/i chl-a Mg/l

I 6 55 19440 TrW 5 05 3 21 16.69 1.26 "85:8... 1 T O W .W '

i 0 ~TB ~ "020 “ T W ... 4.67 1 034 7.5 10180".." 4.25

n ... 64 '65... H65 65 65 ' ” ' 65 55 35

(15)

A. Winter vs Summer Comparisons: Surface or Bottom Waters

Temp. Salinity N 02 N 03 NH4 SiO P04 0 2 POC PON chl-a

Surface * * * * * * 0 * *

Bottom * 0 * * * * * * * *

B. Surface vs Bottom Comparisons: Winter or Summer

Temp Salinity N 02 N03 NH4 SiO P 04 0 2 POC PON chl-a

Winter 0 * 0 0 * 0 0 * *

Summer * * * * * * * * * ¡0 0

(16)

Summer cruises (A8, A19, A32). See Table 2 for cruise information.

M ia T ... .... Co Pb Cd Cu Ni Fe Zn Mn

in samples 78 78 ... 78 77 78 78 76 t s t ... ...

x ± cr 0.132 ± 0.129 H M T t n o r ' 0.124 ±0.052 8.36 ±3.36 11.07 ± 1.83 26.10 ±33.21 ~ m r ± m r 60.6 ±155.3

W%(%

o f f ) 66.3 " 124.2 40.9 39.1 14.6 126.6 i m ... 1 5 0 " ' ...

Winter cruises (F169, P176, A26)

Mo t C o ... ~ Pb c l— ... . Cu— ' Ni F e Zn Mn

n saiffiples 71 68 71

fl

71 71 71 72

X ± 0 0.229 ± 0.096 M66 ± 0.05i 0.138 ± 0.075 7.81 ± 1.94 10.95 ± 1.43 32.03 ± 43.29 16.69 ± 8.54 30.09 ± 28.48

NV (% of x) 41.4 77.1 54.0 23.5 10.4 134.1 55.6 w ...

B. Bottom waters (2 m above bottom):

Summer cruises (A8, A19. A32)

Metal Co Pb T s r *... Cu Ni Fe Zn Mn

n samples 7 6 ... r 76 76 76 76 75 76 75

X ± <7 1.32 ± 1.86 0.081 ± 0.062 5.173 ±0.069 7.77 ¿2.30 11.99 ±2.35 196.9 ± 563 40.54 ±49.11 2137 ±2783

N V ( % of x j 140.6 73.8 35.5 28.3 19.1 285.8 HOT?... .. 130.2

Winter cruises (PI 76, A26)

Metal Co ' T Pb c r --- Cu Ni Fe Zn Mn

n samples 50 ?0 50 50 50 50 50 50

x ± a 0.320 ±0.177 0.127 ± 0.083 0.119 ± 0.027 8.29 ±1.63 12.35 ± 2.52 49.00 ±54.32 17.71 ± 9.59 104.0 ± 109.4

NV (% of I ) 53.7 1 62.2 21.8 18.9 17.0 109.6 53.1 103.2

*CT = total uncertainty = natural variability + analytical uncertainty (precision).

& NV = natural variability (± % of x) = (([cr / x] x 100) 2 - (precision from Table 3. ) 2 ) 0 -5

(17)

A. Winter vs Summer Comparisons: Surface or Bottom Waters

Co Pb Cd Cu Ni Fe Zn Mn

Surface 0 0 0 0 0 0 0 0

T% iri tiA n ■

Bottom # * * 0 0 0 * *

B, Surface vs Bottom Comparisons: Winter or Summer

Co Pb Cd Cu Ni Fe Zn Mn

Winter 0 * 0 0 0 0 #

Summer * 0 a* 0 * * * *

(18)

Table 9. Mean SPM and total particulate metal concentrations on 0.4 pm filters (± a*). All stations. Units: nmol/l = fig/g = metal content of particulate matter.

A. Surface waters (depth = 7 m);

mass particulate metal /1;

SPM mg/1 Co nmól/l Coug/g Pb nmol/l Pb |ig/g Cd nmol/l Cd ug/g Cu nmol/l Cu jag/g

n 53 53 79

1

9 "75* """ 79 79 79

X T O T “ Twrar.... 3.10 0.071

T$M

- 0.011 2.88 0.13 15.35

±

a

± 0.314

....

