• Keine Ergebnisse gefunden

Engineering of DNA polymerases for higher discrimination between single nucleobase variations

N/A
N/A
Protected

Academic year: 2022

Aktie "Engineering of DNA polymerases for higher discrimination between single nucleobase variations"

Copied!
144
0
0

Wird geladen.... (Jetzt Volltext ansehen)

Volltext

(1)

 

Engineering  of  DNA  polymerases  for  higher   discrimination  between  single    

nucleobase  variations  

         

Dissertation  zur  Erlangung  des  akademischen  Grades   des  Doktors  der  Naturwissenschaften  

(Dr.  rer.  nat.)    

vorgelegt  von   Matthias  Drum  

   

an  der  Universität  Konstanz    

Mathematisch-­‐Naturwissenschaftliche  Sektion   Fachbereich  Chemie  

     

Tag  der  mündlichen  Prüfung:  24.07.2015    

1.  Referent:  Herr  Prof.  Dr.  Andreas  Marx   2.Referent:  Herr  Prof.  Dr.  Martin  Scheffner  

 

 

 

(2)

 

                             

   

(3)

Publications  

 

Teile  dieser  Arbeit  sind  veröffentlicht  in:  

 

M.   Drum,   R.   Kranaster,   C.   Ewald,   R.   Blasczyk,   and   A.   Marx,   “Variants   of   a   Thermus   aquaticus   DNA   Polymerase   with   Increased   Selectivity   for   Applications   in   Allele-­‐   and   Methylation-­‐Specific  Amplification,”  PLoS  ONE,  vol.  9,  no.  5,  p.  e96640,  May  2014  

   

J.   Aschenbrenner,   M.   Drum,   H.   Topal,   M.   Wieland,   and   A.   Marx,   “Direct   Sensing   of   5-­‐Methylcytosine   by   Polymerase   Chain   Reaction,”  Angewandte   Chemie   International   Edition,  Jun.  2014.  

   

Patentanmeldungen:  

 

A.  Marx,  M.  Drum,  K.  Streichert,  J.  Mayer,  R.  Kranaster,  M.  Wieland,  Means  and  Methods   for  the  detection  of  DNA  Methylation,  Application  number:  WO2013EP662220130801    

A.   Marx,   M.   Drum,   R.   Kranaster,   Mutated   DNA   Polymerases   with   high   selectivity   and   activity,  Application  number:  92320  (in  Luxembourg)  

       

weitere  Publikationen:  

 

R.  Kranaster,  M.  Drum,  N.  Engel,  M.  Weidmann,  F.  T.  Hufert,  and  A.  Marx,  “One-­‐step  RNA   pathogen   detection   with   reverse   transcriptase   activity   of   a   mutated   thermostable   Thermus  aquaticus  DNA  polymerase.,”  Biotechnology  Journal,  vol.  5,  no.  2,  pp.  224–231,   Feb.  2010.  

   

(4)

Danksagung  

 

An   dieser   Stelle   möchte   ich   mich   bei   all   denjenigen   bedanken   die   sichtbar   oder   unsichtbar  zum  Gelingen  dieser  Arbeit  beigetragen  haben.  

 

Prof.   Dr.   Andreas   Marx   danke   ich   für   das   interessante   Promotionsthema,   seine   Unterstützung   in   den   vergangenen   Jahren,   die   stets   offene   Türe   und   die   exzellenten   Forschungsbedingungen.  

 

Prof.  Dr.  Martin  Scheffner  danke  ich  für  die  Übernahme  des  Zweitgutachtens  und  Prof.  

Dr.  Jörg  Hartig  für  die  Übernahme  des  Prüfungsvorsitzes.  

 

Für  unzählige  unterhaltsame  Stunden,  die  hervorragende  Arbeitsatmosphäre,  aber  auch   für  viele  kleiner  und  größere  wissenschaftliche  Diskussionen  und  Hilfestellungen  danke   ich   allen   jetzigen   und   ehemaligen   Mitgliedern   der   AG   Marx!   Allen   voran   danke   ich   meinen   vielen   Laborkollegen   der   „Biologen“   Labore   (Tobi,   Tatjana,   Silvia,   Hüsnü,   Ramon,   Vani,   Nadine,   Bac,   Nina,   Daniel   und   Daniel,   Marina,   Eugenia,   ...)   aber   auch   den   Chemikern   (Janina,   Holger,   Hacker,   Anna,   Sascha,   Samra,   Frank,   Anna-­‐Lena,   ...)   von   L9   und  den  ehemaligen  „Exil-­‐Marxisten“  von  M12  (Konrad  und  Karin)!    

 

Anna-­‐Lena,  Ramon  und  Konrad  danke  ich  für  das  Korrekturlesen  dieser  Arbeit.  

 

Allen   Freunden,   ob   nun   dauerhaft   sesshaft   in   Konstanz   (und   Umgebung   inklusive   österreichischem   Alpenvorland),   auf   der   Flucht   über   Münster   nach   Kanada   oder   Rückkehrer  aus  Frankreich  danke  ich  für  die  Ablenkung  von  der  Wissenschaft!  Vergesst   nicht  was  Ihr  alles  über  DNA-­‐Polymerasen  lernen  durftet  ;-­‐).  

 

Meiner  Familie  und  Anna-­‐Lena  möchte  ich  für  ihre  andauernde  Unterstützung  und  ihre   Geduld   in   stressigen   Zeiten   danken.   Ohne   Euch   wäre   das   hier   wohl   nicht   möglich   gewesen.  

   

(5)

Table  of  contents  

 

