• Keine Ergebnisse gefunden

quantitative aspects of b e h a v i o u r in the surface deposit feeders Pygospio elegans (Polychaeta) and

N/A
N/A
Protected

Academic year: 2022

Aktie "quantitative aspects of b e h a v i o u r in the surface deposit feeders Pygospio elegans (Polychaeta) and "

Copied!
16
0
0

Wird geladen.... (Jetzt Volltext ansehen)

Volltext

(1)

H E L G O I ~ N D E R MEI~Rt~SUNTERSUCHUNGI~N Helgol~inder Meeresunters. 45, 301-316 (1991}

Interactions in soft bottom benthic, communities:

quantitative aspects of b e h a v i o u r in the surface deposit feeders Pygospio elegans (Polychaeta) and

Macoma balthica (Bivalvia}*

Thomas Brey

Alfred- Wegener-Institut ffir Polar- und Meeresforschung;

ColumbusstraBe, D-W-2850 Bremerhaven, Federal Republic of G e r m a n y

ABSTRACT: The surface deposit feeding species Pygospio elegans and Macoma balthica are dominant members of many sandy bottom communities of northern boreal regions. The feeding mode of both species and the tube-building of P. elegans are assumed to affect community structure by interactions with other species. The weight of tubes of P. elegans varied between 2 and 13 g DW/

100 cm 2 at the two stations investigated and during the year, which is equivalent to 230-1500 cm of tubes per 100 cm 2 of sediment surface. Sediment stability may be affected directly or indirectly by the amount of tubes present. M. balttn'ca shows a hnear relation between the maximum size of particles which can be inhaled and animal length. In Kiel Bay, particles > 0.5 mm are out of the range of this species. In summer, the potential feeding area (PFA,) of a P. elegans population at one station in Kiel Bay was 1.8 times the available surface area. The PFA of three different populations of M. balthica in Kiel Bay exceeded the available surface area by factors of 2.6, 2.7, and 3.2. These findings indicate strong intra- and interspecific competition for food. Additionally, the feeding of both species may strongly affect the recruitment of benthic species via pelagic larvae. Experiments are proposed to evaluate the significance of the investigated behavioural aspects for community structure.

I N T R O D U C T I O N

I n t r a - a n d i n t e r s p e c i f i c i n t e r a c t i o n s a n d t h e i r s i g n i f i c a n c e for c o m m u n i t y s t r u c t u r e in soft b o t t o m s h a v e b e e n t h e s u b j e c t of m a n y p u b l i c a t i o n s d u r i n g r e c e n t y e a r s (Bell &

Coull, 1980; B l a c k & P e t e r s o n , 1988; B l a r i c o m , i 9 8 2 ; B o n s d o r f f et al., 1986; G a l l a g h e r et al., 19831 H u n t et aE, 19871 L e v i n , 19811 L u c k e n b a c h , 1987; O l a f s s o n , 1989; P e t e r s o n , 1979; Reise, 1983; W h i f l a c h & Z a j a k , 19851 Wilson, 1983b; W o o d i n , 1981; a n d m a n y others).

A n y i n t e r a c t i o n d e p e n d s o n t h e e f f e c t of o n e a n i m a l o n a n o t h e r a n d v i c e v e r s a , i.e.

i n t e r a c t i o n s a r e b a s e d o n c e r t a i n a s p e c t s of t h e life style or b e h a v i o u r of t h e a n i m a l s . In m o s t cases, w e k n o w t h e m e c h a n i s m s w h i c h c a u s e a p o s i t i v e or n e g a t i v e e f f e c t of o n e a n i m a l o n a n o t h e r , e.g. p r o t e c t i o n , p r e d a t i o n , t e r r i t o r i a l i s m , o c c u p a t i o n of s p a c e , or d i s t u r b a n c e . H o w e v e r , w i t h r e s p e c t to soft b o t t o m b e n t h i c c o m m u n i t i e s , o n l y a f e w a u t h o r s h a v e e x a m i n e d t h e " q u a n t i t y " of a c e r t a i n b e h a v i o u r w h i c h a n i n t e r a c t i o n m a y

" A W I Publication No. 393

9 Biologische Anstalt Helgoland, Hamburg

(2)

b e b a s e d on, e.g. the m o v e m e n t of a m e i o b e n t h i c predator (Watzin, 1985); the s e d i m e n t t u r n o v e r of a p o p u l a t i o n of s e d i m e n t feeders (Cadee, 1976 a n d r e f e r e n c e s therein), or the pore w a t e r transport rates of a p o p u l a t i o n of t u b e b u i l d i n g p o l y c h a e t e s (Aller, 1980).

T h e aim of this p a p e r is to e v a l u a t e some aspects of b e h a v i o u r w h i c h are p o t e n t i a l sources of i n t e r a c t i o n s in two surface deposit f e e d i n g species, the t u b e b u i l d i n g polychaete t~gospio elegans (Clapar~de) a n d the bivalve Macoma balthica (L.), which are both very c o m m o n i n shallow s a n d y s e d i m e n t s of the n o r t h e r n b o r e a l regions. In both species, f e e d i n g is a s s u m e d to affect other a n i m a l s which hve at t h e s e d i m e n t surface, either via d i s t u r b a n c e a n d competition for food or via p r e d a t i o n (see e.g. H i n e s et al., 1989; Olafsson, 1989; Wilson, 1981). I have tried to quantify the p o t e n t i a l f e e d i n g a r e a at the s e d i m e n t surface, i.e. the area w i t h i n the r a n g e of the t e n t a c l e s (P. elegans) or the i n h a l e n t siphon (M. baltln'ca) of the animals. Additionally, I i n v e s t i g a t e d t h e particle size selection of M. balthica, w h i c h m a y play a n i m p o r t a n t role for the s u c c e s s f u l r e c r u i t m e n t of species with p e l a g i c larvae (see H i n e s et al., 1989) a n d the a m o u n t of s e d i m e n t which is b o u n d in the t u b e s of P. elegans, w h i c h are a s s u m e d to affect pore w a t e r t r a n s p o r t a n d s e d i m e n t stabihty.

