• Keine Ergebnisse gefunden

Microscope The Scanning Tunneling

N/A
N/A
Protected

Academic year: 2021

Aktie "Microscope The Scanning Tunneling"

Copied!
76
0
0

Wird geladen.... (Jetzt Volltext ansehen)

Volltext

(1)

The Scanning Tunneling Microscope

Fabian Natterer for PHYS 401, 10.12.2019

(2)

Fabian Donat Natterer – Curriculum Vitae

10 years of STM

(3)
(4)

What do you already know about

STM?

G. Binnig, H. Rohrer, RMP 71, S324 (1999)

(5)

Swiss Made in 1981 at

IBM

Rueschlikon

(6)

G. Binnig, H. Rohrer, RMP 71, S324 (1999) Researchgate.net

Scanning …

(7)

… Tunneling …

Julian Chen, Introduction to Scanning Tunneling Microscopy

(8)

Figure: Michael Schmid, TU Wien

… Microscope

Atomic resolution!

(9)

Why STM?

ibm.com

(10)

What’s the surface structure of Si(111)?

Settling a ~25 year old

debate in one STM image.

Si(111)- 7x7 reconstruction

G. Binnig, H. Rohrer, Ch. Gerber, and E. Weibel Phys. Rev. Lett. 50, 120 (1983)

(11)

Moving atoms

Crommie et al., Science 262, 218 (1993)

48 Fe atoms on Cu(111)

Kalff et al., Nat. Nanotechnol. 11, 926 (2016)

Cl vacancies on 2x2 Cl/Cu(100)

(12)

Density of States (DOS)

http://hoffman.physics.harvard.edu/research/STMintro.php

(13)

Approaching Sample and Tip

http://hoffman.physics.harvard.edu/research/STMintro.php

(14)

Quantum Tunneling

http://hoffman.physics.harvard.edu/research/STMintro.php

(15)

Barrier Penetration, 1 D case

𝛹 𝑡 𝛹 𝑏 𝛹 𝑠

0 𝑤

𝑧 𝐸𝑛𝑒𝑟𝑔𝑦

𝐸

𝑉 0

Ψ𝑡 = 𝐴𝑒𝑖𝑘𝑧 + 𝐵𝑒−𝑖𝑘𝑧 Ψ𝑏 = 𝐶𝑒−𝛼𝑧 + 𝐷𝑒𝛼𝑧 Ψ𝑠 = 𝐸𝑒𝑖𝑘𝑧

− ℏ

2

2𝑚

𝑑

2

Ψ

𝑑𝑧

2

+ 𝑈 𝑧 Ψ = 𝐸Ψ Solve Schroedinger Equation

𝑈 𝑧 = 0 𝑈 𝑧 = 𝑉0 𝑈 𝑧 = 0

𝑘2 = 2𝑚𝐸

2 𝛼2 = 2𝑚(𝑉0 − 𝐸)

2

𝑘2 = 2𝑚𝐸 ℏ2

(16)

Transmission through barrier

• From eqns before: Ψ(𝑧) = Ψ(0)𝑒 −𝛼𝑧 𝛼 2 = 2𝑚(𝑉

0

−𝐸)

2

, with V

0

is workfunction Φ of order 5 eV

• probability: Ψ(𝑧) 2 = Ψ(0) 2 𝑒 −2𝛼𝑧

• Current: 𝐼 𝑧 = 𝐼 0 𝑒 −2𝑎𝑧 , α = 5.1 Φ(𝑒𝑉)𝑛𝑚 −1

• Current changes by an order of magnitude for every 0.1 nm tip displacement

Julian Chen, Introduction to Scanning Tunneling Microscopy

(17)

Bardeen 1D case – understanding spectroscopy

• Ψ(𝑧) 2 = Ψ(0) 2 𝑒 −2𝛼𝑧

• 𝐼 = 4𝜋𝑒

ℏ ׬ −∞ 𝑓 𝐸 𝐹 − 𝑒𝑉 + 𝜀 − 𝑓 𝐸 𝐹 + 𝜀 ×

𝜚 𝑠 𝐸 𝐹 − 𝑒𝑉 + 𝜀 𝜚 𝑡 𝐸 𝐹 + 𝜀 𝑀 2 𝑑𝜀

• 𝑓 𝜀 = Τ 1 1 + 𝑒

𝜀

𝑘𝑏𝑇

, Fermi-Dirac distribution

J. Bardeen

Phys. Rev. Lett. 6, 57 (1961)