1   Introduction  ...  1  

1.1   DNA  and  DNA  base  modifications  ...  2  

1.1.1   5-­‐methylcytosine  and  5-­‐hydroxymethylcytosine  ...  2  

1.2   Epigenetics  ...  4  

1.3   Biological  role  of  DNA  polymerases  ...  6  

1.3.1   Reaction  mechanism  of  DNA  polymerases  ...  7  

1.3.2   KlenTaq  DNA  polymerase  ...  9  

1.4   DNA  polymerases  in  biotechnology  ...  10  

1.4.1   Polymerase  chain  reaction  ...  10  

1.5   Directed  evolution  of  DNA  polymerases  ...  11  

1.6   Personalized  medicine  ...  14  

1.6.1   Single  nucleotide  polymorphism  diagnostics  ...  15  

1.6.2   Human  leukocyte  antigen  diagnostics  ...  18  

1.6.3   5-­‐methylcytosine  diagnostics  ...  18  

1.6.4   DNA  polymerases  for  diagnostics  in  personalised  medicine  ...  19  

2   Aim  of  this  work  ...  20  

3   Results  and  Discussion  ...  22  

3.1   KlenTaq  DNA  polymerase  variations  for  Single  Nucleotide  Polymorphism       detection  ...  22  

3.1.1   Rational  design  of  KlenTaq  DNA  polymerase  variants  ...  23  

3.1.2   Library  construction  and  screening  ...  25  

3.1.3   Real-­‐time  PCR  with  purified  hits  ...  29  

3.1.4   Primer  extension  experiments  ...  32  

3.1.5   Elongation  of  distal  mismatches:  the  mismatch  memory  of  KlenTaq  DNA       polymerase  ...  33  

3.1.6   Reaction  kinetics  of  KlenTaq  DNA  polymerase  variants  ...  37  

3.1.7   Shuffling  of  single  KlenTaq  DNA  polymerase  mutants  ...  38  

3.1.8   Real-­‐time  PCR  with  human  genomic  DNA  ...  42  

3.1.9   Error  spectra  of  KlenTaq  wild  type  DNA  polymerase  and  mutant  R660V  ...  43  

3.1.10   Comparison  of  KlenTaq  R660V  with  commercially  available  enzymes  ...  44  

3.1.11   Allele  specific  amplification  of  human  genomic  DNA  standards  ...  44  

3.1.12   Multiplexing  allele  specific  amplification  ...  47  

3.1.13   Allele  specific  amplification  directly  from  human  blood  sample  ...  48  

(6)

3.1.14   Human  leukocyte  antigen  typing  ...  49  

3.1.15   Methylation-­‐specific  PCR  ...  51  

3.1.16   Transfer  of  beneficial  KlenTaq  DNA  polymerase  mutations  into  Taq  DNA   polymerase  ...  54  

3.2   Direct  detection  of  5-­‐methylcytosine  with  KlenTaq  DNA  polymerase  ...  57  

3.2.1   Concept  of  direct  detection  of  DNA  methylation  ...  58  

3.2.2   Primer  extension  experiments  with  methylated  and  hydroxymethylated  template  60   3.2.3   Primer  extension  experiments  with  modified  triphosphates  ...  61  

3.2.4   Mismatch  incorporation  experiments  with  natural  and  modified  triphosphates  ...  62  

3.2.5   Mismatch  extension  experiments  -­‐  the  key  to  direct  5mC  discrimination  ...  64  

3.2.6   Appliance  of  known  mutants  in  direct  5mC  discrimination  ...  68  

3.2.7   Multiple  nucleotide  incorporations  –  towards  PCR  based  direct  5mC  detection  ...  69  

3.2.8   Real-­‐time  PCR  with  methylated  and  unmethylated  templates  ...  70  

3.2.9   Influence  of  buffer  conditions  on  direct  PCR  based  5mC  detection  ...  72  

3.2.10   Real-­‐time  PCR  based  screening  for  mutants  with  extended  5mC  discrimination  ..  74  

3.2.11   Combination  of  different  KlenTaq  DNA  polymerase  mutants  for  5mC  detection  ...  78  

3.2.12   Real-­‐time  PCR  based  5mC  detection  on  human  genomic  DNA  ...  80  

4   Summary  and  outlook  ...  83  

5   Zusammenfassung  und  Ausblick  ...  86  

6   Material  ...  90  

6.1   Reagents  for  molecular  biology,  enzymes  and  kits  ...  90  

6.1.1   Reagents  ...  90  

6.1.2   Enzymes  ...  91  

6.1.3   DNA  and  protein  ladders  ...  92  

6.1.4   Kits  ...  92  

6.1.5   DNA-­‐standards  ...  92  

6.1.6   Nucleotides  and  radiochemicals  ...  92  

6.2   Oligonucleotides  ...  92  

6.3   Buffers  and  solutions  ...  93  

6.3.1   Buffer  for  gel  electrophoresis  and  staining  ...  93  

6.3.2   Buffer  for  enzymatic  reactions  ...  94  

6.3.3   Buffer  and  media  for  cell  preparation  ...  94  

6.4   Disposables  ...  95  

6.5   Bacteria  strains  and  plasmids  ...  95  

6.6   Instruments  and  software  ...  96  

(7)

7   Methods  ...  98  

7.1   Determination  of  DNA  and  protein  concentration  ...  98  

7.1.1   Nanodrop  ND-­‐1000  ...  98  

7.1.2   Bradford  assay  ...  98  

7.2   Oligonucleotide  modifying  reaction  ...  98  

7.2.1   Radioactive  labelling  of  oligonucleotides  ...  98  

7.2.2   Ethanol  precipitation  ...  99  

7.2.3   Solid-­‐phase  synthesis  of  oligonucleotides  ...  99  

7.2.4   Electrospray  ionization  MS  (ESI-­‐MS)  ...  99  

7.3   Gel  electrophoresis  ...  99  

7.3.1   Analytical  agarose  gel  electrophoresis  ...  99  

7.3.2   Preparative  agarose  gel  electrophoresis  ...  100  

7.3.3   SDS  PAGE  ...  100  

7.3.4   Denaturing  PAGE  ...  100  

7.3.5   Preperative  PAGE  ...  101  

7.4   Molecular  cloning  ...  101  

7.4.1   Restriction  digestion,  dephosphorylation  and  ligation  of  DNA  ...  101  

7.4.2   Electrocompetent  cells  ...  102  

7.4.3   Transformation  ...  102  

7.4.4   LB  agar  plate  cultivation  ...  102  

7.4.5   Colony  PCR  ...  102  

7.4.6   DNA  preparation  from  liquid  cultures  ...  103  

7.4.7   DNA  sequencing  ...  103  

7.4.8   Culture  storage  ...  103  

7.5   Protein  expression,  lysate  preparation  and  protein  purification  ...  103  

7.5.1   Liquid  cultures  ...  103  

7.5.2   Overexpression  of  KlenTaq  DNA  polymerase  wild  type  and  mutants  ...  103  

7.6   KlenTaq  DNA  polymerase  library  generation  ...  104  

7.6.1   Saturation  mutagenesis  library  generation  ...  104  

7.6.2   Gene  shuffling  library  generation  ...  105  

7.6.3   Error-­‐prone  PCR  library  generation  ...  106  

7.6.4   Site  directed  mutagenesis  of  Taq  DNA  polymerase  ...  106  

7.7   Functional  studies  ...  107  

7.7.1   Screening  and  real-­‐time  ASA  assay  with  KlenTaq  DNA  polymerase  wild  type  and   mutants  (lysate  or  purified  enzyme)  ...  107  

7.7.2   Primer  extension  assay  with  KlenTaq  DNA  polymerase  wild  type  and  mutants  ...  108  

(8)