METHODS

Samples were t a k e n at two stations, the s u b t i d a l station " G a b e l s f l a c h " (GF) i n Kiel Bay ( m e d i u m / f i n e sand, 12 m w a t e r depth) a n d the intertidal station " W e s t e r h e v e r " (WH) in the G e r m a n W a d d e n Sea {fine sand), d u r i n g 1986 to 1988 {Fig. 1). S p e c i m e n s for laboratory e x p e r i m e n t s were s a m p l e d at the station GF with a 0.1 m 2 V a n V e e n grab or a 0.09 m 2 box corer. All other s a m p l e s were t a k e n b y h a n d {station GF: diver} o p e r a t e d corers (27 cm 2, 10 cm s a m p l i n g depth), fixed in a s e a w a t e r solution of 0.4 % f o r m a l d e h y d e a n d 3 % Kohrsolin (see Brey, 1986}, s t a i n e d with Bengal rose, a n d s i e v e d t h r o u g h 0.25 m m in the laboratory.

Pygospio elegans -

potential feeding area ( P F A )

At the station G F a 40 x 30 crn P V C tray w a s filled with a 4 c m layer of natural sediment, w h i c h h a d b e e n sieved through 1 r n m previously in order to r e m o v e larger animals. O n top of this sediment layer I put unsieved sediment from the u p p e r 3-5 c m of the content of two grabs. Afterwards, the tray w a s filled with seawater. After two days, the specimens of

P. elegans

in the tray had re-established their tubes a n d w e r e easily recognizable by the area around each tube, w h i c h w a s swept clean of all fine detritus particles. T h e size of 50 (June 86) a n d 60 (July 87) randomly selected P F A s w a s measured.

Pygospio elegans-

tubes

T h e a m o u n t of tubes of/9.

elegans

w a s investigated at severa] dates at both stations.

T h e tubes w e r e collected from core samples, dried at 8 0 ~ a n d weighed. In the laboratory, specimens of P.

elegans

w e r e allowed to build tubes in 15-ml glass tubes filled with azoic sediment a n d placed in a

circulating

sea water system at 12 ~ A n i m a l s a n d their tubes w e r e m e a s u r e d a n d weighed.

(3)

I n t e r a c t i o n s i n s o f t b o t t o m b e n t h o s 303

8 ~ 1 0 ~ 1 2 ~ 14 ~

9 I ~J

)iiiiiiii!iiiiii!iiiiiiii i

k i

r I

" iiiii!i ii;i iii!iiiiiii!!'

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: 1=

y o ~ 8 S e

..:::::::::::::::::::::::::::!):~:~:::::~:~:~:~:~:~.:~:~::...:...:~i~i::~!~i~i~!~i~i:~!~!~!:i~i~iii~

' @ . 5

,,~",e ~ -t " ..i:~:i:i:i:?:i:!:'i:i:!:i :i:i:~:~:!:i:i:!:!:!:!:i:i:~:i:!:!:!:!:!:i:i:~:i:i:?:!:~:!:!:!:!:!:!:i:i:i:??~:~:~:~:~:i:~!i!i:. :

. . , . - ~ " .. ==========================================================================================================::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::

-...,....======================= ======================================================================================================================== ::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::

:::::::::::::::::::::::::::::::::::::::::. ... ======================================================================================= ::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::

===================== ::::::::::~!!:! :::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::!:i; ::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: r . . . .-.,-...,,..-..,~ ... ,,-~.-~ ... . ... :.: ... :.: ... : ... :.x.: ... : ... t

... ~ ~ ~ - . ~ - ~ :

8 = E 1 0 ~ 1 2 = 1 4 ~

Fig'. 1. Location of stations G a b e l s f l a c h (GF, star) in Kiei Bay a n d W e s t e r h e v e r (WH, s q u a r e ) in t h e G e r m a n W a d d e n S e a

(4)

M a c o m a b a l t h i c a - p o t e n t i a l f e e d i n g a r e a (PFA)

Single s p e c i m e n s w e r e m e a s u r e d to the lower 0.1 ram, p l a c e d in a t r a y filled with 6 cm n a t u r a l s e d i m e n t a n d k e p t at 12~C. T h e , a n i m a l s b u r i e d t h e m s e l v e s v e r y rapidly a n d started to suck m a t e r i a l from the surface with their i n h a l e n t siphon. T h e a r e a w h i c h h a d b e e n s w e p t c l e a n was m e a s u r e d after 2 a n d 5 h in a first set of e x p e r i m e n t s , a n d after 24 h i n a s e c o n d set.

I~r b a l t h i c a - p a r t i c l e s e l e c t i o n

Self & J u m a r s (1988) stated that M. balthica does not select particles of a c e r t a i n size with its i n h a l e n t siphon, b u t there m a y b e a n u p p e r hmit of particle size w h i c h is r e l a t e d to the size of the animal. T h e m a x i m u m size of particles in the m a n t l e c a v i t y of p r e s e r v e d s p e c i m e n s (4-17 m m length) from the station GF w a s m e a s u r e d u n d e r t h e stereo microscope a n d correlated with a n i m a l length.

RESULTS

P y g o s p i o e l e g a n s - p o t e n t i a l f e e d i n g a r e a (PFA)

T a b l e 1 shows the results of these experiments. The a v e r a g e PFA of P. e l e g a n s was 57 m m 2 {June 86) a n d 91 m m 2 (July 87), respectively. F i g u r e 2 shows the f r e q u e n c y distribution of PFA in July 87. T h e m i n i m u m distance b e t w e e n two t u b e s w a s b e l o w 4 m m i n both experiments. Direct observations s h o w e d that P. e l e g a n s is a b l e to p u t the greater part of its b o d y out of the tube, if the r a n g e of the tentacles is n o t sufficient to

Table 1. The average feeding area of Pygospio elegans from the station GF in two laboratory experiments. Min. dist.: Minimum distance between two tubes; S.D.: Standard deviation

Date N m -2 Feeding area

Min. dist. Mean radius S . D . Average area

(mm) (mm) (mm 2)

19 June 86 4200 3.5 4.26 0.9 57

15 July 87 3800 3,9 5.46 2.0 91

reach a certain spot at the s e d i m e n t surface. Furthermore, I could not o b s e r v e a n y sign of aggressive reactions d u r i n g e n c o u n t e r s of t e n t a c l e s of different s p e c i m e n s .