± 0.028 ± 2.65 ± 0.145 ± 20.73 ±0.006 ± 3.04 ±0.17 ± 19.21

® N V (% ofx) 166 W 1 5 ? - - 210

Winter cruises (PI 76, A26)

SPM mg/1 Co nmol/l Co lig/g Pb nmol/l f b ¿ig/g Cd nmol/l Cd Jig/g Cu nmol/l CuMg/g

n 64 51 5i 51 51 51 51 49 49

X ¥ 7 8 '... U M .... m u r n — 47.43 0.004 i m0 . 1 0 11.45

± 0 ±0.82 ± 0.051 ± 3.02 ± 0.126 ± 34.32 ±0.003 ±0.47 ±0.15 ± 10.84

NV (% o f f ) m 53.3 70.3 114 181

B. Bottom waters (2 m above bottom):

Summer guises (A8, A19, A32)

SPM mg/1

Co nmol/l

. c p ® Pb

nmo l/l

Pb |ig/g

Cd nmol/l Cd

ug/g

Cu nmol/l

£u Jig/g

n 49 49 71 7l 69 69 71 71

I D75J ...TT.TT3T....

1131 0.085

35.39

0.006 1.61 0.16 21.37

±

0

± 0.34 ± 0.132 ± 9.24 ± 0.101 ± 24.80 ±0.004 ±

1.01

±0.16 ± 20.08

NV (% o f f ) 61.5 65.8 67.1 59.4 93.5

Winter cruises (PI76, A26)

SPM mg/1 Co nmol/l C p iiá g 1% nmol/l Pb ug/g Cd nmol/l Cdng/g Cu nmol/l Cu Mg/g

n 50 50 50 50 50 49 49 50 50

X w s s.. ... u r n 7.61 0.144 66.22 0.OÓ4 0.96 '"0:25... ... 22.61

± <j ±0.30 ± 0.052 ±2.96 ± 0.146 ± 36.02 ± 0.003 ±0.66 ±0.47 ± 29.67

NV (% o f f ) 67.3 32.1 51.7 65.8 152

* <j = total uncertainty = natural variability + analytical uncertainty (precision).

& NV = natural variability (± % of x) = (([cr / f ] x 100) 2 - (precision; see text) 2 ) 0 -5

(19)

Trtrfe 9 (Cont.). Total paniculate fmmtf concentrations on 0.4 pm filters (± o*). Data from all stations. Units: nmol/1 = mass particulate M+ /1; jig/g = metal cnn^w^ hi pwtfartiH* matter.

4» Surface waters (depth * ? m):

FenmoW

P e u i/t W m f iU T N i i i H '

.

Zri nmol/l Znyg/g

Mnnmoi/t

WnMg/g

Alnmol/!

Alug/g total Hg

nmol/l

n

19 79

79

...

79 79

1$

7978

n

79

19 /9

T o H T

..

± 56.5

i m ...

±4090

¥ ! !

--

± 0.04 15158 --

± 13.33 ± 335 1.75 ".. 339 “ '

±538 38.4

± 77.9 ±6050 3600 ±146

6 0

2480 ±4660 0.025

± 0.014

*NV(% of X) ITS.. ill--- 162 269 ... 43 i

Fe nmol/l Feui/g

W m n W NiM l/i

Zri nmol/l Zn Ms/g

Mn nmol/l

Mnug/g

A1 nmol/l

Aiug/g

total Hg nmol/l

Q

5 l

SI

51

Si so-... SO 50

56

51

51 50

I .

i s : «

± 95.7 7 7W ...

±5600

1 2 1...

± 0.28

I T M "....

±18.62

i w m...

± 1.11

193

...

± 2 6 4

17.6

± 16.2

2070 .."

± 9 8 0

9 4 7

± 103

"' 4700 '

...

± 2800

o:(ST"’"

±0.009

NV(SofX) 7 S. 7 ".— nr*

... ...

T 3 F..

.. 45.1 '76:8...

Bk Bottom 'miters (2 m above bottom):

Summg cruiscs

(A8, A19, A32)

Fc nmol/l JfM /g Ni nmol/l Hi ng/g ZnnmoW Zn jig/g Kin nmol/l Mnug/g A1 nmol/l Alug/g total tig nmol/l

n ?i 67 68 68 w ... 71 .. 71"' * ... 71 71 70'.... ...

l o 174...

±541

n m ...

±34000

i m ...

±0.12 12.89

±7.25

1!79"

± 1.04

261

± 107 283

±544

T 4 m ...

