• Keine Ergebnisse gefunden

Generating Functions for 1(n) and 2(n)

N/A
N/A
Protected

Academic year: 2022

Aktie "Generating Functions for 1(n) and 2(n)"

Copied!
15
0
0

Wird geladen.... (Jetzt Volltext ansehen)

Volltext

(1)

Generating Functions for 1(n) and 2(n)

Das, Sabuj and Mohajan, Haradhan

Assistant Professor, Premier University, Chittagong, Bangladesh.

17 March 2014

Online at https://mpra.ub.uni-muenchen.de/83046/

MPRA Paper No. 83046, posted 02 Jan 2018 23:06 UTC

(2)

1

Generating Functions for β

1

( n ) and β

2

( n )

Sabuj Das

Senior Lecturer, Department Of Mathematics Raozan University College, Bangladesh.

Email: sabujdas.ctg@gmail.com

Haradhan Kumar Mohajan2

Assistant Professor, Premier University, Chittagong, Bangladesh Email: haradhan_km@yahoo.com

ABSTRACT

This paper shows how to prove the two Theorems, which are related to the terms β1(n) and β2(n) respectively Theorem: N(0,5,5n+1)= β1(n)+N (5,5,5n+1) and Theorem: N(1,5,5n+1)= β2(n)+

N(2,5,5n+2).

Keywords: Generating functions, Jecobi’s triple product.

1. INTRODUCTION

We give the definitions of

, Rank of partition, N m,n , N

m,t,n

, z,  x (zx),

 

m

xn , 1

 

n , 2

 

n ,

 

m k x

x ; 5 collected from Partitions Yesterday and Today (Garvan 1979), Generalizations of Dyson’s rank (Garvan 1986), Ramanujan’s Lost Notebook (Andrews 1979). We generate the generating functions for 1

 

n , 2

 

n (Andrews 1979) and prove the Theorems N

0,5,5n1

1

 

n +

2,5,5n1

N and N

1,5,5n1

2 n + N

2,5,5n2

. Finally we give two examples, which are related to the Theorem 1 and Theorem 2 respectively when n =2.

2. DEFINITIONS

: A partition.

Rank of partition: The largest part of a partition  minus the number of parts of .

(3)

2

 

mn

N , : The number of partitions of n with rank m.

mt n

N , , : The number of partition of n with rank congruent to m modulo t.

 

n

0 : The number of partitions of n with unique smallest part and all other parts  the double of the smallest part.

  n

1 : The number of partitions of n with unique smallest part and all other parts  one plus the double of the smallest part.

z: The set of complex numbers.

 x: The product of infinite factors is defined as follows:

  

x 1x

 

1x2



1x3

... .

 zx : The product of infinite factors is defined as follows:

  

zx 1zx

 

1zx2



1zx3

... .

 

m

xn : The product of m factors is defined as follows:

  

m 1 n



1 n1



1 n2

 

... 1 nm1

n x x x x

x .

 

m k x

x ; 5 : The product of m factors is defined as follows:

; 5

 

m1 k



1 k5



1 k10

...

1 km1 5

k x x x x x

x .

 

n

1 : The number of partitions of n into 1’s and parts congruent to 0 or –1 modulo 5 with the largest part 0mod55 times the number of 1’s  the smallest part 1

mod5

.

 n

2 : The number of partitions of n into 2’s and parts congruent to 0 or – 2 modulo 5 with the largest part 0

mod5

5 times the number of 2’s  the smallest part 2

mod5

.

3. GENERATING FUNCTIONS (FROM RAMANUJAN’S LOST NOTE BOOK)

From Ramanujan’s Lost Note Book (Andrews 1979), Mock Theta Functions (2) (Watson 1937), G.

E. Andrews and F. G. Garvan (Andrews and Garvan 1989), we quote the relations as follows:

...

5 ) cos2 2 1 5 )(

cos2 2 1 (

...