T h e l e n g t h of the s p e c i m e n s u s e d for f e e d i n g area m e a s u r e m e n t s w a s n o t deter- m i n e d , b u t there is a l e n g t h f r e q u e n c y distribution of P. e l e g a n s a v a i l a b I e from the t u b e s a m p l e s (see below) of July 87 (Fig. 3). A s s u m i n g that the relation b e t w e e n a n i m a l l e n g t h a n d radius of PFA is linear, the p a r a m e t e r s of the c o r r e s p o n d i n g e q u a t i o n m a y b e e s t i m a t e d r o u g h l y from the smallest a n d largest l e n g t h a n d radius v a l u e s (length:

1 r a m - 9 m m ; radius: 1.5 m m - 9 . 5 ram):

RpF A ~ 0.5 -[" 1.0 • Lpygospio; ( m m - m m ) (1)

(5)

Interactions in soft bottom b e n t h o s 305

0 50 100 150 200 250

Feeding Area (ram z)

300

Fig. 2. Frequency distribution of potential feeding areas of Pygospio elegans sampled at station GF (10 July 87, N = 60)

60

50

40' ..Q E 30"

z 2O

0

m

6 8

Length (ram)

10

Fig. 3. Length frequency distribution of Pygospio elegans at station GF (10 July 87, N = 289)

P y g o s p i o e l e g a n s - t u b e s

T h e i n d i v i d u a l t u b e b u i l d i n g was i n v e s t i g a t e d b y laboratory e x p e r i m e n t s . F i g u r e 4 shows the relation b e t w e e n l e n g t h of P. eIegans a n d total l e n g t h ( i n c l u d i n g b r a n c h e s ) of the c o r r e s p o n d i n g tubes. T h e r e is a l i n e a r relationship b e t w e e n t u b e l e n g t h a n d a n i m a l l e n g t h :

L T u b e = 2,275 + 3.567 x

Lpygospio;

( m m - m m )

r 2 = 0.671, N = 127 (2)

(6)

8O

70'

60"

"~ sc

}

E ' ~ ..J

Z 3c

2 O

. . . .

' l

TL = 2.275 + 3.567 * PL; r = 0.819, N = 127 o

o

o o o

o o

^ 8

o o o ~ i~o o

~176176

0 2 4 6 8 10 1 2 14

P y g o s p i o L e n g t h ( m m )

Fig. 4. Relation between animal length and tube length in Pygospio elegans (animals from station GF)

By m e a n s of the relation b e t w e e n t u b e l e n g t h a n d t u b e dry w e i g h t D W T u b e ---- - 2 . 1 5 2 + 0.864 x LTube; ( m g - m m )

r 2 = 0.927, N = 94 (3)

a n d the relation b e t w e e n Pygospio l e n g t h a n d Pygospio dry w e i g h t log(DWpygospio) = - 2 . 3 5 6 + 1.750 x log (Lpygospio); ( m g - m m )

r 2 = 0.992, 21 l e n g t h classes, 187 s p e c i m e n s (4) the e m p i r i c a l relation b e t w e e n P. elegans w m g h t a n d t u b e w e i g h t w a s e s t a b l i s h e d (see Fig. 5): DWTube = 7.532 + 97.388 X DWpygospio; ( m g - m m )

r 2 = 0.677. N = 127 (5)

Figure 6 s h o w s t h e a b u n d a n c e ( N / t 0 0 cm a) of P. elegans, the total a m o u n t of tubes (g DW/100 cm2), a n d the a v e r a g e t u b e w e i g h t p e r i n d i v i d u a l at the two stations G F a n d W H d u r i n g the y e a r (combination of d a t a from 1987 a n d 1988). In g e n e r a l , the c h a n g e s of t h e s e p a r a m e t e r s in time are similar at both stations. A b u n d a n c e is l o w in w i n t e r a n d spring, rapidly i n c r e a s i n g t o w a r d s summer. T h e a m o u n t of t u b e s is low d u r i n g w i n t e r a n d spring, b u t h i g h in s u m m e r a n d autumn. T h e a v e r a g e w e i g h t of t u b e s p e r i n d i v i d u a l h o w e v e r , is h i g h e s t in F e b r u a r y a n d March, d e c r e a s i n g towards s u m m e r . F i g u r e 7 s h o w s the vertical distribution of t u b e s in the s e d i m e n t at both stations in July. At station WH t h e tubes r e a c h d o w n to 6 cm depth, w h e r e a s at station GF t h e r e are no t u b e s b e l o w 4 c m depth.

Macorna balthica - p o t e n t i a l f e e d i n g a r e a ( P F A )

Figures 8 a n d 9 s h o w t h e relation b e t w e e n the s q u a r e of l e n g t h a n d PFA in M.

balthica after 2 h, 5 h, a n d 24 h, respectively. T h e c o r r e s p o n d i n g r e g r e s s i o n e q u a t i o n s are:

(7)

I n t e r a c t i o n s i n soft b o t t o m b e n t h o s 307

7oi T - D W = 7.523 + 97.38a m P-DW; r=0.823, N = 127 . . . o 6 O

5 0

~ 3 0 ~ 1 7 6 o o o o

o o 0 8 ~ 8

20. o oo ~ - ~ ~ o o

8 o

10

O 0 ,05 .I 1 5 .2 .25 .3 .35 .4

Pygospio D W (mg)

Fig. 5. Relation between animal dry weight and tube dry weight in Pygospio elegans {animals from station OF)

PFA2h = - 1 2 . 9 1 9 + 1.863 x

LMacoma2;

( m m 2 - m m )

r 2 = 0.654, N = 30 (6)

P F A s h = - 6 9 . 5 5 9 + 4.354 x

LMacoma2;

( m m 2 - m m )

r 2 = 0.740, N = 30 (7)

PFA24 h = 689.716 + 31.398 •

L~4~coma2;

( m m 2 - m m )

r 2 = 0.694, N = 51 (8)

Macorna b a l t h i c a -

p a r t i c l e s e l e c t i o n

T h e m a n t l e c a v i t y of 72 s p e c i m e n s of M.

balthica

w a s e x a m i n e d a n d t h e l a r g e s t p a r t i c l e f o u n d (i.e. a s a n d grain) w a s m e a s u r e d . T h e r e l a t i o n b e t w e e n m a x i m u m p a r t i c l e d i a m e t e r (D) a n d a n i m a l l e n g t h is (cf. Fig. 10):

Max. D = 0.094 + 0.020 •

nMacoma2;

( m m - m m )

r 2 = 0.626, N = 72 (9)