7.7.3   Mismatch  short  term  memory  assay  with  KlenTaq  DNA  polymerase  wild  type  and  

mutants  ...  108  

7.7.4   Reaction  kinetics  of  KlenTaq  DNA  polymerase  wild  type  and  mutants  ...  109  

7.7.5   ASA  assay  with  KlenTaq  DNA  polymerase  variants  using  human  genomic  DNA   (gDNA)  ...  109  

7.7.6   Error  rate  determination  of  KlenTaq  DNA  polymerase  R660V  mutant  ...  110  

7.7.7   ASA  assay  with  KlenTaq  DNA  polymerase  R660V  mutant  and  human  gDNA  allele-­‐ standards  ...  110  

7.7.8   Multiplexing  ASA  assay  with  R660V  from  gDNA  allele-­‐standards  and  blood  ...  111  

7.7.9   Real-­‐time  MSP  assay  with  KlenTaq  DNA  polymerase  R660V  mutant  ...  111  

7.7.10   Real-­‐time  PCR  assay  with  Taq  DNA  polymerase  wild  type  and  mutants  and  human   gDNA  ...  112  

7.7.11   Single  nucleotide  incorporation  studies  with  methylated,  hydroxymethylated  and   unmethylated  DNA  template  ...  112  

7.7.12   Missmatch  extension  experiments  with  methylated,  hydroxymethylated  and   unmethylated  DNA  template  ...  113  

7.7.13   Multiple  nucleotide  incorporation  experiments  with  mismatched  primers  and   methylated  and  unmethylated  DNA  template  ...  114  

7.7.14   Real-­‐time  PCR  experiments  with  methylated  and  unmethylated  DNA  template  ..  114  

7.7.15   Real-­‐time  PCR  in  RockstartTM  buffer  with  methylated  and  unmethylated  DNA   template  ...  115  

7.7.16   Real-­‐time  screening  for  KlenTaq  DNA  polymerase  mutants  with  increased   discrimination  between  methylated  and  unmethylated  DNA  template  ...  116  

7.7.17   Real-­‐time  PCR  experiments  with  KlenTaq  DNA  polymerase  MD16  and  methylated   and  unmethylated  DNA  template  ...  116  

7.7.18   Real-­‐time  PCR  based  5mC  detection  on  human  genomic  DNA  ...  117  

8   Abbreviations  ...  118  

9   DNA  and  amino  acid  sequences  ...  120  

9.1.1   DNA  Sequences  of  primers  and  templates  ...  120  

9.1.2   DNA  Sequences  of  plasmids  and  KlenTaq  DNA  polymerase  wild  type  and       variants  ...  122  

9.1.3   Amino  acid  sequences  of  KlenTaq  DNA  polymerase  wild  type,  Taq  DNA  polymerase   wild  type  and  variants  ...  125  

10   References  ...  128    

(9)

1 Introduction  

Except   of   the   annual   awarding   of   the   Nobel   Prize,   fundamental   science   hardly   ever   makes   it   to   the   daily   top   news.   That   was   different   when   at   a   gala   televised   press   conference   in   June   2000   the   leader of the international publicly funded Human Genome Project Francis Collins and Craig Venter, the leader of the private for-profit company Celera Genomics, announced the completion of their first draft of the human genome sequence attended by the then US President Bill Clinton and UK Prime Minister Tony Blair.[1][2][3] The White House press statement articulated the hope, felt by many, that this landmark achievement would “lead to a new era of molecular medicine, an era that will bring new ways to prevent, diagnose, treat and cure disease”.[3][4] Nearly fifteen years later some of this has come true but also  geneticists   have  discovered  that  such  basic  concepts  as  “gene”  and  “gene  regulation”  are  far  more   complex  than  they  ever  imagined.[4]    

On  one  hand  the  huge  progress  in  sequencing  technology  raises  unbelievable  amounts   on  genomic  data.  While  one  of  the  first  published  individual  genomic  DNA  sequence  of   James   D.   Watson   cost   around   US$1   million   in   2008   the   new   Illumina   HiSeq   X   Ten   (http://www.illumina.com/systems/hiseq-­‐x-­‐sequencing-­‐system.html)   enables   human   whole-­‐genome  sequencing  for  less  US$1000  within  a  day.[5]  By  analysing  the  sequences   of   individuals   the   International   HapMap   Project   charted   the   points   at   which   human   genomes  commonly  differ.[6][7]  Today  we  know  that  two randomly selected individuals of European descent will differ at roughly 3 million points in their genome, or roughly 0.1% of their >3 billion bases of DNA opening the field for personalized medicine.[8]  

On  the  other  hand  the  total  number  of  expected  genes  in  the  human  genome  dropped   dramatically   from   over   100,000   to   roughly   21,000   identified   protein-­‐coding   genes   in   human  cells.[4]  This  caused  a  shift  of  interest  from  the  identification  of  genes  towards  the   understanding  of  genes  and  gene  regulation.  Identification  of  new  mechanisms  that  can   alter  gene  function  and  are  heritable  by  daughter  cells  without  changes  in  DNA  sequence   opened  a  complete  new  field  of  epigenetics.[9][10][11]  

 

(10)

1.1 DNA  and  DNA  base  modifications  

In   all   living   organisms   the   polymeric   macromolecule,   deoxyribonucleic   acid   (DNA)   is   used  to  store  and  replicate  genetic  information.  Arranged  in  a  well  defined  order  four   different   building   blocks,   the   deoxyribonucleotides   that   consist   of   2’-­‐deoxyribose,   phosphate  and  of  one  of  the  four  nucleobases  adenine  (A),  guanine  (G),  cytosine  (C)  and   thymine  (T)  code  the  genetic  information.  Linked  via  phosphodiester  bonds  between  the   2’-­‐deoxyribose  sugar  moieties  and  the  phosphates  the  deoxyribonucleotides  form  DNA   single   strands.   Two   antiparallel   strands   are   coiled   together   to   form   a   characteristic,   right-­‐handed,  double-­‐helical  structure  in  which  the  four  nucleobases  form  specific  base   pairs   by   hydrogen   bond   interactions   (adenine   pairs   with   thymine   and   guanine   with   cytosine  Watson-­‐Crick  base  paring).  A  set  of  three  neighboured  bases  is  called  a  triplet   codon.  