± 33200

'SIT ...

±116 W " ...

±3050

¥02 8 ...

± 0.018

("12?... 56.1 '39:8'""... w ...

-

1'34 ~

Fe nmol/l

I s pg/g Ni nmol/l Ni jig/g 2 n nmol/l & p g /g Mnnmol/I Mnug/g A1 nmol/l Al ug/g total Hg nmol/l

n so

50 SO 50 46 46 19 ". 49 30 '... 50 48

I ,

115

±84 1 S 400

±9600 "122 ± 0.24 . 29 . 5 T“

...

± 21.80

1 1 5

± 1.12

....

±96 166

i n ...

± 22.0 I'M”'"

....

±3020 1 ' 34 ‘..

± 125 7730 """'

....

± 3850

u r n ...

± 0.012

NV {9» of X) go:o...

72.8

m ...

703

..

193

...

w — w m m u j f w v* w t u i j — u c tb u to * r a n a u i u i j * c u m u j m w o i

* NV * natural variability (± % of I ) * <([cr / x] x 100)2 - (precision; see text)2)0-5

(20)

A. Winter vs Summer Comparisons: Surface or Bottom Waters

SPM Co Pb Cd Cu Fe Ni Zn Mn A1

Surface 0 0 0 m 0 0 0 0 0 0

Bottom 0 * 0 * 0 0 0 0 * *

B. Surface vs Bottom Comparisons: Winter or Summer

SPM Co Pb Cd Cu Fe Ni Zn Mn AI

Winter * * 0 0 * 0 0 * *

Summer 0 * 0 * 0 * 0 0 * 0

(21)

Tjfcte II Summary table of suspended particulate matter (ng/g ± a) collected with a high-speed centrifuge. Differences significant at the p = 0.01 level

$n indicated by *. (♦ » significant difference a tp * 0 .10).

location Season T 6 U ... i w 'e m ■RTO... O i(n)... Fe (ri)’... Zn(n5 M n(n)

Kiel, FOrde

Summer Cl)

4 .0 1 0 .2 7 (2)

14.5 ± 16.4 (2)

1.6 ±1.1 (25 12.0 ±1.1

m

30.9 ± 7.8 (2)

5630 ± 3460 (2)

350 ± 3 8 (2)

5480 ±1050

Winter 5.2 ± 3.8(2) 55.7 ±47.0 (2) 0.9 ±0.1

(2) 17.1 ± 4.2

(2)

44.5 ±21.5 (2)

19360 ±7160 (2) 178 ± 4 8

(2)

2200 ±300 Eck. Bueht

Summer (3)

1.6 ± 0 .6 (3)

4.7 ± 3.2 (35 2.4 ± l.l

(3) 11.7 ± 7.9

(35 12.1 ± 9.3

(3)

1870 ± 910

(3)

171 ±71 (35

1250 ± 730 Winter (2)

7.2 ± 7.4 (2)

58.0 ±27.8 (2) 1.1 ±0.1

(2)

20.8 ± 16.0 (2)

38.3 ± 18.0 (2)

24490 ±13410 (2)

147 ± 62 1500 ±1540 Flensburger

Fdrde

Summer Winter

2.3 ± 0.4(25

a>

6,8 ±0.7

(35 3.9 ± 1.4 (2)

45.2 ± 18.0

'135...

2.0 ± 0.9 (2)

t.0 ± 0 .1

(35 8.2 ±7.1 (2) 28.6 ± 7.3

(35 11.0 ± 5.1 (2)

40.2 ± 10.1

(35.. “ 2570 ±1570

* (2)

24870 ±4320 (35 166 ± 3 3 (2) 150 ±21

(35

2870 ±3200 2390 ±440(2)

Mecid.