D I S C U S S I O N

P y g o s p i o e l e g a n s -

t u b e s

T h e effects of p o l y c h a e t e t u b e s o n s e d i m e n t stability, p o r e w a t e r c h e m i s t r y , a n d t h e c o m m u n i t y h a v e b e e n d i s c u s s e d i n t e n s i v e l y s i n c e t h e 1960's. F i e l d o b s e r v a t i o n s a n d e x p e r i m e n t s i n d i c a t e d t h a t t h e p r e s e n c e of t u b e - b u i l d i n g p o l y c h a e t e s s t a b i l i z e s t h e s e d i m e n t a n d facilitates t h e s e t t l e m e n t of o t h e r s p e c i e s (see e.g. S a n d e r s et al., 1962~

Pager, 1964; N e u m a n n & Scoffin, 1970; R h o a d s et al., 1978; Reise, 1 9 8 I ; G a l l a g h e r et al.,

(8)

E r 0 0 Z 0

0 r~

@4

E

0 0 0

r ~

. Q

~6

_Q

E 450

300

150

7.5

5.0

2.5

60

40

20

I I

! I

I

T

I

I I

I

I I I

I I I

I I

I

I I I

12.85

J F M A M J J A S 0 N D

Fig. 6. Seasonal variation in abundance, total amount of tubes and average tube weight per individual in Pygospio elegans at the stations G F (circles) and W H (dots). N u m b e r of samples/date:

12 (GF) and 15 (WH). Vertical bars: 95 % confidence limits of m e a n

(9)

Interactions i n soft bottom benthos 309

20 40 ~ 20 40 60 80

+

2

4

c m

Sta. W H Sta. GF

Fig. 7. Vertical distribution of tubes of

Pygospio elegans

at the stations WH (21 July 87) and GF (10 July 87)

1983}. E c k m a n n et al. (1981) s h o w e d that t u b e s do not increase s e d i m e n t stability d u e to a r e d u c t i o n of the t u r b u l e n t flow along the s e d i m e n t water interface, w h e r e a s Ffihrb6ter &

M a n z e n r i e d e r (1987} could d e m o n s t r a t e that t u b e s do act as a physical protection a g a i n s t erosion u n d e r certain circumstances. As far as we k n o w today, the stabilizing effect of t u b e s is most likely to b e a more indirect one. T u b e - b u i l d e r s c h a n g e the chemical composition of the pore w a t e r a n d affect the vertical transport rates of o x y g e n a n d n u t r i e n t s b y the irrigation of their t u b e s (Aller, 1980, 1983). This m a y e n h a n c e b i o m a s s a n d p r o d u c t i o n of bacteria, diatoms a n d f i l a m e n t o u s algae, which c a n stabilize the s e d i m e n t b y m u c u s secretions (see e.g. Aller & Aller, 1986; H o l l a n d et al., 1974; G r a n t et al., 1986; Reichardt, 1986}.

With respect to

Pygospio elegans,

the a v e r a g e a m o u n t of t u b e s f o u n d w a s 3.51 g DW/100 cm 2 at GF a n d 6.78 g DW/100 cm 2 at WH. With Eq. (3), these v a l u e s l e a d to a total l e n g t h of all t u b e s of 410 cm a n d 780 cm b e l o w 100 cm 2 of s e d i m e n t surface. This is e q u i v a l e n t to a n a v e r a g e t u b e w e i g h t of 26 m g / I n d . (133 Ind./100 cm 2) a n d 20 m g / I n d . (333 Ind./100 cm2), a n d to a n a v e r a g e t u b e l e n g t h of 31 ram/Ind, a n d 23 m m / I n d . , respectively. With respect to the m a x i m u m a m o u n t of t u b e s f o u n d i n a single core (8.8 g DW/100 cm 2 at GF a n d 18.8 g DW/100 cm 2 at WH}, the m a x i m u m total l e n g t h of t u b e s was a b o u t 1020 cm (GF} a n d 2180 cm (WH) per 100 cm 2, a n d a v e r a g e t u b e l e n g t h a m o u n t e d to 45 m m a n d 48 ram, respectively. As s h o w n i n Figure 6, the total a m o u n t of t u b e s is h i g h e s t in s u m m e r a n d a u t u m n , w h e r e a s the a v e r a g e t u b e w e i g h t p e r i n d i v i d u a l

(10)

1200" o F ( 2 ) = - 1 2 . 9 1 9 + 1 . 8 6 3 * L z ; r = 0 . 8 0 9 , N = 3 0 F ( 5 ) = . 6 g . 5 5 9 § 4 . 3 5 4 * L2 ; r = 0 . 8 6 0 , N = 3 0 O

1 0 0 C , a o o a

600!

~ o D

~ 6 0 C

o o o

,e 400" o o ~ o o

o 13o o o o

a a ~ oo o ~ , ~ o

2 0 0 " o o

o o

50 I O0 150 200 250

Length 2

Fig. 8. Relation between potential feeding area and animal length in Macoma balthica after 2 h and 5 h of exposition

1 4 0 0 0 '

1 2 0 0 0 '

I0000~

80001

eooc

4 0 0 0

2 0 0 0

F ( 2 4 ) = 6 8 g . 7 1 6 * 3 1 . 3 9 8 " L2 ; r = 0 . 8 3 3 , N = 5 1 o

0 0

o

9 o o

o o ~ o o

o o ~ o o o

o o

o o ~

o o o o

50 100 150 200 250 300

Length 2

Fig. 9. Relation between potential feeding area and animal length in Macoma balthica after 24 h of exposition

is lowest d u r i n g this period. T h e s e opposite t r e n d s are clearly r e l a t e d to t h e c h a n g e s i n r e c r u i t m e n t with time. D u r i n g s u m m e r there is a c o n t i n u o u s h i g h r e p r o d u c t i o n rate, a n d the p o p u l a t i o n s consist of a few large a n d m a n y small s p e c i m e n s (see Fig. 3), w h e r e a s d u r i n g w i n t e r there are only a few large i n d i v i d u a l s present. The h i g h v a l u e s of a b u n d a n c e a n d t u b e w e i g h t i n N o v e m b e r at station W H are d u e to the e x t r a o r d i n a r y mild a u t u m n 1987 that led to a p r o l o n g e d r e c r u i t m e n t p h a s e i n P. elegans.

