• Keine Ergebnisse gefunden

Norbert Wasmund, Leibniz‐Institute for Baltic Sea Research, D‐18119 Warnemünde, Germany

N/A
N/A
Protected

Academic year: 2022

Aktie "Norbert Wasmund, Leibniz‐Institute for Baltic Sea Research, D‐18119 Warnemünde, Germany"

Copied!
10
0
0

Wird geladen.... (Jetzt Volltext ansehen)

Volltext

(1)

By By

Norbert Wasmund, Leibniz‐Institute for Baltic Sea Research, D‐18119 Warnemünde, Germany

Jarno Tuimala, Finnish Red Cross Blood Service, FI‐00310 Helsinki, Finland

Leen Vandepitte, Flanders Marine Institutem, InnovOcean site, B‐8400 Oostende, Belgium

Al d  K b  Bi l i h  A t lt H l l d  Alf d W  I tit t  f P l   d M i  R h  

Alexandra Kraberg, Biologische Anstalt Helgoland, Alfred Wegener Institute for Polar and Marine Research,  D‐27483 Helgoland, Germany

Data from the Monitoring Programme COMBINE of HELCOM and various research projects of the IOW.

HELCOM data are free, but latest data, not available from the data bank, were contributed by

•Susanna Hajdu and Svante Nyberg (Stockholm University), 

•Slawomira Gromisz and  Janina M. Kownacka (MIR Gdynia, PL), 

•Henrik Jespersen (Bornholms RegionskommuneHenrik Jespersen (Bornholms Regionskommune, DK) and Bente Brix Madsen (Orbicon, DK), DK) and Bente Brix Madsen (Orbicon DK)

•Irina Olenina (Centre of Marine Research Klaipeda, LT). 

Data  contributed to the Project LargeNet within the European Network of Excellence 

“M i  Bi di it   d E t  F ti i ” (M BEF)  

1

“Marine Biodiversity and Ecosystem Functioning” (MarBEF). 

(2)

Introduction

What is HELCOM ? 

Baltic Marine Environment Protection 

( )

Commission (Helsinki Commission)

1974: Helsinki Convention signed by the Baltic coastal states.       

1979: Start of  the joint Baltic Monitoring Programme.

Data  go to national data banks and finally to ICES Data  go to national data banks and finally to ICES.

I1 58

K atte g at   and B elt   Sea

J1

57

Kiel Bight Eastern 

Gotland 

Various components of the 

ecosystem

K1

56

atitude [deg N]

Mecklenburg Bight Arkona Sea

Gotland  Sea

 only Phytoplankton Whole Baltic Sea

 only Kiel and Mecklenburg Bight  

N1 M1

K8

K7 K4 K5

K2

N3 55

La

2

 only Kiel and Mecklenburg Bight, 

Central and southern Baltic Proper 

M2

10 11 12 13 14 15 16 17 18 19 20 21 22

54

Bornholm Sea

(3)

Data Source

Station  Period of  Number of

Which data are available ? How are the data distributed ?

name data series samples (n)  BMP I1 1979‐1996 82

BMP J1 1979‐2005 320 BMP K1 1979‐2005 186 BMP K1 1979 2005 186 BMP K2 1979‐2006 366 BMP K4 1979‐2005

BMP K5 1981‐2005 567*

BMP K7 1979‐2002

BMP K8 1989‐2005 112 BMP M1 1980‐2005

BMP M2 1980‐2005 398**

BMP M2 1980 2005 398 BMP N1 1979‐1997 203 BMP N3 1986‐2000 86

*   Station K4, K5 and K7 combined

Season Belt Sea Baltic Proper

Spring February‐April March‐May

Definition of seasons according to the HELCOM 

4 5 7

** Station M1 and M2 combined

Spring February April March May

Summer May‐August June‐September

Autumn September‐November October‐December

Data set  as split into 4 parts according to the seasons

3

Data set was split into 4 parts according to the seasons.