) 1 )(

1 )(

1 ) (

(

4 2

2

3 2

n x x n x

x

x x x x

F

(4)

3

2 /

5 cos2 2 1 1 ) (

n x x x x

f ...

5 ) cos2 2 1 5 )(

cos2 2 1

( 2 2 4

4

n x x n x

x

x

,n1or 2.

( )

5 cos4 2 ) 5 ( cos2 4 ) ( )

( 5

2 5

1 5

1

x n C x x n B x x A x

F

) 5 ( cos2 2 5

3

x n D

x . (1)

) 5 ( cos2 2 ) ( ) 5 ( sin 2 4 ) ( )

( 5

2 5

1 5 2

1

x n C x x B x n x

x A x

f

x

x x n

n D

x ( )

5 . sin 2 4 ) 5 ( cos2

2 5 2

3 . (2)

  

 

 

...

1 1

1

...

1

6 2 4 2

2

9 3 2

x x

x

x x x x

A ,

     

 



1 1 1 ...

...

1 1 1

6 4

15 10 5

x x x

x x x x

B ,

 

   





1 1 1 ...

...

1 1 1

7 3 2

15 10 5

x x x

x x x x

C ,

 

112

 

21 3

 

21...7

2...

7 4

x x x

x x x x

D ,

 



54 6

1 1 1 1 1 1

x x x

x x x

 

    

...

1 1 1 1

1 4 6 9 11

20

x x x x x

x .

But we get;

( )

5 cos4 2 ) 5 ( cos2 4 )

(x5 x B x5 x2 C x5

A

) 5 ( cos2

2x3 D x5

2 2 3 2 5

5 cos2 5 2

cos4 5 2

cos 2 4

1 x x x x

...

5 cos2 5 2

cos 2

4x6 2 x8 x10

 





2 2 53 7

1 1 1 1 1 1

x x x

x x x

     

...

1 1 1 1

1 2 3 7 8 12

20

x x x x x

x .

Now,

   





...

1 1 1 1

1

1 3 4 5

5 3

2 3

x x x

x x

x x x

x

(5)

4

 x A x

3 1 . And,

   





...

1 1 1 1

1

1 3 4 5

3 3

2 2

x x x

x x

x x x

x

 

x xD

 

x

3 .

We assume without loss of generality that n = 1. Let exp25

i

, then we may write the definitions of F(x) and ′(x) as;

   

 

 

x x x x

F 1

and,

        

   

 

1

1

1 ...1 1

1 1 1

2

n

n n

n

x x

x x

x x

f    

   

1

1

2

n n n

n

x x

x

 ,

where we have used the relations;

 

a 0 1,

  

a n 1a



1ax

...

1axn1

, for n1 and,

    

1

1

1

  n

n n

n a ax

Lim

a .

After replacing x by x5 we see that (1) and (2) are identities for F(x) and ′(x). We note that the numerators in the definitions of A(x) and D(x) are theta series in x and hence may be written as infinite products using Jecobi’s triple product identity;

n



n



n

n

x x

z

zx

1 1 1 1 1

1

(6)

5

 

1 21



n n n n n

x

z (3)

... z2x z1 1 zx z2x3 ... . where z  0 and x< 1.

Replacing x by x5 and z by x3 we get from (3);

n



n



n

n

x x

x5 3 5 2 5

1

1 1

1  

 ... x11 x3 1 x2 x9 ...

1 x2 x3 x9 x11 ... .

Again replacing x by x5 and z by x3 equation (3) becomes;

n



n



n

n

x x

x5 4 5 1 5

1

1 1

1  

... x13 x4 1 x x7 ...

1 x x4 x7 x13 ... . In fact we have;

     

5 4

 

2 5 1

2

5 2 5 3 5

1 1 1

1 1

1

 

 

n n

n n

n

n x x

x x

x x

A ,

   

5 4



5 1

5

1 1 1

1

 

 

n n n

n x x

x x

B ,

   

5 3



5 2

5

11 1

1

 

 

n n n

n x x

x x

C ,

     

5 3



5 2

5 1 5 4 5

1 1 1

1 1

1

 

 

n n n n n

n x x

x x

x x

D .