 

1.1.1 5-­‐methylcytosine  and  5-­‐hydroxymethylcytosine  

Methylation   of   cytosines   at   the   C5-­‐atom   is   the   most   abundant   DNA   modification   in   vertebrates   and   a   major   epigenetic   mark.[12]   Methylated   cytosines   are   found   as   symmetrical  5-­‐methylcytosine  (5mC)  of  the  dinucleotide  CpG  within  promoter  regions,   in  which  75%  are  methylated  throughout  the  mammalian  genome.[13]  There  are  about   30,000   so   called   CpG   islands   in   the   human   genome.[14]   Beside   X-­‐inactivation,   genomic   imprinting,   the   development   of   primordial   germ   cells   methylation   of   cytosine   is   also   directly  linked  to  diseases  like  cancer.[15][16][17][18][19]  The  pattern  of  DNA  methylation  is   established  and  maintained  by  DNA  methyltransferases.  For  further  information  on  the   epigenetic  influence  of  5mC  also  see  chapter  1.2.  

Firstly   discovered   in   the   bacteriophages   T2,   T4   and   T6   in   1952[20]  

5-­‐hydroxymethylcytosine   (hmC)   was   first   described   in   mammalian   brain   and   liver   tissue   twenty   years   later[21].   In   2009   hmC   was   simultaneously   detected   in   cerebellar   Purkinje  neurons[22]  and  in  mouse  embryonic  stem  cells  and  human  embryonic  kidney   cells[23].   The   ten-­‐eleven   translocation   1   (TET1)   protein,   was   identified   as   a   2-­‐oxoglutarate-­‐   and   Fe(II)-­‐dependent   enzyme   that   catalyses   the   conversion   of   5-­‐methylcytosine  to  5-­‐hydroxymethylcytosine  in  vitro,  as  well  as  in  cultured  cells.[23]  In   an  initial  hype  hmC  was  believed  to  be  an  important  epigenetic  marker  itself  and  named   the  sixth  base  of  the  genome.[24]  Following  the  discovery  of  hmC,  5-­‐formylcytosine  (5fC)   and  5-­‐carboxylcytosine  (5caC)  were  revealed  in  mouse  embryonic  stem  cells  (ESCs)  and  

(11)

mouse   tissues   as   products   from   a   stepwise   oxidation   of   5mC   and   hmC   by   TET   family   dioxygenases.[25][26][27][28]  

While  5mC  is  generally  viewed  as  a  “silencing”  epigenetic  mark[29],  hmC  is  regarded  as   an   intermediate   in   an   active   demethylation   pathway.[23][26][27][30][31][32][33][34]   Passive   demethylation   occurs   for   example   during   DNA   replication.   The   postulated   active   demethylation  pathway  of  5mC  is  shown  in  Figure  1.  

 

 

Figure   1:   Postulated   active   demethylation   pathway   of   5mC:   The   pattern   of   DNA   methylation  is  established  and  maintained  by  DNA  methyltransferases.  Demethylation  TET   family   proteins   can   oxidize   5mC   to   hmC,   hmC   to   5fC,   and   then   5fC   to   5caC.   The   oxidation   products   5fC   and   5caC   can   be   removed   by   TDG   to   generate   an   abasic   site.   This   abasic   site   can   be   repaired   to   a   cytosine   by   the   base   excision   repair   (BER)   pathway.   Alternatively,   hmC   may   be   deaminated   by   AID   or   APOBEC   to   5hmU,   which   can   subsequently   be   removed   and   repaired   by   TDG   or   SMUG1   and   then   enter   BER,   respectively.   5caC   may   also   be   removed   in   a   decarboxylation   pathway.   Solid   arrows   indicate   biochemically   validated   pathways   whereas   dotted   arrows   are   pathways   yet   to   be   confirmed   biochemically.   hmU   has  not  been  detected  in  the  mammalian  genome  so  far.  Modified  from  literature[34] [35].  

 

While   5fC   and   5caC   are   thought   to   be   strictly   demethylation   intermediates,   hmC   accumulates  to  relative  high  abundance  and  it  may  also  have  unique  functions  of  its  own   that  directly  affect  gene  expression.[35]  

 

(12)

1.2 Epigenetics  

While   genetics   describes   the   studies   of   genes,   heredity   and   genetic   variation   in   living   organisms   based   on   the   genetic   code   of   the   DNA,   epigenetics   copes   with   differential   gene  expression  causing  broad  functional  and  morphological  diversity  of  cells  even  so   they  all  have  the  same  genetic  material.  In  other  words  epigenetics  was  described  in  the   BBC   television   science   program:   “At   the   heart   of   this   new   field   is   a   simple   but   contentious  idea  –  that  genes  have  a  ‘memory’.  That  the  lives  of  your  grand  parents  -­‐  the   air  they  breathed,  the  food  they  ate,  even  the  things  they  saw  -­‐  can  directly  affect  you,   decades  later,  despite  your  never  experiencing  these  things  yourself.”[36]  

An  initial  scientific  definition  was  given  by  Arthur  Riggs  and  colleagues:  epigenetics  is  

“the   study   of   mitotically   and/or   meiotically   heritable   changes   in   gene   function   that   cannot  be  explained  by  changes  in  DNA  sequence”.[37]  With  epigenetics  becoming  more   and  more  popular  the  field  broadened  and  the  definition  of  epigenetics  blurred,  making   an  exact  definition  hard.  Especially  the  use  of  the  term  epigenetic  to  describe  processes   that  are  not  heritable  is  controversially  discussed.[36][38][39]  

One   of   the   reasons   why   there   is   no   general   definition   on   epigenetics   is   the   fact   that   epigenetic   marks   are   represented   by   a   variety   of   molecular   mechanisms:  

posttranslational   histone   modifications,   ATP-­‐dependent   chromatin   remodelling,   small   and  other  noncoding  RNA  (siRNA,  miRNA),  binding  of  histone  variants  and  non-­‐histone   proteins  and  last  but  not  least  DNA  base  modifications  like  methylation.[40]  

Methylated   cytosines   are   the   most   common   DNA   base   modification   in   eukaryotes   and   are   found   as   symmetrical   5-­‐methylcytosine   (5mC)   of   the   dinucleotide   CpG   within   promoter   regions,   in   which   75%   are   methylated   throughout   the   mammalian   genome   (also  see  chapter  1.1.1).[13]    

In  recent  years,  it  became  evident  that  promoter  methylation  changes  the  interactions   between  proteins  and  DNA,  which  leads  to  alterations  in  chromatin  structure  and  either   a  decrease  or  an  increase  in  the  rate  of  transcription.[41]  The  post-­‐synthetic  addition  of   methyl  groups  to  cytosines  alters  the  appearance  of  the  major  groove  of  DNA,  to  which   the  DNA  binding  proteins  bind,  resulting  in  alternative  effects  on  transcription.[41]  The   position  of  the  methylation  change  relative  to  the  transcription  start  site  is  critical  to  the   outcome:   on   the   one   hand   methylation   of   a   promoter   CpG   island   leads   to   binding   of   methylated   CpG   binding   proteins   and   transcription   repressors   leading   to   a   block   of   transcription  initiation.  On  the  other  hand  methylation  of  silencer  or  insulator  elements   blocks   the   binding   of   the   cognate   binding   proteins,   potentially   abolishing   their  