(18)

‘Reasonable’ Approximations

• 𝐼 = 4𝜋𝑒

ℏ ׬ 0 𝑒𝑉 𝜚 𝑠 𝐸 𝐹 − 𝑒𝑉 + 𝜀 𝜚 𝑡 𝐸 𝐹 + 𝜀 𝑀 2 𝑑𝜀

• If kT smaller than required energy resolution, Fermi-Dirac approximated by step function

J. Bardeen

Phys. Rev. Lett. 6, 57 (1961)

(19)

‘Reasonable’ Approximations

• 𝐼 = 4𝜋𝑒

ℏ ׬ 0 𝑒𝑉 𝜚 𝑠 𝐸 𝐹 − 𝑒𝑉 + 𝜀 𝜚 𝑡 𝐸 𝐹 + 𝜀 𝑀 2 𝑑𝜀

𝑑𝐼 Τ 𝑑𝑉 ∝ 𝜚 𝑠 𝐸 𝐹 − 𝑒𝑉 𝜚 𝑡 𝐸 𝐹

• Differential conductance proportional to local density of states (LDOS)

J. Bardeen

Phys. Rev. Lett. 6, 57 (1961)

(20)

𝑅g = 2.5 × 108Ω

Ti/Au(111): Jamnelaet al., Phys. Rev. B 61, 9990 (2000), Ti/Ag(100): Nagaoka et al., Phys. Rev. Lett.88, 077205 (2002), Ti/CuN/Cu(100): Otteet al., Nat. Phys. 4, 847 (2008).

Kondo features were found for Ti adatoms on:

𝑇K = (29 ± 3)K

𝑅g = 2.5 × 108Ω

F. D. Natterer, F. Patthey, and H. Brune, Surf. Sci. 615, 80 (2013)

Measurement Modes:

Tunneling

Spectroscopy

(21)

STM Measurement modes: Spectroscopy and Topography Mapping

http://hoffman.physics.harvard.edu/research/STMintro.php

(22)

22

Sparse Sampling for STM

J. Oppliger and F.D. Natterer, arxiv 1908.01903

Up to ~50x faster measurements: days → hours

(23)

Measurement Modes: Spin-Polarized Tunneling

GMR and TMR concept

wiki.org Forrester et al., RSI 89, 123706 (2018)

(24)

Forrester et al., RSI 89, 123706 (2018)

(25)

Measurement Modes: Inelastic Electron Tunneling Spectroscopy

𝐼

ℏΩ

𝑒𝑉

𝑑𝐼ൗ 𝑑𝑉

ℏΩ

𝑒𝑉

𝑑2𝐼ൗ

𝑑𝑉2

ℏΩ

𝑒𝑉 ℏΩ 𝑒𝑉

Tip Sample

from Klein (1973)

(26)

Measurement Modes: Inelastic Electron Tunneling Spectroscopy

Single Molecule Vibrational Spectroscopy

Stipe et al., Science 280, 1732 (1998)

topo

C

2

D

2

𝐼

ℏΩ

𝑒𝑉

𝑑𝐼ൗ 𝑑𝑉

ℏΩ

𝑒𝑉

𝑑2𝐼ൗ

𝑑𝑉2

ℏΩ

𝑒𝑉 ℏΩ 𝑒𝑉

Tip Sample

from Klein (1973)

C

2

H

2

358mV

266 mV 311 mV

(27)

Measurement Modes: Inelastic Electron Tunneling Spectroscopy

Heinrich et al., Science 306, 466 (2004)

Single Atom Spin Flip Spectroscopy

Mn/Al

2

0

3

𝐼

ℏΩ

𝑒𝑉

𝑑𝐼ൗ 𝑑𝑉

ℏΩ

𝑒𝑉

𝑑2𝐼ൗ

𝑑𝑉2

ℏΩ

𝑒𝑉 ℏΩ 𝑒𝑉

Tip Sample

from Klein (1973)

(28)