Aller (I980) i n v e s t i g a t e d a p o p u l a t i o n of H e t e r o m a s t u s ffliformis at a m u d d y sedi- m e n t site. According to the a v e r a g e a b u n d a n c e of H. filiformis (35 Ind./100 cm 2) a n d

(11)

Interactions in soft b o t t o m b e n t h o s 311

.6

D = 0 . 0 9 4 § 0 . 0 2 0 * L; r = o . 7 g ! , N = 7 2 o o

.5 o

o o E

v a 0 CO 0

~' .4 o ~,

0 0 o

o o

.~ .~ o o

~ . o o CO

o o o

o o o o o

~- .2 o o o o o

Length ( m m )

Fig. 10. Relation between length of h,lacoma balthica and the maximum diameter of particles found in the mantle cavity

a v e r a g e t u b e l e n g t h (15 cm), total l e n g t h of all t u b e s w a s a b o u t 530 cm/100 cm 2, w h i c h is w e l l in the r a n g e o b s e r v e d for P. elegans. W i t h r e s p e c t to the u p p e r 5 cm of t h e s e d i m e n t only, the a m o u n t of t u b e s is m u c h h i g h e r in t h e P. elegans p o p u l a t i o n s t h a n in the H.

filiformispopulation. Therefore, the effect of P. elegans on p o r e w a t e r t r a n s p o r t r a t e s m a y b e e v e n s t r o n g e r t h a n t h a t of H. ffliformis in the u p p e r s e d i m e n t layer.

H o w e v e r , a few calculations s h o w t h a t only a p a r t of all t u b e s f o u n d in a s a m p l e m a y b e i n h a b i t e d . T h e direct m e a s u r e m e n t s of a n i m a l l e n g t h in J u l y 87 at station G F (Fig. 3) g a v e a n a v e r a g e l e n g t h of P. elegans of 3.7 mm. A c c o r d i n g to E q u a t i o n s (2) a n d (3), this c o r r e s p o n d s to a n a v e r a g e w e i g h t of 11.2 m g D W of t u b e s p e r animal. T h e field samples, h o w e v e r , y i e l d e d on a v e r a g e a t u b e w e i g h t of 15.5 m g DW at station G F (Fig. 6). T h a t m e a n s t h e r e a r e a b o u t 30 % m o r e t u b e s in the n a t u r a l e n v i r o n m e n t t h a n a r e p r e d i c t e d b y the e m p i r i c a l relations. This d i f f e r e n c e m a y b e d u e to e m p t y t u b e s , w h i c h h a v e lost their i n h a b i t a n t e i t h e r b y e m i g r a t i o n ( F a u c h a l d & J u m a r s , 1979; Wilson, 1981, 1983b) or b y p r e d a t i o n (Poxton et al., 1983; DeVlas, 1979; Woodin, 1984), a n d w h i c h still exist for a certain time.

P y g o s p i o e l e g a n s - p o t e n t i a l f e e d i n g a r e a ( P F A )

T h e total P F A of the P. elegans p o p u l a t i o n at station G F in J u l y 87, w h i c h can b e e s t i m a t e d via the l e n g t h - f r e q u e n c y distribution (Fig. 3) a n d t h e r e l a t i o n b e t w e e n l e n g t h a n d r a d i u s of P F A [Equation (1)], is a b o u t 184 cm2/100 cm 2, i.e., if all a n i m a l s u t i h z e their p o t e n t i a l r a n g e , t h e r e is an o v e r e x p l o i t a t i o n of t h e a v a i l a b l e a r e a b y a factor of 1.8. This i m p l i e s i n t r a s p e c i f i c c o m p e t i t i o n for food, if food is not a v a i l a b l e in excess. T a g h o n et al.

(1980) could s h o w that the g r e a t e r p a r t of a P. elegans p o p u l a t i o n c h a n g e s its f e e d i n g m o d e from d e p o s i t f e e d i n g to s u s p e n s i o n f e e d i n g if the w a t e r c u r r e n t i n c r e a s e s a b o v e 10 cm/sec, w h i c h w o u l d r e d u c e d i r e c t competition. H o w e v e r , also in spionids, w h i c h are a b l e to c h a n g e their f e e d i n g m o d e , i n t r a s p e c i f i c c o m p e t i t i o n for food m a y affect g r o w t h

(12)

a n d r e p r o d u c t i o n , as d e s c r i b e d b y W i l s o n (1983a) for P. elegans a n d b y Z a j a k (1986) for Polydora ligni. A d d i t i o n a l l y , a c c o r d i n g to Boehlich & B a c k h a u s (1987), S c h w e i m e r (1976) a n d S t r u v e - B l a n k (1982) currents a b o v e 10 c m / s e c do not occur v e r y f r e q u e n t l y at station G F d u r i n g s u m m e r , so it is most l i k e l y that the a n i m a l s a r e d e p o s i t f e e d i n g most of the time.

T h e o v e r e x p l o i t a t i o n of the a v a i l a b l e surface a r e a b y a P. elegans p o p u l a t i o n (as w e l l as b y o t h e r d e p o s i t f e e d i n g spionids) m a y h a v e serious effects on the r e c r u i t m e n t of o t h e r species, b e c a u s e s e v e r a l d e p o s i t f e e d i n g s p i o n i d s are k n o w n to p r e d a t e on s e t t l i n g l a r v a e of o t h e r s p e c i e s (e.g. W e i n b e r g , 1984; W h i t l a t c h & Zajak, 1985; Wilson, 1981; T a m a k i , 1985). As soon as t h e total PFA of one of those p o p u l a t i o n s is a b o v e the a v a i l a b l e area, t h e r e are no r e f u g e s left for settling larvae. R e p r o d u c t i o n via b r o o d i n g in m a n y d e p o s i t f e e d i n g s p i o n i d s p e c i e s m a y b e a s t r a t e g y to o v e r c o m e the p r o b l e m Of c a n n i b a l i s m .

M a c o r n a b a l t h i c a - p a r t i c l e s e l e c t i o n a n d p o t e n t i a l f e e d i n g a r e a ( P F A ) H y l l e b e r g & G a l l u c c i (1975) a n d Self & J u m a r s (1988) could not find a n y p a r t i c l e s e l e c t i o n prior to i n h a l a t i o n in Aft. nasuta a n d M. balthica, r e s p e c t i v e l y . A c c o r d i n g to Self

& J u m a r s (1988), the selection of food t a k e s p l a c e in the m a n t l e cavity w i t h r e s p e c t to d i a m e t e r a n d specific w e i g h t of the particles. The r e j e c t e d p a r t of the i n h a l e d m a t e r i a l is p u s h e d out t h r o u g h the i n h a l e n t siphon. H o w e v e r , a p a s s i v e size s e l e c t i o n of the m a t e r i a l to b e i n g e s t e d t a k e s place, if the s e d i m e n t c o n t a i n s p a r t i c l e s w h i c h a r e a b o v e the d i a m e t e r of the i n h a l e n t siphon. The l i n e a r r e l a t i o n b e t w e e n a n i m a l l e n g t h a n d m a x i - m u m d i a m e t e r of p a r t i c l e s in the m a n t l e cavity (Fig. 10) shows d e a r l y t h a t this m u s t b e the c a s e at station GF. At this station, p a r t i c l e s a b o v e 0.5 m m are out of the r a n g e of the w h o l e p o p u l a t i o n .

