• Keine Ergebnisse gefunden

Ubungsblatt 7 zur Einf¨ ¨ uhrung in die Algebra: Solutions

N/A
N/A
Protected

Academic year: 2021

Aktie "Ubungsblatt 7 zur Einf¨ ¨ uhrung in die Algebra: Solutions"

Copied!
3
0
0

Wird geladen.... (Jetzt Volltext ansehen)

Volltext

(1)

Universit¨at Konstanz Dr. Andrew Dolphin Fachbereich Mathematik und Statistik Prof. Dr. Markus Schweighofer Wintersemester 2010/2011

Ubungsblatt 7 zur Einf¨ ¨ uhrung in die Algebra: Solutions

Aufgabe 1. Sei R ein kommutativer Ring. Sei p ⊆ R ein Ideal. Zeige, dass folgende Aussagen

¨aquivalent sind:

(i) p ist prim.

(ii) p echt und f¨ur alle IdealeI,J von RmitIJ ⊆pgiltI⊆p oderJ⊆p.

(iii) R\pist eine multiplikative Menge.

Solution

(i)⇒ (ii): p is a proper (echt) ideal by definition. Let I,J be ideals of R such that IJ ⊆ P.

If I ⊆p, nothing remains to be shown. Otherwise, let i ∈I\p. Then for all j ∈ J the product ij∈IJ, henceij ∈p. Sincep is prime, it follows thatj∈p, for allj∈J, and thereforeJ ⊆p.

(ii)⇒(i): Ifxy∈pthen (xy) = (x)(y)⊆p. Hence (x)∈por (y)∈p, and hencex∈pory∈p.

(i)⇔(iii): 1∈R\pif and only if 1∈/ pif and only ifp is a proper ideal.

We also have that

(xy∈p⇒x∈por y∈p)⇔(x /∈pand y /∈p⇒xy /∈p).

Together these results give thatp is prime if and only ifR\pis a multiplicative set.

Aufgabe 2.SeienA undB kommutative Ringe undϕ:A→B ein Epimorphismus. Zeige, dass die Zuordnungen

I7→ϕ(I) und J7→ϕ−1(J)

eine Bijektion zwischen der Menge der Ideale/Primideale/max. IdealeIvonAmit ker(ϕ)⊆Iund der Menge der Ideale/Primideale/max. Ideale vonB vermitteln.

Solution

We must show that following:

(a) If I is an ideal/prime ideal/max ideal of A with ker(ϕ) ⊆ I, then ϕ(I) is a ideal/prime ideal/max ideal ofB.

(b) IfJ is an ideal/prime ideal/max ideal ofB, thenϕ−1(J) is a ideal/prime ideal/max ideal of A with ker(ϕ)⊆I.

(c) I=ϕ−1(ϕ(I)) for all idealsIofA with ker(ϕ)⊆I.

(d) J =ϕ(ϕ−1(J)) for all idealsJ ofB.

We shall show (d) and (c) first.

(d): This is true even for all subsetsJ ofB asϕis surjective, as we know show.

”⊇” is trivial.

For”⊆”, sinceϕis surjective, for allx∈J there exists somea∈Asuch thatϕ(a) =x. Therefore a∈ϕ−1(J), and henceϕ(a) =x∈ϕ(ϕ−1(J)).

(c)”⊆” is trivial. For

”⊇”, takey∈ϕ−1(ϕ(I)). Thenϕ(y)∈ϕ(I). Ify /∈I, thenϕ(y) =ϕ(z) for somez∈I. Hencey−z∈ker(ϕ)⊆I. But sincez∈Iandy−z∈I, theny∈I, a contradiction.

Soy∈I andI=ϕ−1(ϕ(I)).

We now show (a) and (b) for ideals. (b) was shown in the lecture

(a) That the image of an ideal I is a subgroup has been shown in the lecture. We must only show that if j ∈ ϕ(I), then bj ∈ ϕ(I) for any b ∈ B. j = ϕ(i) for somei ∈ I, and since ϕ is

(2)

surjective, b =ϕ(a) for somea ∈A for all b ∈B. Therefore bj =ϕ(a)ϕ(ai) = ϕ(ai) ∈ϕ(I) as ai∈I for alli∈I anda∈AasI is an ideal.

For the rest of the question, we need only show that the image and preimage of a prime/max ideal is prime/max.

LetJ =ϕ(I) for some idealJ ofB andI an ideal ofA. Then consider the composition of the maps

A→ϕ B→B/J.

This gives a mapA→B/J which is surjective asϕis surjective, with kernelI (using (c) and (d)).

Hence, by the isomorphism theoremA/I ∼=B/J.

We know that for any ringRand idealKwe have thatR/Kis an integral domain/field if and only ifKis a prime ideal/ max ideal. Therefore, sinceA/I∼=B/J,B/J is an integral domain/field if and only ifA/I is an integral domain/field. This givesI is a prime/max ideal if and only ifJ is a prime/max ideal, which is what we wanted to show.

Aufgabe 3.SeiAein kommutativer Ring undS⊆Amultiplikativ. Zeige, dass die Zuordnungen p7→S−1ιS(p) :=

a s

a∈p, s∈S

und q7→ι−1S (q)

eine Bijektion zwischen der Menge der Primideale p von A mit p∩S = ∅ und der Menge der Primideale vonAS vermitteln.