Measurement Modes: Pump-Probe Spectroscopy

Loth et al., Science 329, 1628 (2010) T1 = 87 ± 1 ns

(29)

29

Fe

STM ⚭ ESR

S. Baumann, W. Paul et al., Science 350, 417 (2015)

10 MHz energy resolution ≈ 40 neV 1’750 × better than NIST mK STM

30’000 × better than 4 K STM

Measurement Modes: Electron Spin

Resonance

(30)

S Baumann, W. Paul et al., Science 350, 417 (2015)

10 MHz energy resolution ≈ 40 neV 1’750 × better than NIST mK STM

30’000 × better than 4 K STM

Bz = 0.2T

f0

Zeeman

Bz Energy

hf0 = 2 µB g m Bz

f0

RF excitation

Temperature independent resolution

Measurement Modes: Electron Spin

Resonance

(31)

31

10 MHz energy resolution ≈ 40 neV 1’750 × better than NIST mK STM

30’000 × better than 4 K STM

Population

RF Frequency

f0 50:50

exp (-hf0/kbT)

Bz Energy

hf0 = 2 µB g m Bz

f0

Population driven to 50/50 at resonance Zeeman

ESR with STM

(32)

32

Measuring magnetic moments

Fe

B

ext

B

dipole

B

effective

(33)

33

Fe

B

ext

B

dipole

B

effective

Measuring magnetic moments

(34)

34

Fe

B

ext

B

dipole

B

effective

Measuring magnetic moments

(35)

35

Calibrating the Fe sensor

23.0 23.1 23.2 23.3

0 5 10

ESR signal (fA)

Frequency (GHz)

f

f

Δf = f-f

Fe-Fe r ≈ 2.5 nm

1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3 0.1

1

f (GHz)

Fe-Fe distance (nm)

Δf = a mFemFe/r3

Calibrating Fe sensor atom m

Fe

= (5.44 ± 0.03) µ

B

T. Choi et al., Nat. Nano. 12, 450 (2017)

(36)

36

10 Å Fe Mg O

Nano GPS

Trilateration from known sensor atoms

T. Choi et al., Nat. Nano. 12, 450 (2017)

(37)

37

Model system: MgO on Ag(100)

Figure from: Donati et al. Science 352, 318 (2016)

top view

(38)

Science 352, 318 (2016)

What did we know about stable Ho magnets so far?

Prediction of a Ho moment of ~5.7µ

B

On 7 ML MgO

(39)

39

Measuring the Ho bit moment

ESR line only jumps after we deliberately switch the Ho atom

→Ho on MgO is a stable magnet

mHo = (10.1 ± 0.1) µB

F.D. Natterer et al., Nature 543, 226 (2017) f0 f

f

Δf = a mHomFe/r3

(40)

40

A two “Ho bit” memory

2 bit memory:

• Designed with dipole-dipole coupling to Fe sensor in mind

• read out via TMR and via Fe sensor

Fe (sensor)

Ho

S

Ho

F

1 nm

y x

Ho

S

Ho

F

F.D. Natterer et al., Nature 543, 226 (2017)

(41)

41

A four “Ho bit” memory

“multiplexing” allows reading of N bits simultaneously

Courtesy of William Paul

(42)

75 100 125 150 0.01

0.1 1 10

Switching rate (s-1 )

V (mV)

42

Tunnel Magnetoresistance on Ho

Magnetic Switching

0 20 40 60

24 25

I (pA)

Time (s)

10 100

0.01 0.1 1 10

Switching rate (s-1 )

I (pA)

Ho

Ho Fe

Ho

MgO/Ag(100) tip

Bz

I V

V = 150 mV I= 1.5 nA

V = 150 mV

Controlling the magnetic state

F.D. Natterer et al., Nature 543, 226 (2017)

(43)

IETS on magnetic atoms

Baumann et al., Phys. Rev. Lett. 115, 237202 (2015)

(44)

IETS on magnetic atoms

B=0T

Baumann et al., Phys. Rev. Lett. 115, 237202 (2015)

(45)

IETS on magnetic atoms

Baumann et al., Phys. Rev. Lett. 115, 237202 (2015) B=0T

B=4T

(46)