Winter was not analysed.

(4)

Data validation

Revision of taxa names, examples:

C l h i L i ll C di t

„Microcystis reinboldii“ or „Microcystis sp.“ or „Chroococcales unid.“

Aphanothece sp

Chroococcus microscopicus

Coelosphaerium minutissimum

Cyanodictyon planctonicum Lemmermanniella

parva

Aphanocapsa sp.

„Gomphosphaeria  „Chaetoceros danicus“ Chaetoceros

Woronichinia Hemiselmis

„Gomphosphaeria  pusilla“

„Rhodomonas  minuta“

„Chaetoceros danicus Chaetoceros danicus

o o c a

compacta Hemiselmis

sp.

(K. Jensen)

Gompho‐

sphaeria salina

Teleaulax acuta Plagioselmis

prolonga

(D. Hill)

Snowella lacustris

Chaetoceros impressus

(5)

Statistical analyses

Only taxa that contain at least 10 

observations per station and season were  observations per station and season were  used for the statistical analyses

Mann‐Kendall test used for detecting  monotonous linear trends:

monotonous linear trends:

non‐parametric, no assumptions on the  shape of distribution.

If the phytoplankton biomass showed both  growing and decreasing phases: 

special trend break analysis:

1. detecting the break point (for every  taxon/station/season)

2. for further analyses, the breakpoints were  2. for further analyses, the breakpoints were 

averaged on the station/season level 3. testing for a linear trend in the parts 

before and after the break point

5

(6)

tation season L A M BIOMASS ostocophyceae Aphanizomenon aria spumigena Chroococcales Oscillatoriales ophyceaeA+M centrummicans trumminimum hysis acuminata hysisnorvegica Gymnodinium capsatriquetra iniellacatenata Ceratium tripos ophyceaetotal  Chaetoceros Thalassiosira Actinocyclus ylindrusdanicus nemacostatum oleniapungens Coscinodiscus taulinapelagica auliellataeniata seudo nitzschia tyochophyceae Cryptophyceae Chrysophyceae Dinobryon Chlorophyceae uglenophyceae Prasinophyceae Ciliophora TAL H BIOMASS Ebriidea oanoflagellidea phyceaeH  total  eridiniumbipes

st TOTAL N A Nodula Din Proroc Prorocen Dinoph Dinop Hetero Perid C Diatomo Leptocy Skeleton Rhizos Cerat Pa Ps Dict C E P TOT Cho Dinop Protope

I1 sp J1 sp +/

J1 sp +/‐

K1 sp +/‐ +/‐ +/‐

K2 sp +/‐ +/‐ ‐/+ +/‐

K457 sp +/+ +/+ +/‐ +/‐ ‐/+ +/‐

K8 sp +/‐ +/‐ +/‐

M12 sp +/‐ ‐/+ +/+ +/‐

N1 sp N3 sp I1 su J1 su K1 su

K2 su ‐/‐ ‐/‐ ‐/‐ ‐/‐

K457 su ‐/‐ ‐/‐ ‐/‐ ‐/‐

K8 su +/‐

M12 su ‐/‐/ ‐/‐/ +/‐/

N1 su N3 su I1 au

J1 au +/‐ +/‐ +/‐

K1 au +/+

K1 au +/+

K2 au

K457 au ‐/‐

K8 au

M12 au +/‐ +/‐ +/‐

N1 N1 au

N3 au

growing trend, p<0 001 growing trend, p<0 01

diminishing trend, p<0 05

diminishing trend, p<0 01

(7)

tation season L A M BIOMASS ostocophyceae Aphanizomenon aria spumigena Chroococcales Oscillatoriales ophyceaeA+M centrummicans trumminimum hysis acuminata hysisnorvegica Gymnodinium capsatriquetra iniellacatenata Ceratium tripos ophyceaetotal  Chaetoceros Thalassiosira Actinocyclus ylindrusdanicus nemacostatum oleniapungens Coscinodiscus taulinapelagica auliellataeniata seudo nitzschia tyochophyceae Cryptophyceae Chrysophyceae Dinobryon Chlorophyceae uglenophyceae Prasinophyceae Ciliophora TAL H BIOMASS Ebriidea oanoflagellidea phyceaeH  total  eridiniumbipes

st TOTAL N A Nodula Din Proroc Prorocen Dinoph Dinop Hetero Perid C Diatomo Leptocy Skeleton Rhizos Cerat Pa Ps Dict C E P TOT Cho Dinop Protope