T h e total PFA of a M. balthica p o p u l a t i o n can b e e s t i m a t e d b y a l e n g t h - f r e q u e n c y d i s t r i b u t i o n a n d E q u a t i o n (8). F i g u r e 11 s h o w s the l e n g t h - f r e q u e n c y d i s t r i b u t i o n a n d the c o r r e s p o n d i n g l e n g t h - P F A distribution of the p o p u l a t i o n from station G F (N = 909 Ind./

m2; total P F A = 27 230 cm2/m2), a n d from two stations w h i c h w e r e s a m p l e d d u r i n g p r e v i o u s r e s e a r c h p r o g r a m s in Kiel Bay: station S c h l e i m f i n d e (6 m d e p t h , N = 2322 Ind./

m2; total P F A = 26 090 cm2/m 2) a n d station S c h S n b e r g (12 m d e p t h , N = 598 Ind./m2;

total PFA = 31 850 cm2/m2). At all stations, the total PFA is far a b o v e t h e a v a i l a b l e a r e a (factor 2.6, 2.7, 3.2), w h i c h i n d i c a t e s strong intraspecific c o m p e t i t i o n for food. H o w e v e r . like P. elegans, Aft. balthica is a b l e to switch from d e p o s i t f e e d i n g to s u s p e n s i o n f e e d i n g , if the w a t e r c u r r e n t e x c e e d s a certain limit (Rasmussen, 1973; Olafsson, 1979). Therefore, c o m p e t i t i o n m a y not b e as strong as i n d i c a t e d b y the figures above. H o w e v e r , the fact that total P F A is similar at the t h r e e stations, a l t h o u g h t h e l e n g t h - f r e q u e n c y d i s t r i b u t i o n s are q u i t e different, m a y b e a hint on a n u p p e r limit of total PFA for M. balthica, at l e a s t in Kiel Bay. T h e r e g u l a r distribution of t h e r e l a t e d tellinid s p e c i e s Tellina tenuis, w h i c h has b e e n o b s e r v e d b y H o l m e (1950) on a n i n t e r t i d a l s a n d flat, m a y b e a s t r a t e g y of m i n i m i z i n g o v e r l a p of i n d i v i d u a l PFA.

T h e i n h a l a t i o n activity of M. balthica is a s s u m e d to b e the m m n s o u r c e of t h e n e g a t i v e effect of this b i v a l v e on r e c r u i t m e n t a n d g r o w t h of the o w n l a r v a e a n d l a r v a e of o t h e r s p e c i e s (Bonsdorff et al.. 1986; Brey, 1989~ H i n e s et al., 1989; Olafsson, 1989), e i t h e r b y d i s t u r b a n c e a n d c o m p e t i t i o n for food, or b y i n h a l a t i o n a n d rejection of l a r v a e , w h i c h m a y h a v e l e t h a l effects (see M i l e i k o v s k y , 1974). Most of the p e l a g i c l a r v a e of m a r i n e

(13)

Interactions in soft bottom b e n t h o s 313

4 0 0 -

2 0 0

F 2

c m ,10

A

~49S

B C

" 8 " 1 2 " 1 ~ ' 2 b 4 8 12 16 ' 4 ' ~ . . . 8 12 16

)

Fig. 11. Length-frequency and PFA-frequency distributions of three different populations of Macorna balthica in Kiel Bay. A: Schleimiinde, 6 m water depth, N = 2322 Ind./m 2. B: Gabelsflach,

12 m water depth, N = 909 Ind./rn 2. C: Sch6nberg, 12 m water depth, N = 598 Ind./rn 2

i n v e r t e b r a t e s are b e t w e e n 0.2 a n d 0.5 m m (see e.g. Muus, 1973) w h e n t h e y settle, i.e.

w e l l w i t h i n the size r a n g e of particles w h i c h can b e i n h a l e d by adult h4. balthica. Fast g r o w t h m a y b e one s t r a t e g y for l a r v a e to e s c a p e this "/V/acoma-bottleneck" s e n s u Bell &

Coull (1980).

To sum up, the results of the p r e s e n t study indicate that t u b e - b u i l d i n g activities a n d p o t e n t i a l f e e d i n g a r e a s m a y be i m p o r t a n t structuring factors in the i n v e s t i g a t e d s a n d y b o t t o m c o m m u n i t i e s . H o w e v e r , m o r e i n t e n s i v e i n v e s t i g a t i o n s h a v e to b e c a r r i e d out to e v a l u a t e the s i g n i f i c a n c e of t h e s e factors, for e x a m p l e :

- M e a s u r e m e n t s similar to those of Aller (1980), c o m b i n e d with i n v e s t i g a t i o n s of the g r o w t h of b a c t e r i a a n d m i c r o a l g a e a r o u n d tubes, could p r o v e t h e i n d i r e c t positive effect of the t u b e - b u i l d i n g of P. e l e g a n s on s e d i m e n t stability.

- T h e potential f e e d i n g areas of p o p u l a t i o n s of b o t h P. e l e g a n s a n d /V/. balthica are a s s u m e d to b e b e t t e r indicators for the strength of intra- a n d interspecific interactions t h a n are p u r e a b u n d a n c e values. T h e q u e s t i o n of w h e t h e r or not u n a f f e c t e d a r e a s b e t w e e n i n d i v i d u a l PFAs act as r e f u g e s for freshly settled l a r v a e a n d j u v e n i l e s m a y b e t e s t e d by an e x p e r i m e n t that c o m p a r e s the effects of a p o p u l a t i o n w i t h total PFA <

a v a i l a b l e surface a r e a with the effects of a p o p u l a t i o n with total PFA > a v a i l a b l e surface area.