Instrumentation

• Vibrations

• Acoustic noise

• Low temperature

• Ultra-high vacuum

• RF cabling

• magnets

arXiv:1810.03887

(47)

47

IBM 1.2 K STM

(48)

48

-1000 -500 0 500 1000

0.0 0.5 1.0 1.5 2.0

dI/dV (normalized)

V (V)

Teff= 232 mK

ΔE = 3.3 kb T ≈ 70 µeV

Aluminum in a dilution refrigerator at 10 mK

Song et al. RSI 81, 121101 (2010)

Ultra low temperature STM

(49)

STM@EPFL

T

STM

= 400 mK, B

zmax

= ±8.5 T, B

vector

= 0.8 T

(50)

Outlook: Atomic Details Matter

Stable Single Atom Magnet Paramagnetic Atom

Mgo Ho

How to access the individual magnets?

(51)

m

TiH

= (1.004 ± 0.001) µ

B

arXiv:1810.03887

(52)

Graphene Field Effect Device and Navigation

52 250 μm

MLG

BLG

SLG

1 nm

100 μm

5 μm

(53)

V

b

53

Scanning Tunneling Microscopy on Graphene Devices

53

Empty States

Filled States

Tip DOS Graphene DOS

dI/dV

SiO2 h-BN

Graphene

V

g

V

b

- Scanning Tunneling Spectroscopy (STS)

• Density of state information

- Scanning Tunneling Microscopy (STM)

• Spatial information of samples

Tunneling current

E

D

(54)

SiO2 h-BN

Graphene

V

g

V

b

Gate Voltage as a Tuning Knob

54

dI /dV

dI /dV

dI /dV

E

D

E

D

E

D

EF

EF EF

V

b

V

b

V

b

(55)

How to Compose a Spectroscopic “Gate Map” ?

55

-30 -20 -10 0 10 20 30 40

-300 -200 -100 0 100 200 300

Sample bias (mV)

Gate Voltage (V)

E

F

dI/dV dI/dV

dI/dV

Unoccupied States

Occupied States

(56)

Color Coding dI/dV data for all Gate Voltages

56

-30 -20 -10 0 10 20 30 40

-300 -200 -100 0 100 200 300

Sample bias (mV)

Gate Voltage (V)

E

F

dI/dV dI/dV

dI/dV

Unoccupied States

Occupied States

(57)

Fully Developed Gate Map with dI/dV data

57

E

F

Unoccupied States

Occupied States

-30 -20 -10 0 10 20 30 40

-300 -200 -100 0 100 200 300

Sample bias (mV)

Gate Voltage (V)

(58)

Averaging only Helps with Noise…

58

-100 -50 0 50 100

-2 0 2

Vg=+45V L_42501

IETS signal

Bias (mV)

-100 -50 0 50 100

-2 -1 0 1 2

Vg=+25V L_42482

Bias (mV)

IETS, 3mVrms, 200ms, 135pts, SP: ±100mV/500pA (- for Vg<0)

11h 15h

(59)

Lots of Spectral Features…

59

-100 -50 0 50 100

-2 0 2

Vg=+45V L_42501

IETS signal

Bias (mV)

-100 -50 0 50 100

-2 -1 0 1 2

Vg=+25V L_42482

Bias (mV)

IETS, 3mVrms, 200ms, 135pts, SP: ±100mV/500pA (- for Vg<0)

Where are the phonons?

? ? ?

? ? ? ?

? ?

? ? ?

?

?

?

(60)
(61)

“There is no such thing as a free lunch.”

61

-30 -20 -10 0 10 20 30 40

-300 -200 -100 0 100 200 300

Sample bias (mV)

Gate Voltage (V)

condensing/averaging all spectra into one

The Bill:

no gate resolution

𝑑𝐼ൗ 𝑑𝑉

ℏω

𝑒𝑉

−ℏω

𝑑2𝐼ൗ

𝑑𝑉2

ℏω

−ℏω 𝑒𝑉

Inelastic excitations at constant threshold

ℏ𝜔

−ℏ𝜔

(62)

“There is no such thing as a free lunch.”