I1 sp J1 sp +/

J1 sp +/‐

K1 sp +/‐ +/‐ +/‐

K2 sp +/‐ +/‐ ‐/+ +/‐

K457 sp +/+ +/+ +/‐ +/‐ ‐/+ +/‐

K8 sp +/‐ +/‐ +/‐

M12 sp +/‐ ‐/+ +/+ +/‐

N1 sp N3 sp I1 su J1 su K1 su

K2 su ‐/‐ ‐/‐ ‐/‐ ‐/‐

K457 su ‐/‐ ‐/‐ ‐/‐ ‐/‐

K8 su +/‐

M12 su ‐/‐/ ‐/‐/ +/‐/

N1 su N3 su I1 au

J1 au +/‐ +/‐ +/‐

K1 au +/+

K1 au +/+

K2 au

K457 au ‐/‐

K8 au

M12 au +/‐ +/‐ +/‐

N1 N1 au

N3 au

growing trend, p<0 001 growing trend, p<0 01 growing trend, p<0 05

diminishing trend, p<0 05 diminishing trend, p<0 01

diminishing trend, p<0 001 7

(8)

tation season L A M BIOMASS ostocophyceae Aphanizomenon aria spumigena Chroococcales Oscillatoriales ophyceaeA+M centrummicans trumminimum hysis acuminata hysisnorvegica Gymnodinium capsatriquetra iniellacatenata Ceratium tripos ophyceaetotal  Chaetoceros Thalassiosira Actinocyclus ylindrusdanicus nemacostatum oleniapungens Coscinodiscus taulinapelagica auliellataeniata seudo nitzschia tyochophyceae Cryptophyceae Chrysophyceae Dinobryon Chlorophyceae uglenophyceae Prasinophyceae Ciliophora TAL H BIOMASS Ebriidea oanoflagellidea phyceaeH  total  eridiniumbipes

st TOTAL N A Nodula Din Proroc Prorocen Dinoph Dinop Hetero Perid C Diatomo Leptocy Skeleton Rhizos Cerat Pa Ps Dict C E P TOT Cho Dinop Protope

I1 sp J1 sp +/

J1 sp +/‐

K1 sp +/‐ +/‐ +/‐

K2 sp +/‐ +/‐ ‐/+ +/‐

K457 sp +/+ +/+ +/‐ +/‐ ‐/+ +/‐

K8 sp +/‐ +/‐ +/‐

M12 sp +/‐ ‐/+ +/+ +/‐

N1 sp N3 sp I1 su J1 su K1 su

K2 su ‐/‐ ‐/‐ ‐/‐ ‐/‐

K457 su ‐/‐ ‐/‐ ‐/‐ ‐/‐

K8 su +/‐

M12 su ‐/‐/ ‐/‐/ +/‐/

N1 su N3 su I1 au

J1 au +/‐ +/‐ +/‐

K1 au +/+

K1 au +/+

K2 au

K457 au ‐/‐

K8 au

M12 au +/‐ +/‐ +/‐

N1 N1 au

N3 au

growing trend, p<0 001 growing trend, p<0 01

diminishing trend, p<0 05

diminishing trend, p<0 01

(9)