- T h e q u e s t i o n of w h e t h e r c o m p e t i t i o n for food or i n h a l a t i o n of l a r v a e is the m o r e i m p o r t a n t factor in t h e interactions b e t w e e n adult h4. balthica a n d settling l a r v a e m a y

(14)

b e a n s w e r e d b y a f i e l d e x p e r i m e n t t h a t c o m p a r e s t h e e f f e c t s of d i f f e r e n t s i z e c l a s s e s of M. balthica o n t h e r e c r u i t m e n t of d i f f e r e n t s p e c i e s .

L I T E R A T U R E C I T E D

Aller, J. Y. & Aller, R. C., 1986. Evidence for localized e n h a n c e m e n t of biological activity associated with tube a n d burrow structures in d e e p - s e a sediments at the HEBBLE site, w e s t e r n North Atlantic. - D e e p - S e a Res. 33, 755-790.

Aller, R. C., 1980. Relationship of tube-dwelling benthos with s e d i m e n t a n d overlying water chemistry. In: Marine b e n t h i c dynamics. Ed. by K. R. Tenore & B. C. Coull. Univ. of South Carolina Press, Columbia, 285-308.

Aller, R. C., 1983. The importance of the diffusive permeability of animal burrow linings in determining marine s e d i m e n t chemistry. - J . mar. Res. 41, 299-322.

Bell, S. S. & Coull, B. C., 1980. Experimental evidence for a model of juvenile macrofauna-meiofauna interactions. In: Marine benthic dynamics. Ed. by K. R. Tenore & B. C. Coull. Univ. of South Carolina Press, Columbia, 179-192.

Black, R. & Peterson, C. H., 1988. A b s e n c e of p r e e m p t i o n and interference competition for space b e t w e e n large suspension-feeding bivalves and smaller infaunal macroinvertebrates. - J. exp.

mar. Biol. Ecol. 120, 183-198.

Blaricom, G. R. van, 1982. Experimental analysis of structural regulation in a marine s a n d commun- ity e x p o s e d to oceanic swell. - Ecology 52, 283-305.

Boehlich, M. J. & Backhaus, J. O., 1987. Simulation w i n d a n g e r e g t e r StrSmungen im System N o r d s e e - O s t s e e zur Interpretation eutrophierungsrelevanter biologisch-chemischer Prozesse in d e u t s c h e n Kfistengew/issern. Umweltforschungsplan. Forsch.Ber. Bundesministers ffir Umwelt, Naturschutz u n d Reaktorsicherheit 102 04 215/18, 1-52.

Bonsdorff, E., Mattila, J., RSnn, C. & Osterman, C.-S., 1986. Multidimensional interactions in shallow soft-bottom ecosystems~ testing the competitive exclusion principle. - Ophelia (Suppl.) 4, 37--44.

Brey, T., 1986. Formahn and f o r m a l d e h y d e - d e p o t chemicals: effects on dry w e i g h t a n d a s h free dry w e i g h t of two marine bivalve species. - Meeresforsch. 31, 52-57.

Brey, T., 1989. Der EinfluB biologischer u n d physikahscher Faktoren auf Struktur u n d Dynamik der subhtoralen Macoma-Gemeinschaft der Kieler Bucht. - Ber. Inst. Meeresk. Kiel 186, 1-248.

Cadee, G. C., 1976. Sediment reworking by Arenicola marina on tidal flats in the Dutch W a d d e n Sea. - Neth. J. Sea Res. 10, 440--460.

Eckman, J. E., Nowell, A. R. M. & Jumars, P. A., 1981. Sediment destabilization by animal tubes. - J. mar. Res. 39, 361-374.

Fager, E. W., 1964. Marine sediments: Effects of a tube-building polychaete. - Science, N. Y. 143, 356--359.

Fauchald, K. & Jumars, P. A., 1979. The diet of worms: A study of polychaete f e e d i n g guilds. - Oceanogr. mar. Biol. 17, 193-284.

Ffihrb6ter, A. & Manzenrieder, H., 1987. Biostabilisierung von S a n d w a t t e n durch Mikroorganismen.

In: Mellum - Portrait einer Insel. Ed. b y W. E. Krumbein, H.-E. Reineck & W. Ziegler. Kramer, F r a n k f u r t / M , 123-138.

Gallagher, E. D., Jumars, P. A. & Trueblood, D. D., 1983. Facilitation of soft-bottom b e n t h i c succession b y tube builders. - Ecology 64, 1200-1216.

Grant, J., Bathmann, U. V. & Mills, E. L., 1986. The interaction b e t w e e n benthic diatom films a n d sediment transport. - Estuar. coast. Shelf Sci. 23, 225-238.

Hines, A. H , Posey, M. H. & Haddon, P. J., 1989. Effects of adult suspension- a n d d e p o s i t - f e e d i n g bivalves on recruitment of estuarine infauna. - Veliger 32, 109-119.

Holland, A, F., Zingmark, R. G. & Dean, J. M., I974. Quantitative evidence c o n c e r n i n g the stabilization of sediments by marine benthic diatoms. - Mar. Biol. 27, I91-196.

Holme, N. A., 1950. Population-dispersion in Tellina tenuis Da Costa. - J. mar. biol. Ass. U.K. 29, 267-280.

Hunt, J. H., Ambrose, W. G. & Peterson, C. H., 1987. Effects of the gastropod, Ilyanassa obsoleta (Say), a n d t h e bivalve, Mercenaria mercenaria (L.), on larval settlement and juvenile recruitment of infauna. - J. exp. mar. Biol. Ecol. 108, 229-240.

(15)

I n t e r a c t i o n s i n s o f t b o t t o m b e n t h o s 315

Hylleberg, J. & Gallucci, V. F., 1975. Selectivity in feeding by the deposit-feeding bivalve Macoma nasuta. - Mar. Biol. 32, 167-178.

Levin, L. A., 1981. Dispersion, feeding behav.iour a n d competition in two spionid polychaetes. - J. mar. Res. 39, 99-117.

Luckenbach, M. W., 1987. Effects of adult infauna on n e w recruits: Implications for the role of biogenic refuges. - J. exp. mar. Biol. Ecol. 105, 197-206.

Mileikovsky, S. A., 1974. O n predation of pelagic larvae a n d early juveniles of marine bottom invertebrates by adult benthic invertebrates and their passing alive through their predators. - Mar. Biol. 26, 303-311.

Muus, K., 1973. Settling, growth a n d mortality of young bivalves in the Oresund. - Ophelia 12, 79-116.