62

𝑑𝐼ൗ 𝑑𝑉

ℏω

𝑒𝑉

−ℏω

𝑑2𝐼ൗ

𝑑𝑉2

ℏω

−ℏω 𝑒𝑉

Inelastic excitations at constant threshold

(63)

Zoom into Exposed Excitations

63

Extracting threshold energies

(64)

How does it Compare to Phonon Dispersion and Density of States?

64

Excellent agreement with maxima in phonon DOS

ћ𝝎 IETS (meV) DFT (meV) Symmetry

1 56.8 ± 0.9 58 M3+

2 80.9 ± 1.3 78.1 M

3 152.8 ± 1.2 148.9 K5 4 176.9 ± 1.5 172.6 M3-

5 195 ± 2 198.7 Γ5+

6 359 ± 1 356.2 Γ5+ + K1

Flat dispersion→ large DOS

large electron-phonon coupling

(65)

Gate (Density) Resolved Phonon Spectroscopy

65

-40 -20 0 20 40

-500 -250 0 250 500

V b (mV)

Vg (V)

Natterer et al. Phys. Rev. Lett. 114, 245502 (2015) ℏ𝜔

1-2 1-2 3-5 6

3-5 6

We know where to look at:

Phonons appear as “faint” horizontal lines

ћ𝝎 IETS (meV) DFT (meV) Symmetry

1 56.8 ± 0.9 58 M3+

2 80.9 ± 1.3 78.1 M

3 152.8 ± 1.2 148.9 K5 4 176.9 ± 1.5 172.6 M3-

5 195 ± 2 198.7 Γ5+

6 359 ± 1 356.2 Γ5+ + K1

(66)

Phonon Intensities Show Asymmetries

66

Two asymmetries in phonon intensity:

• With respect to charge carrier concentration

• With respect to bias

-40 -20 0 20 40

-500 -250 0 250 500

V b (mV)

Vg (V)

-40 -20 0 20 40

-0.5 0.0 0.5 1.0

d2 I/dV2 (nS/V)-d2 I/dV2 (nS/V)

Vg (V)

-40 -20 0 20 40

-0.5 0.0 0.5 1.0

𝑉𝑏 = 359 meV

𝑉𝑏 = −359 meV

Natterer et al. Phys. Rev. Lett. 114, 245502 (2015)

(67)

Measuring Apparent Barrier Heights

• Current: 𝐼 𝑧 = 𝐼 0 𝑒 −2𝑎𝑧 , α = 5.1 Φ(𝑒𝑉)𝑛𝑚 −1

𝑑𝑙𝑛( ൗ

𝐼 𝐼0

)

𝑑𝑧 = −2𝛼

• Φ =

2

8𝑚

𝑑𝑙𝑛( ൗ

𝐼 𝐼0

) 𝑑𝑧

2

≈ 0.95 𝑑𝑙𝑛( ൗ

𝐼 𝐼0

) 𝑑𝑧

2

(68)

H 2 on h-BN/Ni(111)

Condensation around Ti atoms 3 × 3 𝑅30

°

unit cell

5 nm 1 L H2, TD = 10 K, h-BN/Ni(111)

F. D. Natterer, F. Patthey, and H. Brune, Phys. Rev. Lett. 111, 175303 (2013)

(69)

Molecular Rotations

• Hydrogen dosing at 10 K

• 𝑇

𝑆𝑇𝑀

= 4.7 K

10 Å

H

2

Natterer et al., ACS nano 8, 7099 (2014)

(70)

Rotational Excitation Spectroscopy

𝑅g = 1 × 109 Ω

F. D. Natterer, F. Patthey, and H. Brune, Phys. Rev. Lett. 111, 175303 (2013)

11% ≤ ∆𝜎 ൗ

𝜎 ≤ 37%

(71)

Scaling Behavior for Molecular Motion

𝑅g = 1 × 109 Ω

Examining scaling of threshold

excitations with isotopic substitution

Vibrational Excitations:

➢ scale with √mass

-1

Rotational Excitations:

➢ scale with mass

-1

Stipe et al., Science 280, 1732 (1998)

C

2

H

2

C

2

D

2

(72)

STM - RES

F. D. Natterer, F. Patthey, and H. Brune, Phys. Rev. Lett. 111, 175303 (2013) See also Li et al. Phys. Rev. Lett. 111, 146102 (2013) for H2/Au(110)