Bucht/Fehm Belt

Summer Winter

(3) 2.2 ± 0.7 (3) 6.9 ±4.1

(35 9.9 ± 1 .9 52.0 ±37.7(3)

m 1.5 ± 0.5 (3) 1.0 ±0.2

(35

16.5 ± 13.4 (3)

21.1 ±12.1 (35 15.0 ± 3.8 (3)

30.8 ± 18.5

(354360 ± 2480

(3)

21370 ±13090 (3) 145 ± 17 (3) 139 ± 4 8

(35874 ± 643

(3) 815 ± 175 Lilbecker

Bucht

Summer Winter

051.9 ± 1.0

(3) 6.1 ± 4 .0

(35

13.5 ±11.3

* (3)

52.6 ±40.2

¿3) 2.1 ± 0.2 (3) 1.2 ± 0.2

(35 15.0±14.0 (3)

17.0111.6

(3510.0 ± 5.9

(3)

30.2 ± 20.0 (3)

1680 ±1140

* (3)

29500 ± 7830

(35149 ± 51

(3) 145 ± 5 2

(35 640 ±375 (3) 928 ± 522

(22)

Table 12. Significant differences (*) at the p = 0.01 level between particulate metal contents (ng/g) of SPM collected by centrifuge and on 0.4 ¡am Nuclepore filters to the study areas by season (individual sample data not included in this report). "0" indicates a significant difference cannot be proven.

(23)

Figure 1. Map of station locations.

54*:

H v m «aocst* k s x m ® o t * i u l k jl m > i u n m o m1

30' to0 30' 11

° 3cr 12*

"50'

13*

(24)

p

S**'' 25

2 0

l 15

H

1

(Q 1 0

Water Temperature (°C) in Surface Waters: o = summer means, + = winter means I-Eckemförder B.-O I-Flensburger F.-O

©..© o

,+

+

0

0-~©—O'.<3—o

10 15

E-Fehmam Belt-W O-Meckl. Bucht-I O-Kieler Förde-I

©—© -e- o o ° q—o o ©

20 25 30 35

^ 25

£ i

» 20 15

Water Temperature (°C) in Bottom Waters: * = summer means, x = winter means

10, * * » * *

, * * *

5 x x x X *

x X

* * '*

*- x X x X X- X x ^ ^ X~x -X

(25)

Salinity(PSU)

Salinity (PSU) in Bottom Waters: * = summer means, x = winter means

(26)

(l/IOWlf)£ON (WOUItf) CON 15

10

NQ3 (jumol/1) in Surface Waters: o = summer means, + = winter means

0

I-Eckemförder B.-O I-Flensburger F.-O E-Fehmam Belt-W O-Meckl. Bucht-I O-Kieler Eörde-I

+.

*'• "f*- -J.

V *

■K +

•+ +'

__________ - _____j p . .

5 10 15

(27)

NH40imoM) NH4 (jimol/1)

NH4 Qimol/i) in Surface Waters: o = summer means, + = winter means I-EckemfBrder B.-O I-FIensburger F.-O

4 3 2

1 0.

\

E-Fehmam Belt-W O-Meckl. Bucht-I O-Kieler F0rde-I

+- x +

-.Qr—^r

10

20

25 30 35

(28)

SiO(jimol/1) SiO(nmol/I) 30

20

10

SiO (¡nmol/1) in Surface Waters: o = summer means, + = winter means

I-Eckemfôrder B.-O I-Flensburger F.-O E-Fehmam Belt-W O-Meckl. Bucht-I O-Kieler Fôrde-I / '■+ / V / 4

+ * / r *

X / ^ X — - ^a

+ -+■ -+•- + -+ "+ •• + +• + ' +• ••+

O

\

!

•K ' + - +

/

o "« \ Q "xt

0 . ...--± --- ^

10 15 20 25 30 35

SiO (jimol/l) in Bottom Waters: * = summer means, x = winter means

(29)

P04 (junol/l) P04 (juboM)

(30)

% Oxygen Saturation in Surface Waters: o = summer means, + = winter means

£3e

C«e«M

P s

100

50

-Eckernförder B.-O JHgensburger F.-O

f 1 0 ^ P

V

E-Fehmam Belt-W O-Meckl. Bucht-I O-Kieler Förde-I

o

°0 ... ... 5 ...10 ... “ ~ 1 5 ’ 20 25 30 35

c i

0

1 100 r

1 ! x- . -*

m ! -x-'

C i

<0 !

B0 i

Ü3*'* i

2

501-

; * *

*

0 .. ... -... . -...- .-

% Oxygen Saturation in Bottom Waters: * = summer means, x = winter means

X -X - - - -K ,

A

*. /

\

! \ A

* * %■

5(r At - X

X " " x X

/ V

V *

(31)

OrganicCarbon (Mg/1)Particulate OrganicCarixmdig/!)