Neumann, A. C. & Scoffin, T. P., 1970. The composition, structure and erodability of subtidal mats, Abaco, Bahamas. - J . sedim. Petrol. 40, 274-297.

Olafsson, E. B., 1989. Contrasting influences of suspension-feeding and deposit-feeding populations of Macoma balthica on infaunal recruitment. - Mar. Ecol. Prog. Ser, 55, 171-179.

Peterson, C. H., 1979. Predation, competitive exclusion, and diversity in the soft-sediment b e n t h i c communities of estuaries and lagoons. In: Ecological processes in coastal a n d marine systems.

Ed. by R. J. Livingston. Plenum Press, N. Y., 233-264.

Poxton, M. G., Eleftheriou, A. & McIntyre, A. D., 1983. The food and growth of 0-group flatfish on nursery grounds in the Clyde Sea area. - Estuar. coast. Shelf Sci. 17, 319-337.

Rasmussen, E., 1973. Systematics a n d ecology of the Isefjord marine fauna (Denmark). - O p h e h a 11, 1-507.

Reichardt, W. T., 1986. Polychaete tube walls as zonated microhabitats for marine bacteria. - Actes des Colloques GERBAM 3, 415--425.

Reise, K., 1981. High a b u n d a n c e of small zoobenthos around biogenic structures in tidal s e d i m e n t s of the W a d d e n Sea. - Helgol~nder Meeresunters. 34, 413--425.

Reise, K., 1983. Experimental removal of lugworms from marine sand affects small zoobenthos. - Mar. Biol. 74, 327-332.

Rhoads, D. C., Yingst, J. Y. & Ullman, W. J., 1978. Seafloor stability in central Long Island Sound:

Part I. Temporal c h a n g e s in erodibility of fine-grained sediment. In: Estuarine interactions. Ed.

by M. L. Wiley. Acad. Press, N e w York, 221-244.

Sanders, H. L., Goudsmit, E. M., Mills, E. L. & Hampson, G. E., 1962. A study of the intertidal fauna of Barnstable Harbor, Massachusetts. - Limnol. Oceanogr. 7, 63-79.

Schweimer, M , 1976. Erosionsh~iufigkeit in der westlichen Ostsee als Folge des Seegangs. - Rep.

Univ. Kiel (SFB95) 21, 1-59.

Self, R. F. L. & Jumars, P. A., 1988. Cross-phyletic patterns of particle selection by deposit feeders. - J. mar. Res. 46, 119-143.

Struve-Blanck, S., 1982. Die Str6mungen in der Kieler Bucht. - Ber. Inst. h4eeresk. Kiel 102, 1-112.

Taghon, G. L , Nowell, A. R. M. & Jumars, P. A., 1980. Induction of suspension feeding in spionid polychaetes by high particulate fluxes. - Science, N. Y. 210, 562-564.

Tamaki, A., 1985. Inhibition of larval recruitment of Armandia sp. (Polychaeta: Ophelidae) by e s t a b h s h e d adults of Pseudopolydora paucibranchiata (Okuda) (Polychaeta: Spionidae} on an intertidal sand flat. - J. exp. mar. Biol. Ecol. 87, 67-82.

Vlas, J. de, 1979. Annual food intake by plaice a n d flounder in a tidal flat area in the Dutch W a d d e n Sea, with special reference to consumption of r e g e n e r a t i n g parts of macrobenthic prey. - Neth. J.

Sea Res. 13, 117-153.

Watzin, M. A., 1985. Interactions a m o n g temporary and p e r m a n e n t meiofauna: Observations on the feeding and behaviour of selected taxa. - Oecologia 59, 163-166.

Weinberg, J. R., 1984. Interactions b e t w e e n functional groups in soft-substrata: Do species differ- e n c e s matter? - J. exp. mar. Biol. Ecol. 80, 11-28.

Whiflatch, R. B. & Zajac, R. IN., 1985. Biotic interactions among estuarine infaunal opportunistic species. - Mar. EcoL Prog. Ser. 21, 299-311.

Wilson, W. H., 1981. S e d i m e n t - m e d i a t e d interactions in a densely populated infaunal assemblage:

The effects of the polychaete Abarenicola pacifica. - J. mar. Res. 39, 735-748.

Wilson, W. H., 1983a. Food limitation of asexual reproduction in a spionid polychaete. - Int. J.

Invertebr. Reprod. Dev. 8, 61-65.

(16)

Wilson, W. H., 1983b. T h e role of density d e p e n d e n c e in a m a r i n e i n f a u n a l c o m m u n i t y . - Ecology 64,

295-306.

Woodin, S. A., 1981. D i s t u r b a n c e a n d c o m m u n i t y structure in a shallow w a t e r s a n d flat. - Ecology 62,

1052-1066.

Woodin, S. A., 1984. Effects of b r o w s i n g predators: Activity c h a n g e s in i n f a u n a following tissue loss.

- Biol. Bull. mar. biol. Lab., Woods Hole 166, 558-573.

Zajak, R. N., 1986. T h e effects of intra-specific density a n d food s u p p l y on g r o w t h a n d reproduction in a n i n f a u n a l polychaete, Polydora ligni Webster. - J. mar. Res. 44, 339-359.

Referenzen

ÄHNLICHE DOKUMENTE

MBK-2 is maternally provided but activated only during oocyte maturation, shortly after which MBK-2 leads to global maternal protein degradation (Stitzel et al., 2006). Thus,

3.1.4 Evaluation of sleep detection using the image subtraction method 55 3.2 Automated sleep deprivation in C.. elegans – Comparing ChR activation of neurons and mechanical

The number of long gill rakers seems to be determined by a large number of loci, each with small effects; however, the number of short gill rakers is controlled by only two major

The plots show the quantitative analysis as a function of the position in the ET axis with respect to area and circumference for the individual entities cartilage, lumen, OFP, TVPM

pelagic populations will only reflect the taxon composition of resting egg banks if the following assumptions are met: No differential (species spe- cific) rates of (1) hatching,

Wysession and Stein, An introduction to seismology, earthquakes and earth structure, Blackwell Scientific Kennett, The Seismic Wavefield, I+II, Cambridge University Press.. Lay

Alterations in central neuropeptide expression, release, and receptor binding in rats bred for high anxiety: critical role of vasopressin. CCK(B) antagonists protect

In speciation driven by divergent ecological or sexual selection, extrinsic and prezygotic forms of isolation 1324. evolve first, and often interact, to