(13)

repressive   activities   on   gene   expression.[41]   Furthermore,   DNA   methylation   is   closely   interconnected  with  chromatin  remodelling  and  histone  modifications.  As  transcription   does   not   act   on   naked   DNA,   but   on   chromatin,   it   is   a   system   of   multiple   layers   of   epigenetic  modifications  to  modulate  gene  expression  through  chromatin  structure.[42]  

Moreover,   dynamic   changes   of   methylation   patterns   are   important   for   mammalian   embryogenesis.[43]   During   this   process   methylation   levels   change   dynamically:   in   mammals   there   are   at   least   two   developmental   periods   -­‐   in   germ   cells   and   in   preimplantation   embryos   -­‐   in   which   methylation   patterns   are   reprogrammed   genome   wide,  generating  cells  with  a  broad  developmental  potential.[44]    

Also   genomic   imprinting   and   X-­‐inactivation   is   epigenetically   regulated.[15]   Imprinted   genes  are  expressed  in  a  parent-­‐of-­‐origin-­‐specific  manner    and  are  normally  located  in   clusters   where   the   alleles   are   differently   labelled   by   DNA   methylation,   histone   acetylation  or  deactylation  and  histone  methylation.[45]  

In  female  mammals  normally  one  of  the  two  X-­‐chromosomes  is  silenced.[46]  Otherwise   the  difference  in  X-­‐chromosome  dosage,  would  lead  to  an  expression  of  X-­‐linked  genes   in   females   twice   as   high   as   in   males.   The   X-­‐inactivation   process   converts   one   X-­‐chromosome   from   active   euchromatin   into   transcriptionally   silent   and   highly   condensed   heterochromatin   through   a   series   of   events   that   include   the   coating   of   the   X-­‐chromosome  by  Xist  RNA,  DNA  methylation  and  histone  modification.[15]    

Furthermore,   alterations   in   DNA   methylation   can   be   an   integral   event   in   the   onset   of   diseases   like   cancer.[18][47]   Cancer,   in   general,   is   caused   by   dysfunction   of   genes   that   control   the   cell   cycle,   apoptosis   and   migration.   During   carcinogenesis   oncogenes   are   activated   and   enhance   division   or   prevent   cell   death.   Normally   controlled   by   tumour   suppressor  genes  their  inactivation  leads  to  cancer.  At  least  three  pathways  are  known   for   the   inactivation   of   tumour   suppressor   genes:   A   mutation   disables   the   function.   A   gene   can   get   lost   and   is,   thus,   not   available.   Beside   these   two   classical   genetic   mechanisms   also   epigenetic   changes   can   switch   off   genes   by   inappropriate   cytosine   methylation  in  CpG  motifs  within  control  regions  of  gene  expression.  Found  in  virtually   every  type  of  human  neoplasm  the  hypermethylation  of  these  promoter  regions  is  now   the  most  well  categorized  epigenetic  change  to  occur  in  tumours.[47][48][49]  Surprisingly   such   promoter   hypermethylation   is   at   least   as   common   as   the   disruption   of   classic   tumour  suppressor  genes  in  human  cancer  by  mutation.[47]  

Besides   the   silencing   of   genes   by   hypermethylation   in   promotor   regions   also   cytosine   methylation   in   the   coding   region   of   genes   can   increase   mutation   rates   because   of   the  

(14)

spontaneous   hydrolytic   deamination   of   methylated   cytosine,   which   causes   C   to   T   transition   mutations   at   methylated   CpG   sites.[47]   Methylation   also   changes   the   absorption  wavelength  of  cytosine,  into  the  range  of  incident  sunlight,  resulting  in  CC  to   TT   mutations,   which   commonly   occur   in   skin   cancers.   Methylated   CpGs   are   also   preferred  binding  sites  for  benzo(a)pyrene  diol  epoxide  and  other  carcinogens  that  are   found  in  tobacco  smoke  causing  DNA  adducts  and  G  to  T  transversion  mutations,  which   are  often  found  in  the  aerodigestive  tumours  of  smokers.[47]  

The  discovery  that  particular  hypo-­‐  or  hypermethylation  events  are  unique  for  human   malignancy   suggests   5mC   as   a   promising   biomarker   for   cancer   diagnosis.[50][51]   In   reality,   many   DNA   methylation   based   biomarkers   have   been   evaluated   in   cancer   research  (also  see  chapter  1.6.3).[52][53]    

 

1.3 Biological  role  of  DNA  polymerases  

The  definition  of  what  is  life  is  hard  to  capture.  Yet  one  basic  requirement  in  almost  all   definitions  is  the  capability  of  self-­‐replication  and  the  ability  to  pass  genetic  information   to   the   next   generations.[54]   In   all   known   species   from   archaea   to   mammals   this   is   achieved   by   the   polymerisation   of   monomeric   ribonucleotides   to   long   polymer   chains   catalysed  by  polymerases.  

The  bacterial  Pol  III  catalyses  the  polymerisation  of  up  to  1000  bp/s  with  an  error  rate   of   only   1:105   of   the   catalytically   subunit.[55]   Applying   proofreading   factors   can   significantly  reduce  this  error  rate.[55][56]  In  eukaryotes  replicative  DNA  polymerases  are   slower  by  the  factor  of  20  but  still  reach  speeds  of  approximately  50  bp/s.[57]  For  a  long   time   it   was   believed   that   the   high   accuracy   is   based   on   the   Watson-­‐Crick   hydrogen   bonding.   In   the   meanwhile   it   is   known   that   efficient   and   selective   replication   is   also   possible   without   hydrogen   bonding.   For   a   long   time   minor   groove   hydrogen   bonding,   base  stacking,  solvation,  and  steric  effects  were  underestimated.[58]  The  incorporation  of   nucleotides   in   the   new   DNA   strand   is   accompanied   by   a   series   of   conformational   changes  in  the  DNA  polymerase  thought  to  be  a  checkpoint  control.  Mismatched  bases   cause  a  steric  problem  when  fitting  into  an  active  site  preventing  incorporation.[58]  Also   kinetic   mechanisms   prevent   mismatch   nucleotide   incorporations.   Mismatches   are   bound   and   processed   more   slowly   allowing   the   internal   proofreading   domains   (e.g.  