Examining scaling of threshold

excitations with isotopic substitution

Vibrational Excitations:

➢ scale with √mass

-1

Rotational Excitations:

➢ scale with mass

-1

(73)

STM - RES

Examining scaling of threshold

excitations with isotopic substitution

Vibrational Excitations:

➢ scale with mass

-1

Rotational Excitations:

➢ scale with mass

-1

F. D. Natterer, F. Patthey, and H. Brune, Phys. Rev. Lett. 111, 175303 (2013) See also Li et al. Phys. Rev. Lett. 111, 146102 (2013) for H2/Au(110)

Rotational constant:

𝐵 = ℏ2ൗ 2𝐼

(74)

Homonuclear Diatomics

Ψ 𝑡𝑜𝑡 = Ψ 𝑒𝑙 Ψ 𝑣𝑖𝑏 Ψ 𝑛𝑢𝑐 Ψ 𝑟𝑜𝑡

𝐼𝑁 𝐼𝑁

Example: Hydrogen; nucleons are Fermions

Symmetric nuclear triplet state, 𝜳

𝒏𝒖𝒄

➢ Antisymmetric rotational state, 𝜳

𝒓𝒐𝒕

➢ Ortho-hydrogen

↑↑

(↓↓)

(↑↓+↓↑)/ 2

Antisymmetric singlet state, 𝜳

𝒏𝒖𝒄

➢ Symmetric rotational state, 𝜳

𝒓𝒐𝒕

➢ Para-hydrogen

(↑↓−↓↑)/ 2

are interdependent

→ Forbidden transition between ortho-para isomers

→ Molecules remain in their rotational subspace

(75)

Homonuclear Diatomics

Ψ 𝑡𝑜𝑡 = Ψ 𝑒𝑙 Ψ 𝑣𝑖𝑏 Ψ 𝑛𝑢𝑐 Ψ 𝑟𝑜𝑡

𝐼𝑁 𝐼𝑁

Example: Hydrogen; nucleons are Fermions

are interdependent

→ Forbidden transition between ortho-para isomers

→ Molecules remain in their rotational subspace

(76)

Energy Assignment in STM-RES

F. D. Natterer, F. Patthey, and H. Brune, Phys. Rev. Lett. 111, 175303 (2013) 76

➢ Excitations at 20.9±0.1, 32.8±0.4, and 43.8 ±0.1 meV are ∆𝐽 = 2 transitions of ortho-D

2

, HD, and para-H

2

➢ STM-RES energies equivalent to 3D rigid rotors in the gas phase

➢ Distinction of nuclear spin states Initial state ∆𝑱 = 𝟏 ∆𝑱 = 𝟐

p-H2 (𝐽 = 0) - 43.9 o-H2 (𝐽 = 1) - 72.8 o-D2 (𝐽 = 0) - 22.2 p-D2 (𝐽 = 1) - 36.9

HD (𝐽 = 0) 11.1 33.1

I. F. Silvera, Rev. Mod. Phys. 52, 393 (1980)

Abbildung

Figure from: Donati et al. Science 352, 318 (2016)

Referenzen

ÄHNLICHE DOKUMENTE

(The term surface states shall include surface resonances for the following.) To do so we have studied the decay of quantum mechanical interference patterns from surface state

Julian: Introduction to scanning tunneling microscopy. Introduction to scanning tunneling microscopy

Without electron injection by the tunnel current, the density of the hole gas at the surface is defined by the potential between tip and sample (Fig. Neglecting recombination,

6 Spatially resolved low-energy electron diffraction 23 7 Surface resonance of the (2 × 1) reconstructed lanthanum hexaboride (001)-cleavage plane: A combined STM and DFT study 25

While in the past zero-bias anomalies have usually been interpreted as Kondo resonance in the strong anitferro- magnetic (AFM) coupling regime, our analysis of the temperature

As the STM setup was not only intended for surface characterisation but also for the inves- tigation of wetting properties, optical access was provided by four indium sealed

The point symmetric appearance of the local density of states leads to a direct visualization of the chirality of PVBA molecules of a homochiral complex. The mirror symmetric

These late stage changes involve significant mass transport and include current induced faceting, sur- face grain growth, agglomeration, and a previously unre-