(7)

6 3.1 Rank of a Partition

The rank of a partition is defined as the largest part minus the number of parts. Thus the partition 6 + 5 + 2 + 1 + 1 + 1 + 1 of 17 has rank, 6–7 = –1 and the conjugated partition, 7 + 3 + 2 + 2 + 2 + 1 has rank, 7–6 = 1. i.e., the rank of a partition and that of the conjugate partition differ only in sign. The rank of a partition of 5 belongs to any one of the residues (mod 5) and we have exactly 5 residues.

There is similar result for all partitions of 7 leading to (mod 7).

The generating function for the rank is of the form (Garvan 1986);

 

   

  

1

1 1

1 23

1 1 1

1

n

j j

n n m n n

n x x x

 

 

1 0

1 2 23 1 2 23

1 1

n k

m k n n m n n

n x x P k x

 

xm1 0.xm2 xm3 ... x2m5 x2m6 ...

  n

n

x n m

N

0

, .

The generating function for N

m,t,n

is of the form;

 

  



1

1 1

1

23 1

1 1

n n

j tn j

m t n n mn

n

n x

x x x x

 



1

1 23

1

n n

m t n n mn

n

nx x x

  

 

0

2 ...

1

k

k tn

tn x P k x

x

 

n

n

x n t m N , ,

0

;

which shows that all the coefficients of xn (where n is any positive integer) are zero.

Now we define the generating function;

 

d

ra for N

a,t,tnd

(8)

7

where

     

n

a n

a d r d t N a t tn d x

r , , ,

0

, and

 

d r

     

d t r d r d ra,ba,b ,  ab .

   

 

n

n

x d tn t b N d tn t a

N   

, , , ,

0

. The generating function

 

x is of the form;

 

 



54 6

1 1 1 1 1 1

x x x

x x x

 

1

   

1 4 1 6 1 9 1 11

...

20

x x x x x

x ,

 

 1 1 x x2 ... x51 x x2 ...

1x4...



1x6...

...

x x2 x3 x4 2x5 2x6 2x7 2x8 ...

   

 

n

n

x n N n

N1,5,5 2,5,5

0

 

0

2 ,

r1

.

The generating function A(x) is defined as;

 

11

2

1 4

 

21...6

2...

9 3 2

x x

x

x x x x

A



 1 x2 x3 x9 ... 1 2x 3x2 ...

12x43x8...

...

1 2x 2x2 x3 2x4 ...

   

0

5 , 5 , 2 5

, 5 , 0 1

n

n N

n

N N

1,5,5n

2N

2,5,5n



x2

   

n n

x n N

n

N 0,5,5 2,5,5 1

0

   

 

n

n

x n N n

N1,5,5 2,5,5 2

0

 

0 2

 

0 1r0,2r1,2

 .

(9)

8 The generating function is of the form;

5 4



5 1

5

1 1 1

1

 

nn n

n x x

x





1 5 1 5 4 ... 1 5 1 ...

1

n n

n n

x x

x

 

 

1 0 3 2x 12 11x2 x3 2x4 ...

   

 

n

n

x n N

n

N

0

1 5 , 5 , 2 1 5 , 5 , 0

 

1

2 ,

r0

 .

The generating function is of the form;

5 3



5 2

5

1 1 1

1

 

nn n

n x x

x

1 5



1 5 3 10 6 ...

1

n n

n n

x x

x

 

 

 

 

 

 1 0 3 3 x 16 15 x2 ...

   

  

n n

x n N

n

N 0,5,5 2 2,5,5 2

0

1x5n2x10n4...

 

2

2 ,

r1

 .

The generating function (x) is of the form;

 





2 2 53 7

1 1 1 1

1 1

x x x

x

x x

1 2



1 3



1 7



1 8



1 12

...

20

x x x x x

x

1 ...