3’-­‐5’  exonuclease)   to   repair   the   damage   or   leads   to   the   separation   of   the   DNA   polymerase  from  the  substrate,  giving  other  repair  enzymes  access  to  the  DNA.[59]  

(15)

Based   on   their   amino   acid   sequence   DNA   dependent   polymerases   are   divided   into   six   families:   A,   B,   C,   D,   X   and   Y.   Members   of   the   first   three   families   are   involved   in   DNA   replication.[60]  While  family  C  is  only  described  in  eubacteria  all  replicative  polymerases   of  archaea  and  eukaryotes  are  found  in  family  B.  Family  D  is  only  known  in  archaea  and   little   of   the   functions   is   known.[60]   The   last   families   X   and   Y   include   polymerases   specialized  on  DNA  damage  repair  and  translesion  bypass  synthesis.[61]  

In   the   meanwhile   crystal   structures   for   all   polymerase   families   except   family   D   are   described.[62][63]  These  structures  revealed  that  most  polymerase  have  the  same  overall   structure  often  referred  to  as  a  right  hand  with  finger,  thumb,  and  palm  domain.[64][65]  

While  the  finger  domain  interacts  with  the  incoming  nucleotides  and  the  single  stranded   DNA   (ssDNA)   template   the   thumb   domain   binds   the   double   stranded   DNA   (dsDNA)   product.  The  active  centre  is  placed  in  the  palm  domain  with  the  magnesium  ion  binding   domain  needed  for  the  phosphoryl  transfer.  While  thumb  and  finger  domains  are  unique   within  the  families  for  the  palm  domain  two  types  can  be  distinguished.[64][65]    

 

1.3.1 Reaction  mechanism  of  DNA  polymerases    

In  a  simplified  model  the  kinetic  mechanism  of  most  DNA  polymerases  can  be  described   in   five   steps   (see  Figure   2):[66][67][68][69]   Firstly   the   DNA   polymerase   binds   the   DNA   primer/template  complex.  In  the  second  step  an  incoming  dNTP  is  weekly  bound.  This   complex   is   named  open   ternary   complex.   Step   three   is   a   large   conformational   change,   leading   to   tight   binding   of   substrates   and   optimal   alignment   of   the   catalytic   residues.  

This   complex   is   referred   to   as  closed   ternary   complex.   Step   four   is   the   nucleotidyl   transfer  and  the  phosphodiester  bond  formation.  Finally  another  conformational  change   occurs  and  pyrophosphate  is  released  allowing  the  dissociation  of  the  polymerase  from   the  elongated  DNA  primer  template  complex  or  a  further  catalysis  cycle.  The  number  of   added   nucleotides   by   a   polymerase   during   an   association   and   dissociation   at   a   single   DNA  substrate  is  defined  as  processivity.  While  replicative  DNA  polymerases  tend  to  be   very   processive   and   add   several   hundred   nucleotides   upon   binding,   polymerases   involved   in   DNA   repair   have   low   processivity   adding   only   a   single   or   a   few   nucleotides.[70][71]  

 

(16)

 

Figure   2:   Reaction   mechanism   of   DNA   polymerases.   In   a   simplified   model   of   DNA   polymerase   catalysed   nucleotide   incorporation   the   first   step   is   the   binding   of   a   DNA   polymerase   DNA   and   the   primer   template   complex   (P/T).   Secondly   an   incoming   2’-­‐deoxynucleoside-­‐5’-­‐triphosphate   (dNTP)   binds   followed   by   a   conformational   change   of   the   enzyme.   The   chemical   bond   formation   is   step   four.   The   last   step   is   another   conformational   change   including   pyrophosphate   (PPi)   release.   Afterwards   either   another   cycle   of   catalysis   is   started   or   the   enzyme   dissociates   from   the   primer   template   complex.  

Modified  from  literature  [72].  

 

While   explaining   the   overall   mechanism   of   polymerase   catalysed   nucleotide   incorporation   this   model   lacks   the   selectivity   of   nucleotide   incorporation.   For   a   long   time   the   conformational   change   in   step   3   was   believed   to   be   the   rate-­‐limiting   step   of   selective   nucleotide   incorporation.   Recent   studies   however   point   out   that   a   variety   of   steps  along  the  reaction  pathway  could  be  envisaged  as  acting  as  “kinetic  checkpoints”.  

Non-­‐covalent  transitions  and  conformational  changes  in  the  early  pathway  serve  to  test   the  incoming  dNTP  for  complementarity  and  facilitating  rejection  of  incorrectly  paired   dNTPs.[73][74][75]  In  the  case  of  a  matched  incoming  dNTP  the  initially  loose  bound  state  is   followed   by   a   fast   conformational   change   leading   to   tight   dNTP   binding,   followed   by   chemical   bond   formation   and   pyrophosphate   release.[76][77][78][79]   In   the   case   of   a   mismatched   nucleotide   it   is   postulated   that   the   enzyme   is   not   fully   closed   and   active   misalignment  of  catalytic  residues  is  slowing  down  the  rate  of  catalysis  and  promoting   dNTP  release.[80]  Fluorescence  data  suggest,  that  the  mismatch  recognition  state  is  not   an   intermediate   between   the   open   and   closed   conformational   states   that   occurs   upon   correct  nucleotide  binding,  but  a  discrete  state  itself.[80][81]  The  crystal  structure  of  a  high   fidelity  DNA  polymerase  I  bound  to  DNA  primer-­‐template  caught  in  the  act  of  binding  a   mismatched   (dG:dTTP)   nucleoside   triphosphate   shows   that   the   polymerase   adopts   a   conformation   in-­‐between   the   open   and   closed   states.[82]   In   this   so-­‐called   "ajar"  

conformation,   the   template   base   has   moved   into   the   insertion   site   but   misaligns   an   incorrect  nucleotide  relative  to  the  primer  terminus.  The  displacement  of  a  conserved  

(17)

active   site   tyrosine   in   the   insertion   site   by   the   template   base   is   accommodated   by   a   distinctive   kink   in   the   polymerase   O-­‐helix,   resulting   in   a   partially   open   ternary   complex.[82]  This  ajar  conformation  allows  the  template  to  probe  incoming  nucleotides   for   complementarity   before   closure   of   the   enzyme   around   the   substrate   indicating   a   three-­‐state  reaction  pathway  in  which  nucleotides  either  pass  through  this  intermediate   conformation   to   the   closed   conformation   and   catalysis   or   are   misaligned   within   the   intermediate,   leading   to   destabilization   of   the   closed   conformation.[82][83]   Using   NMR   spectroscopy   unique   recognition   states   when   encountering   matched,   mismatched,   and   abasic   template   sites   in  KlenTaq   DNA   polymerase   could   be   shown   under   close-­‐to-­‐

physiological   conditions   and   in   a   virtually   label-­‐free   manner.[84]   This   is   a   further   hint,   that  differences  in  local  dynamics  or  conformational  heterogeneity  caused  by  incorrect   base   pairing   might   contribute   to   selectivity   of   DNA   polymerases   by   reducing   the   efficiency  of  incorporation  and  promoting  substrate  release.  