1000

800 600 400 200 0

Particulate Organic Carbon (yg/i) in Surface Waters: o = summer means, + = winter means

I-EckernfÖrder B.-O I-Fiensburger F.-O E-Fehmam Belt-W O-Meckl. Bucht-I O-Kieler Förde-I

+ 4- -4. -+

+ . "’ s

-+- 4. —■¥' N +■ *+_

0 10 15

20

25 30 35

(32)

ig 500 I 400

I 300

, U

£? 200

100

0

__________ Particulate Organic Nitrogen (jjg/l) in Surface Waters: o = summer means, + = winter means

I-Eckemfôrder B.-O I-Flensburger F.-O E-Fehmam Belt-W O-Meckl. Bucht-I O-Kieler Forde-|f

n ~0—-q—•©—O

0 15

1.- + -+

O

20 25

HK

30

« a

3 5

1 200

1

3

§ 150 - z

I

lOO;

1 !;

to 501-

Particulate Organic Nitrogen (jug/1) in Bottom Waters: * = summer means, x = winter means

x V A *

V

0

H

10

15

* *

x x-

30

N r - * 35

(33)
(34)

DissolvedCo(nmol/kg) DissolvedCo(nmol/kg)

Dissolved Co (nmol/kg) in Surface Waters: o = summer means, + = winter means I-Eckemfôrder B.-O I-Flensburger F.-O E-Fehmam Belt-W O-Meckl. Bucht-I

0.81

O-Kieler Forde-I

0.6

0.4

0.2 O

0 0

■ + -K ■K

10 15 20 25 30 35

Dissolved Co (nmol/kg) in Bottom Waters: * = summer means, x = winter means

s t

2 - / / /

1 * •* j V * \j

x * x * x * * ^ X x # 4 *' * V x X S ' * * ~

0 ... ... 5 ... ... 10 ... ... 15 ... 2 0 .... 25... .. 30 35 Station Number

(35)

Figure 13. Dissolved (0.4 m filtered) Co versus station number in Flensbuiger Förde, illustrating natural variability versus analytical precision of the measurements. Error bare indicate the total uncertainty ( 1 0); the envelope bounded by the dashed and solid lines indicates the analytical precision of the measurements.

Dissolved Co in Surface Waters (7 m) - Flensburger Förde

(36)

DissolvedPb(nmoWkg) DissolvedFb(nmol/kg) 0.5 0.4 0.3 0.2

0.1

Dissolved Pb (nmol&g) in Surface Waters: o = summer means, + = winter means I-Eckemförder B.-O I-Flensburger F.-O

A

«À- or 4

\

V f

..._____I

to W /o

15

E-Fehmam Belt-W O-Meckl. Bucht-I O-Kieler Förde-I

a

/ \ A

*

* b

20 25 30 35

0.5 Dissolved Pb (nmol/kg) in Bottom Waters: * = summer means, x = winter means 0.4 f-

i 0.3 r

X

/

0.2

0* *

* *

/ \ * *

* - * *■* r *

*, A

Y * \

X

(37)

DissolvedCM (nmol/kg) DissolvedCd(nmol/kg)

(38)

20

15 10

___________ ______Dissolved Cu (nmol/kg) in Surface Waters: o = summer means, + = winter means

I-Eckernfdrder B.-O I-Flensburger F.-O E-Fehmam Belt-W O-Meckl. Bucht-I O-Kieler Forde-I o

00

©—o

10

¥

15

20

25 30 35

2 0 _______ ___ Dissolved Cu (nmol/kg) in Bottom Waters: * = summer means, x = winter means

! 15 r

a 10

(39)

DissolvedNi (nmol/kg)DissolvedNi (nmol/kg) 3q_____ _______ Dissolved Ni (nmol/kg) in Surface Waters: o = summer means, + = winter means

I-Eckernforder B.-O I-Flensburger F.-O E-Fehmam Belt-W O-Meckl. Bucht-I O-Kieler FQrde-I 25

20

15 10 5 0

+- + +

0 10 15 20 25 30 35

30 25 20 15

10

5 0

Dissolved Ni (nmol/kg) in Bottom Waters: * ~ summer means, x = winter means

(40)

200

Dissolved Fe (nmol/kg) in Surface Waters: o = summer means, + = winter means

8 SS

150 100

50 0

I-Eckemförder B.-O I-Flensburger F.-O E-Fehmam Belt-W O-Meckl. Bucht-I O-Kieler Förde-I +

/ + ; _

o 10 15 20 -k.