Solution

Similarly as in the previous question, we must show that following:

(a) Ifp is a prime ideal ideal ofAwithS∩p=∅, thenS−1ιS(p) is a prime ideal ideal ofAS. (b) Ifq is a prime ideal ofAS, thenι−1S (q) is a prime ideal of AwithS∩ι−1S (q) =∅.

(c) p=ι−1S (S−1ιS(p)) for all prime idealsp ofAwithS∩p=∅.

(d) q=S−1ιS−1S (q)) for all idealsqofAS. Again, we show (c) and (d) first

(c) First we show that p⊆ι−1S (S−1ιS(p)). Clearly p⊆ι−1SS(p)). Since 1∈ S we have that ιS(p)⊆S−1ιS(p) and hence p⊆ι−1SS(p))⊆ι−1S (S−1ιS(p)).

Now we showι−1S (S−1ιS(p))⊆p. Takex∈ι−1S (S−1ιS(p)), then x= as ∈AS, for some a∈p, s ∈ S. This gives that s0(sx−a) = 0 for some s0 ∈ S, and hence s0sx ∈ p. Since p is prime, this implies that ss0 ∈ p or x ∈ p. But ss0 ∈ S and S ∩p = ∅. Hence x ∈ p and therefore ι−1S (S−1ιS(p))⊆p.

Hence p=ι−1S (S−1ιS(p)).

(d) First we show thatS−1ιS−1S (q))⊆q. Take as ∈S−1ιS−1S (q)), for somea∈ι−1S (q),s∈S.

Thena∈q, butqis an ideal inAS, therefore as =1s·a∈q, and henceS−1ιS−1S (q))⊆q.

Now we show that q⊆S−1ιS−1S (q)). Take as ∈q for somea∈A, s∈S. Then s· as =a∈q as qis an ideal in AS and hence we have that a∈ι−1S (a) = a, therefore as ∈S−1ιS−1S (q)), and thereforeq⊆S−1ιS−1S (q)).

Hence q=S−1ιS−1S (q)).

(a) Letp be a prime ideal that has an empty intersection withS . Then it is easy to see that S−1ιS(p) is an ideal. We now show that it is prime.

First we show that it is a proper ideal. If 1∈S−1ιS(p), then there is ans∈S anda∈p such that s=a, i.e. there is a t∈S such that ts=ta∈pButts∈S and S∩p=∅, a contradiction.

HenceS−1ιS(p) is a proper ideal.

(3)

Assume now that as·bt ∈S−1ιS(p), for some a,b∈Aands,t∈S. Then abst = p

s0 forp∈pand some s0 ∈S. Hences00(abs0−pst) = 0 for some s00∈S. Hences00abs0 =s00pst∈p. But s00s0 ∈/ p, hence ab∈p, and hencea∈p orb ∈p, and therefore as ∈S−1ιS(p) or bt ∈S−1ιS(p), and so we conclude thatS−1ιS(p) is prime.

(b) Letqbe a prime ideal ofAS. Take the composition of the maps A→ιS AS →AS/q.

This map has kernelι−1S (q) by (d), hence there exists an injectionA/ι−1S (q),→AS/q. Ifqis prime, then AS/q is an integral domain, and hence A/ι−1S (q) must be too. Hence ι−1S (q) must also be prime.

Aufgabe 4.SeiRein faktorieller Ring. Sein∈N0undx∈R mit x=pα11. . . pαnn

mitpi∈R prim und paarweise nicht assoziiert undαi ∈N. Seiy∈mit y=p1. . . pn.

Zeige, dass

p(x) = (y).

Solution

Without loss of generality, we may assume thatn6= 0. We will use thatp

(x) ={a∈R| ∃n∈ N0:an∈(x)}.

”⊇” Let α= max{α1, . . . ,αn}. Then we have

yα= (p1· · ·pn)α=pα1· · ·pαn =pα−α1 1· · ·pα−αn npα11· · ·pαnn =yx and thusyα∈(x). This shows the first inclusion.

”⊆” Assume that z ∈p

(x). Then there is n∈N such thatzn ∈(x). Thusx divides zn. Of course for anyi∈ {1, . . . ,n} we have that pi divides x. Thuspi divides zn and sincepi is prime, we obtain thatpi divides z. Now fori 6=j elementspi and pj are non-associated primes, thus y dividesz asR is factorial, and thereforez∈(y).

Referenzen

ÄHNLICHE DOKUMENTE

Andrew Dolphin Fachbereich Mathematik und Statistik Prof.. Markus Schweighofer

Andrew Dolphin Fachbereich Mathematik und Statistik Prof.. Markus Schweighofer

Andrew Dolphin Fachbereich Mathematik und Statistik Prof.. Markus Schweighofer

It is a primitive polynomial in Z [X], and we apply the Criterion with the prime p taken to be 5: for 5 does not divide the leading coefficient but it divides all the others, and

Andrew Dolphin Fachbereich Mathematik und Statistik Prof.. Markus Schweighofer

Andrew Dolphin Fachbereich Mathematik und Statistik Prof.. Markus Schweighofer

Zeige, dass G eine eindeutige p–Sylowgruppe oder eine eindeutige q–Sylowgruppe (oder beide) enh¨ alt..

For any invertible upper triangular matrix A, the entries on the main diagonal are non-zero, and the entries on the main diagonal of A −1 must therefore be the inverses of the