 

1.3.2 KlenTaq  DNA  polymerase  

In  analogy  to  E.  coli  DNA  polymerase  I  the  large  fragment  of  the  DNA  polymerase  I  from   Thermus  aquaticus  (Taq  DNA  polymerase)  is  termed  KlenTaq  DNA  polymerase  (Klenow   fragment   of   the   Taq   DNA   polymerase)   or   KTQ.   KlenTaq   DNA   polymerase   is   a   thermostable,  exonuclease  deficient,  A  family  DNA  polymerase  composed  of  540  amino   acids.  Compared  to  full  length  Taq  DNA  polymerase  KlenTaq  DNA  polymerase  lacks  the   292  N-­‐terminal  amino  acids  that  build  up  the  5’-­‐3’  exonuclease  function.[65][85][86][87][88]  

KlenTaq   DNA   polymerase   shows   the   typical   right   hand   structure   with   the   three   basic   DNA   polymerase   domains:   fingers,   thumb,   and   palm   (see   Figure   3).[88][89]   In   the   open   conformation  KlenTaq  DNA  polymerase  is  bound  to  a  DNA  primer  template  complex  to   allow   dNTP   binding   (see   Figure   3A).   Upon   correct   nucleotide   binding  KlenTaq   DNA   polymerase   undergoes   significant   conformational   changes   to   close   the   active   site.  

Thereby,  especially  the  fingers  domain  moves  inward  to  allow  active  site  formation  and   tight  nucleotide  binding.  In  particular  the  O  and  the  N  helix  of  the  fingers  domain  reflect   these  conformational  changes  (see  Figure  3B).    

 

(18)

 

Figure   3:  KlenTaq   DNA   polymerase.   A)  Binary   complex   in   presence   of   a   DNA   primer   template  complex  (pdb  file  4KTQ).  B)  Ternary  complex  in  presence  of  DNA  and  an  incoming   nucleotide   (pdb   file   3KTQ).   The   KlenTaq   DNA   polymerase   domains   finger,   palm,   and   thumb   are   colour   coded   in   cyan,   blue,   and   green,   respectively.   The   bound   ddCTP   is   shown   in  magenta.  The  O  helix  is  depicted  in  orange,  the  N  helix  in  red.  

 

KlenTaq   DNA   polymerase   is   structurally   and   mechanistically   well   descript   and   is   frequently   used   as   a   model   system   making   it   perfectly   suitable   for   enzyme   engineering.[76][88][89][90][91][92][93][94][95][96][97][98]  

 

1.4 DNA  polymerases  in  biotechnology  

Not   only   in   nature   DNA   polymerases   are   of   fundamental   importance.   They   are   the   workhorses   in   multiple   biotechnical   applications   like   molecular   cloning,   DNA   sequencing   or   nucleic   acid   diagnostics.[99]   Daily   labour   routines   (e.g.   PCR),   standard   diagnostics  (e.g.  virus  titter  detection  or  single  nucleotide  variation  diagnostics)  but  also   next   next   generation   sequencing   methods   depend   on   the   unique   properties   of   DNA   polymerases.[100][101][102]  

 

1.4.1 Polymerase  chain  reaction  

The  most  widely  used  key  technology  for  DNA  polymerases  in  biotechnology  is  beyond   doubt   the   polymerase   chain   reaction   (PCR).   Developed   by   Mullis   and   co-­‐workers   in   1987[103]   the   breakthrough   of   PCR   was   unstoppable.   Only   seven   years   after   the   publication  of  PCR  Mullis  was  honoured  with  the  novel  price  of  chemistry  in  1993  for   the  development.  PCR  allows  the  exponential  amplification  of  a  specific  DNA  sequence  

(19)

from  a  single  or  few  copies  of  template  DNA.  As  DNA  polymerases  are  not  capable  of  de   novo   synthesis   specific   primers   (short   DNA   fragments   of   typically   around   20   bp)   that   are   needed,   guaranteeing   sequence   specify   of   the   target   amplicon.   During   repeated   cycles   of   heating   and   cooling   dsDNA   is   formed   and   itself   used   as   template   in   the   next   amplification   round.   Under   consumption   of   the   primers   and   deoxynucleotide   triphosphates   (dNTPs)   the   selected   DNA   sequence   flanked   by   the   primers   is   exponentially  amplified  catalysed  by  the  DNA  polymerase.  As  high  temperatures  during   thermal  cycling  steps  are  necessary  to  physically  separate  the  two  strands  of  the  DNA   double   helix   (usually   at   high   temperatures   ~95°C)   in   almost   every   PCR   application,   thermostable   DNA   polymerases   are   employed.   Nowadays,   high-­‐fidelity   DNA   polymerases   (e.g.   Phusion®)   have   significantly   shortened   conventional   PCR   methods.  

Additional   fluorescent   dyes   (e.g.   SYBRGreenI)   or   fluorescence   resonant   probes   (e.g.  

TaqMan)[104][105][106][107]  in  the  PCR  reaction  mix  report  the  amount  of  amplified  DNA  in   real-­‐time.  By  addition  of  a  reverse  transcriptase  or  with   engineered  DNA  polymerases   RNA   detection   is   possible.[108][109][110]   Consequently,   real-­‐time   PCR   methods   are   the   method  of  choice  for  the  detection  and  quantification  of  DNA  and  RNA  targets  such  as   retroviruses,  other  viral  pathogens[107],  or  mRNA  expression  levels[111].  Today  based  on   the   principle   of   PCR   numerous   biotechnological   and   diagnostic   applications   are   described:   Allele-­‐specific   PCR   (ASA)   for   the   detection   of   single   nucleotide   variations[112][113][114],  multiplex  PCR  for  the  simultaneous  amplification  of  multiple  DNA   fragments   in   one   reaction[115],   nested   PCR   which   increases   the   specificity   of   the   DNA   amplification  reaction[116],  isothermal  loop-­‐mediated  amplification[117],  and  many  more.  