25 30 35

s

2000 I 1500 tu

i 1000

i

a

“ 500

Dissolved Fe (nmol/kg) in Bottom Waters: * = summer means, x = winter means

A I

*, ! \ I

(41)

2n(nmol/kg)Dissolved25a(iraoî/kg) 100 80 60 40 20 0I

200

150 100

50

l-Eckemfôrder B.-Q

+ +

---1... ... .

i i ...i ... - ...... i... i

I-Flensburger F.-O E-Fehmam Belt-W O-Meckl. Bucht-I

. A A

1 ...-... 1 ! I

O-Kieler Fôrde-I

t -

5 10 15 20 25 30 35

Dissolved Zn (nmol/kg) in Bottom Waters: * = summer means, x = winter means

A y

» -X- -X

1 i ... —i--- -—[---

. . . . . . . , H

------------------------------------------------------------------------------------------------------------r i i

) 5 10 15 20 25 30

Station Number

35

(42)

DissolvedMn (mnol/kg)DissolvedMn (nmolftg) Dissolved Mn (nmol/kg) in Surface Waters: o = summer means, + = winter means... ' ... ... ... .m ~r500--- —i--- 1... ...

(43)

Co(nmol/kg)DissolvedCo(nmoWkg) 1 0.8 0.6 0.4 0.2 Q

Dissolved Co (nmoMcg) vs Salinity in Surface Waters (Depth = 7 m): o = summer means, + = winter means_

+ o

+j . +

+ 1++ J I L L

4* ***+

12 14 16 18 20 26 28

4 3 2

1

O L ­ IO

Dissolved Co (nmol/kg) vs Salinity in Bottom Waters (2 m above bottom): * = summer means, x = winter means

* # *

* *1 * *

* * * x *

(44)

0.5 Dissoived Pb (nmol/kg) vs Salinity in Surface Waters (Depth = 7 m ):o = summer means, + = winter means 0.4

£ 0.3 1

|

0.2

0.1

0

QQ

O

&

to o

+ + t + +

£ * +

10 12 14 16 18 20 22 24 26 28 30

Dissolved Pb (nmol/kg) vs Salinity in Bottom Waters (2 m above bottom): * = summer means, x = winter means

(45)

P3pSAjOSSlQ(<S^/[OUIO) PQpSA|OSS|<|

Dissolved Cd (nmol/kg) vs Salinity in Surface Waters: o = summer means, + = winter means

Dissolved Cd (nmol/kg) vs Salinity in Bottom Waters: * = summer means, x = winter means

(46)

DissolvedCu(nmol/kg) DissolvedCu(nmol/kg)

20

15 10

5

o o

Q

0 0 0 ° f P 0

O QQq + + + o + * - * o

O O o ° +

10 12 14 16 18 20 2 2 24 26 28 30

2 0 Dissolved Cu (nmol/kg) vs Salinity in Bottom Waters (2 m above bottom): * = summer means, x - winter means 15

1 0

51-

! o '-

1 0

*

X * * x

* * * * < * *J g , * *

* *

(47)

Ni

30 Dissolved Ni (nmol/kg) vs Salinity in Surface Waters (Depth = 7 m): o = summer means, + = winter means 25

2 0

15

1 0

5

10 12 14 16 18 20 22 24 26 28 30

3Q Dissolved Ni (nmol/kg) vs Salinity in Bottom Waters (2 m above bottom): * = summer means, x = winter means 25

2 0

15

1 0

5

* *

(48)

DissolvedFe(nmol/kg)DissolvedFe(nmol/kg)

Dissolved Fe (nmol/kg) vs Salinity in Surface Waters (Depth = 7 m): o = summer means, + = winter means

2000

Dissolved Fe (nmol/kg) vs Salinity in Bottom Waters (2 m above bottom): * = summer means, x = winter means 1500

1000 500 L

j OL­I

IO

—^— 3|t_... sc X x x - *

14 16 18

(49)

DissolvedZn(nmol/kg) DissolvedZn(nmol/kg) 100 80 60 40

2 0

°10 12 14 16 18 20 22 24 26 28 30

2Q0 ^______ Dissolved Zn (nmol/kg) vs Salinity in Bottom Waters (2 m above bottom): * = summer means, x = winter means

150

100

50

0

Dissolved Zn (nmol/kg) vs Salinity in Bottom Waters (2 m above bottom): * = summer means, x = winter means Dissolved Zn (nmol/kg) vs Salinity in Surface Waters (Depth = 7 m): o ~ summer means, + = winter means

o cfr° +

Q O +

O o Q O O

n + j. . O + O j . +

o o Qq + o o 6* + * -H +

(50)