 

1 ...

1  24    52  

x x x x

1x3x6...



1x7...

...

x2 x4 x6 x7 2x8 x9 2x10 ... .

(10)

9 Hence,

 

x x3 x4 x5 x6 2x7 x8 2x9 ...

x

x

   

 

n

n

x n N n

N 2,5,5 3 0,5,5 3

0

 3

0 ,

r2

and,

   

x r0,2 3 x .

The generating function D(x) is of the form;

 

112

 

21 3

 

21...7

2...

7 4

x x

x

x x x x

D



1 x x4 x7 ... 1 2x2 3x4 ...

12x3...



12x7 ...

...

1 x 2x2 0.x3 ...

   

0

3 5 , 5 , 1 3 5 , 5 , 0

n

n N n

N N

0,5,5n3

 

N 2,5,5n3



xn

   

0

3 5 , 5 , 1 3 5 , 5 , 0

n

xn

n N n

N

     

0

3 5 , 5 , 2 3 5 , 5 , 0

n

xn

n N n

N

 

3 0,2

 

3

1 ,

0 r

r

4. THE GENERATING FUNCTIONS FOR 1 n AND 2

 

n

First we shall establish the following identity, which is used in proving the Theorems. If a and t are both real numbers with a < 1 and t < 1, we have;

        

 

 

 

...

1 1 1

...

1 1

1

2 2

tx tx t

atx atx

at t

at

(11)

10

  

 

 1 at 1 atx ... 1 t t2 ...

1txt2x2 ...



1t4x4...

...

   

1 t 1 x x2 ... a1 x x2 ... t2

 

1x2x22x3...

 

a12x3x2...

22 32 4...

...

2 x x x x

a

 

1 1 a t1 x x2 ...

 

1a 1ax

t2

1x2x22x3...

...

    

 

 

 

2 2

1 1

1 1 1

1 1

x x

t ax a

x t

a

    

 

1 1

  

1 11 ...

1

3 2

3 2

x x x

t ax ax a

   

0

n n

n n

x t a

i.e.,

 

   

 

0

n n

n n

x t a t

at . (4)

The generating function for 1

 

n is defined as;

   

0

5 4 5 5

5; ;

n

n n

n

x x x x

x





 1 1 1 ...

1

14 9

4 x x

x

1x5



1x91



1x14

...

1 5



1 10



1 14

......

2

x x

x

x

1 x x2 x3 2x4 x5 2x6 3x8 ...

 

n

n

x n

0

1

  , (5)

were we have assumed 1

 

0 1.

The generating function for 2

 

n is defined as;

   

0

5 3 5 5 5

2

;

n

;

n n

n

x x x x

x

Referenzen

ÄHNLICHE DOKUMENTE

The influence of these non-canonical structures on translation is likely to be dependent on different parameters such as the position of the G-quadruplex forming sequence

One of the two nodes is chosen and in the following referred as “conflicting node” (See section 5.3), its encasing cluster as “conflicting cluster”. Further, a cluster is said to

As for rank one false theta functions, to study the modular trans- formations we follow the lead of higher depth mock modular forms, which were defined in unpublished work of Zagier

SCHÜRFF, Ministre Fédéral, de rnéme qu’ä la ville de Vienne et a son représentant, Monsieur SEITZ, Maire de Vienne, puis au Comité du Congrés, et en particulier ä son

We can improve it slightly by considering the configurations where arbitrary number of single-spin domains are present and neglecting interaction between them.. This analogous to

D. Grumiller — Hamilton-Jacobi counterterms Statement of problem: divergences and variational principle 4/26.. Grumiller — Hamilton-Jacobi counterterms Statement of problem:

There are also a number of papers devoted to numerical solution of probabilistic constrained programming (for references see Prekopa [32, 331). In the present paper we

INTERNATIONAL INSTITUTE FOR APPLIED SYSTEMS ANALYSIS A-2361 Laxenburg, Austria... Kunhanski Program Leader System and Decision