tation season L A M BIOMASS ostocophyceae Aphanizomenon aria spumigena Chroococcales Oscillatoriales ophyceaeA+M centrummicans trumminimum hysis acuminata hysisnorvegica Gymnodinium capsatriquetra iniellacatenata Ceratium tripos ophyceaetotal  Chaetoceros Thalassiosira Actinocyclus ylindrusdanicus nemacostatum oleniapungens Coscinodiscus taulinapelagica auliellataeniata seudo nitzschia tyochophyceae Cryptophyceae Chrysophyceae Dinobryon Chlorophyceae uglenophyceae Prasinophyceae Ciliophora TAL H BIOMASS Ebriidea oanoflagellidea phyceaeH  total  eridiniumbipes

st TOTAL N A Nodula Din Proroc Prorocen Dinoph Dinop Hetero Perid C Diatomo Leptocy Skeleton Rhizos Cerat Pa Ps Dict C E P TOT Cho Dinop Protope

I1 sp J1 sp +/

J1 sp +/‐

K1 sp +/‐ +/‐ +/‐

K2 sp +/‐ +/‐ ‐/+ +/‐

K457 sp +/+ +/+ +/‐ +/‐ ‐/+ +/‐

K8 sp +/‐ +/‐ +/‐

M12 sp +/‐ ‐/+ +/+ +/‐

N1 sp N3 sp I1 su J1 su K1 su

K2 su ‐/‐ ‐/‐ ‐/‐ ‐/‐

K457 su ‐/‐ ‐/‐ ‐/‐ ‐/‐

K8 su +/‐

M12 su / / +/

M12 su ‐/‐ ‐/‐ +/‐

N1 su N3 su I1 au

J1 au +/‐ +/‐ +/‐

/

K1 au +/+

K2 au

K457 au ‐/‐

K8 au

M12 au +/‐ +/‐ +/‐

N1 au

N3 au

growing trend, p<0 001 growing trend, p<0 01 growing trend, p<0 05

diminishing trend, p<0 05 diminishing trend, p<0 01

diminishing trend, p<0 001 9

(10)

Conclusions:

• Ph toplankton re eals trends in total biomass and the biomass of

• Phytoplankton reveals trends in total biomass and the biomass of different important taxa. 

• Analyses for linear trends are useful tools if changes in phytoplankton occur more or less continuosly  e g  due to eutrophication which is the occur more or less continuosly, e.g. due to eutrophication which is the main threat in the Baltic.

• However, non‐monotonous trends occur which might require other statistical methods

statistical methods.

• The linear trend analyses do not detect sudden jumps in the ecosystem (regime shifts) 

• Data basis has to be improved (better coverage of blooms, quality Data basis has to be improved (better coverage of blooms, quality

assurance,  data validation).

Referenzen

ÄHNLICHE DOKUMENTE

If the CBAM fails, the EU could face a serious problem. Its updated 2030 target of 55% greenhouse gas emissions reduction necessitates an ambitious reform of the EU’s Emissions

Little Ice Age (LIA), Medieval Climate Anomaly (MCA or MWP), and Modern Warming Period (MoWP), and combine the results with sedimentological data it should be

Figure 4: Oxygen/hydrogen sulphide in the bottom near layer for selected stations Figure 5: Cross section 1 from Kiel Bight to eastern Gotland Basin showing the.

Figure 4: Oxygen/hydrogen sulphide in the bottom near layer for selected stations Figure 5: Cross section from Kiel Bight to eastern Gotland Basin showing the.. hydrographic

In the Bornholm and Eastern Gotland Basin are 4 samples (TF213, TF271, TF272, TF285) of sea bed sediments taken to analyse the resettlement of foraminifera due to

The second part of this EMB 100 cruise was used gathering hydrographic, chemical, biological and geological data in the Bornholm Basin and Eastern Gotland Basin to follow

The oxygen concentrations in the bottom water are still relatively high in the central Kiel and Mecklenburg Bay, but they decrease already in the Arkona Basin and are

The situation changed further to the north (stat. TF0259, TF0255, TF0253, TF0250); here a water body containing higher oxygen concentrations in comparison with the overlaying