DissolvedMn (nmol/kg)DissolvedMn (nmol/kg)

2 5Q _________ Dissolved Mn (nmol/kg) vs Salinity in Surface Waters: o = summer means, + = winter means

200

-

0

150 - 0 +

100- 0

o o +

50b ° + +

« o o0 ° o 0+ +

°10 12 14 16 18 20 22 24 26 28 30

Dissolved Mn (nmol/kg) vs Salinity in Bottom Waters: * = summer means, x = winter means

(51)

Go(nmol/kg) DissolvedCo(nmol/kg)

Dissolved Co (nmol/kg) vs SiQ Concentration in Bottom Waters: * « summer means, x = winter means

(52)

DissolvedCd(nmol/kg)DissolvedCd(nmol/kg) 0.4

0.3 0.2

0 . 1

0 ,

Dissolved Cd (nmol/kg) vs SiO Concentration in Surface Waters: o = summer means, + = winter means

o o o

0 0 o°°«P0 8>& \ +

^|.++ +^

++

0 1 0 15 2 0 25 30 35

0.4 0.3

0.2

0.1

Dissolved Cd (nmol/kg) vs SiO Concentration in Bottom Waters: * = summer means, x = winter means

x

* *

* V

*

#

*

(53)

DissolvedCu(nmoVkg) DissolvedCu(nmol/kg)

2 0

15

1 0

5

0

Dissolved Cu (nmol/kg) vs SiO Concentration in Surface Waters: o = summer means, + = winter means

s 0 o %

<9° o 8 o o

° o0 0

0 1 0 15 2 0 25

2 0

15

1 0

5

Dissolved Cu (nmol/kg) vs SiO Concentration in Bottom Waters: * = summer means, x = winter means

X * * * *

* *

»

* * * \ t * \

* *

(54)

DissolvedNi (nmol/kg)DissolvedNi (nmol/kg)

Dissolved Ni (nmol/kg) vs SiO Concentration in Surface Waters: o = summer means, + = winter means...I" 1**... ... ...—- ... ... —— ... ... ....—— ... - I"———— ——...--- ---_--- * ---—

Dissolved Ni (nmol/kg) vs SiO Concentration in Bottom Waters: * = summer means, x = winter means

(55)

Zn(mnol/kg) DissolvedZn(nmol/kg) Dissolved Zn (nmol/kg) vs SiQ Concentration in Surface Waters: o = summer means, + = winter means

1 0 0

80 60 40

2 0

0.

o o

o o

o _ o O

O <g + ++.. J - O O OoO OQ

10 15 20 25 30 35

Dissolved Zn (nmol/kg) vs SiQ Concentration in Bottom Waters: ♦ = summer means, x = winter means

(56)

DissolvedMo (nmol/kg)DissolvedMn (nmol/kg) 400 300 200

100

0

Dissolved Mn (nmol/kg) vs SiO Concentration in Surface Waters: o = summer means, + = winter means

... . ...— ... ...- iwe...,...— ... ..._ _ ...,...1 . ... ...1... ...

o CP o % ° V M

0 1 0 15 2 0 25 30 35

Dissolved Mn (nmol/kg) vs SiO Concentration in Bottom Waters: * = summer means, x = winter means 8000

6000 40001- 2000 -

0 L-

J t *

* * * * *

* * *

---- ...

10 20 30 50

m

60 70

(57)

Cd

(m m V kg )

DissolvedCd(nmol/ig) Dissolved Cd (nmol/kg) vs FQ4 Concentration in Surface Waters: 0 « summer means, + = winter means Dissolved Cd (nmol/kg) vs FQ4 Concentration in Bottom Waters: * = summer means, x = winter means

(58)

DissolvedCu(nmol/kg)

2 0

15

1 0

5

0

Dissolved Cu (nmol/kg) vs PCM Concentration in Surface Waters: o = summer means, + = winter means

I

oo% o 0 So 0 °Q o

o <9 o o

+ . + +

0 0.2 0.4 0.6 0.8 1.2 1.4 1.6 1.8

2 0

15

1 0

5

D i^ lv e d C u (nmol/kg) vs FQ4 Concentration in Bottom Waters: * = summer means, x = winter means

* *$_*** #

#

0 0.5 1.5 2 2.5

P04 <jamol/l)

3.5

(59)

Ni (mnoVkg) DissolvedNi (nmoUkg) 30 25

2 0

15

1 0

5

°0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

30 25

2 0

15

1 0

5

0

0 0.5 1 1.5 2 2.5 3 3.5 4

P04 (jjmol/1)

Dissolved Ni (nmol/kg) vs PQ4 Concentration in Bottom Waters: * = summer means, x = winter means x

Dissolved Ni (nmol/kg) vs PCM Concentration in Surface Waters: 0 = summer means, + = winter means^

(60)

DissolvedFe(nmol/kg)DissolvedFe(nmol/kg)

200

Dissolved Fe (nmol/kg) vs PQ4 Concentration in Surface Waters: 0 = summer means, + = winter means

*...1... ...f... . 1.... ---- ---1 ... 1 ... !

+

1 ... .. 1 )~

0

D - +

0 +

0 - +

0 + -

„ = • 0 ++ * + +

1 l

0 0.2 0.4 0.6

0 . 8 1 1 . 2 1.4 1 . 6 1 . 8 2

Dissolved Fe (nmol/kg) vs P04 Concentration in Bottom Waters: * = summer means, x = winter means...1 ...— " ' ' 1 ... ... -

1500 1000

500

* * * *

0 1...-... * .. • -* - ... ... *--- * * *

0 0.5 1 1.5 2 2.5 3 3.5

PCM (Mmol/1)

(61)

DissolvedMn (nmoi/kg)DissolvedMn (nmol/kg) 400 300

200

100

0.

--- 1— —.-...-.1---... -*r~.. ---1--- —1— ...r ---—i ... 1 1

- O

O +

0

-

o ° + + +

0 •NlPOoiPito5* 0

0 0.2 0.4

0.6

0.8 1.2 1.4 1.6 1.8

Dissolved Mn (nmol/kg) vs P04 Concentration in Bottom Waters: * = summer means, x = winter means

(62)

Figure 40. Variation of dissolved Co, Cd, and Fe concentrations versus percent oxygen saturation concentration.

A. Co

1a uQ

<U

"3>

8

a

B. Cd

0.5

$ 0.4 liB

« 0.3 -nU

•oo 0.2

£ a 0.1

0

Dissolved Cd vs % 0 2 Saturation in Bottom Waters

0

i = 46 sd fit = 0.0237 y = -0.001 % + 0.20

oo

O O

----O--- PO O 0^30 %

10 20 30 40 50 60 70 80 90 100

C. Fe

2000

"3

§ 1500

6e

& 1000

■8£ I 500

a

0

Dissolved Fe vs % 0 2 Saturation in Bottom Waters

: 46 sd fit = 217.8 y = 0.10 xA2 - 14.47 x + 551

1 0

_ u

o9...fib—i—-®-

2 0 30

pr~~o~

40 50 60 =i&=

70 100

(63)

Figure 40 (Cont.). Variation of dissolved Zn and Mn concentrations versus percent oxygen saturation concentration.

D. Zn

E. Mn

Dissolved M i vs % 0 2 Saturation in Bottom Waters

Referenzen

ÄHNLICHE DOKUMENTE

Salinity measurements were after sampling using Hydro-Bios water samples and new and clean sampling bottles carried out in a shore laboratory by a Guildline

The SeaSoar was deployed for a three-day run to the next mooring (837).. while making a section across the Agulhas. After recovery of the final mooring 836, the remainder of

The com putation of the nutrient loads as well as the nutrient concentration measurem ents in the winter waters suggest that conditions in the Kiel Bight have not

Our repeat hydrography section continues to be a joint program with Canadian JGOFS. A CTD survey along Line PR6 was completed. DMS was analyzed in sea water at the same stations to

The 31DSEP391/1 calibration (.CAL) file was created at sea using program CALDSKW, CTD values at the time of sample bottle closures from handwritten cast logs

DLAGB - inputs .DPZ binary file, applies precruise calibrations from CALIB.DAT, edits data for window outliers (according to WINDOW.DAT) and first

PMEL programs GP899_EPIC applies post-cruise temperature corrections and conductivity calibration coefficients, recomputes the derived variables in DERIVE, and converts

Water sampling on the cruise included mesurements of salinity both by CTD and water bottle samples, CTD temperature, bottle sample oxygen determination, and nutrients