 

1.5 Directed  evolution  of  DNA  polymerases  

To   get   access   to   enzymes   with   properties   not   found   in   nature   or   to   shape   existing   properties   like   activity,   stability   or   selectivity   directed   evolution   of   proteins   is   a   powerful  and  widely  used  method  in  protein  engineering.[97][118][119][120][121][122]  As  DNA   polymerases  are  the  key  enzymes  in  biotechnological  applications  like  PCR,  PCR-­‐based   methods  and  DNA  sequencing  (see  chapter  1.4)  they  are  interesting  target  enzymes  for   directed   evolution   approaches.[123]   Many   DNA   polymerase   mutants   with   increased   fidelity[124][125],  altered  thermostability[126][127]  or  increased  substrate  spectra  are  known.  

Polymerases   with   increased   substrate   spectra   spread   over   a   wide   range   from   the   incorporation   of   ribonucleotides[128][129][130][131],   modified   nucleotides[132][133][134][135]or  

(20)

nucleotides  of  unnatural  DNA  analogues[136][137].  Also  DNA  polymerases  with  increased   reverse  transcriptase[108][138]  or  lesion-­‐bypass  activity[139]  and  with  enhanced  fidelity  in   mismatch  extension[140][141]  have  been  successfully  evolved.  

The   process   of   directed   protein   evolution   can   be   described   as   a   series   of   three   basic,   iterative   steps:   Firstly   mutations   are   introduced   into   the   DNA   sequence   of   the   target   enzyme.   Secondly   the   enzyme   mutants   are   expressed.   Finally   a   screening   or   selection   step  identifies  the  protein  and  the  gene  of  the  most  improved  variant.  Either  this  is  the   final  protein  or  the  gene  of  the  most  improved  variant  is  then  used  as  the  template  for   further   rounds   of   mutagenesis,   expression   and   screening/selection   until   the   desired   level  of  improvement  has  been  achieved.  (Also  see  Figure4)  

 

 

Figure   4:   Directed   protein   evolution.  After  an  initial  diversification  step  the  proteins  of   the   gene   library   are   expressed   and   the   improved   protein   variants   are   identified   either   by   screening   or   selection.   Either   the   desired   level   of   improvement   has   been   achieved   or   the   process  is  started  again  with  the  best  variants  gene.  

 

The   mutagenesis   step   can   either   address   the   entire   target   gene   (error-­‐prone   PCR   and   DNA  shuffling)  or  selected  amino  acid  positions  (saturation  mutagenesis).[142][143][144][145]  

An   overview   of   all   three   widely   used   methods   is   shown   in  Figure   5.   In   Saturation   mutagenesis  a  single  amino  acid  at  a  defined  position  is  replaced  by  multiple  other  or  all   other  amino  acids  (see   Figure5  A).  With  PCR  amplification  with  increased  error  rates   (error-­‐prone  PCR)  mutations  are  introduced  randomly  over  the  whole  target  gene  (see   Figure   5B).   Once   multiple   mutants   or   a   single   mutant   with   multiple   mutation   sites   is   identified  further  improvement  can  be  realized  by  DNA  shuffling:  the  genes  of  existing   mutants   or   of   a   mutant   with   multiple   mutation   sites   and   the   wild-­‐type   gene   are  

(21)

fragmented  and  reassembled  in  a  random  fashion  resulting  in  single  mutants  al  well  as   random  combinations  of  all  mutation  sites  (see  Figure  5  C).  All  three  methods  were  also   used  in  this  thesis.  

 

 

Figure   5:   Mutagenesis   strategies.   A)   Saturation   mutagenesis:   selected   amino   acid   positions   are   mutated.   A   single   amino   acid   at   a   defined   position   is   replaced   by   multiple   other   or   all   other   amino   acids.   B)   Error-­‐prone   PCR:   mutations   are   introduced   randomly   over   the   whole   target   gene   by   PCR   amplification   with   increased   error   rates.   C)   DNA   shuffling:   the   genes   of   existing   mutants   or   of   a   mutant   with   multiple   mutation   sites   and   the  wild-­‐type  gene  are  fragmented  and  reassembled  in  a  random  fashion.  (Figure  modified   from  [146])  

 

The  resulting  diversified  gene  library  is  afterwards  transferred  into  a  host  organism  e.g.  

E.  coli  for  protein  expression.  In  this  step  the  linking  of  the  genotype  and  phenotype  of   the   target   enzyme   are   of   fundamental   importance.   Commonly   this   is   achieved   by   compartmentalization  in  multi-­‐well  plates[147],  by  generation  of  discrete  compartments   formed  by  a  water-­‐in-­‐oil  emulsion[148][149][150]  or  by  linking  the  expressed  protein  on  the   surface  of  the  host  cells  (e.g.  phage  or  yeast  display)[148][151][152][153][154][155][156].  

Clearly  the  key  step  for  each  directed  protein  evolution  is  the  adequate  high-­‐throughput   screen  or  selection  to  identify  improved  protein  variants.  Selection  methods  like  phage   display  and  compartmentalized  self-­‐replication  (CSR)  are  based  on  the  concept  that  each   polymerase  mutant  has  to  replicate  its  own  encoding  gene  resulting  in  the  enrichment  of   active  variants  that  can  further  be  selected.  The  fact  that  the  enzymes  that  are  selected  

(22)

need  to  be  directly  involved  in  processes  required  for  cell  survival  of  the  host  organism   or  in  the  process  of  DNA  or  RNA  replication  in  CSR  limits  the  number  of  possible  target   enzymes.    

For   enzymes   that   are   neither   required   for   cell   survival   of   the   host   organism   nor   are   linked  to  DNA  or  RNA  replication  screening  approaches  are  required.  An  example  is  the   directed   evolution   of   green   fluorescent   protein.[157][158][159]   Also   for   DNA   polymerases   different   screening   approaches   including   nucleotide   incorporation   assays[160],   primer-­‐

extension  reactions[139]  or  PCR[141]  have  been  established.  

 

1.6 Personalized  medicine    

The   overall   response   of   humans   to   different   environmental   impacts   and   stressors   is   quite  complex  and  often  not  predictable  for  single  individuals.  The  same  holds  true  for   the   response   of   an   organism   to   drugs.[161]   This   is   where   pharmacogenomics   joins   the   game.  Pharmacogenomics  focuses  on  the  clinical  translation  of  genomic  data  to  predict   and  evaluate  disease  risk  and  progression,  as  well  as  the  pharmacological  response  to   drugs  in  individuals  patients  or  groups  of  patients.[162]  One  of  the  most  obvious  genetic   variables  that  distinguish  half  of  the  population  is  the  sex.  Sex  is  not  only  a  fundamental   aspect   of   human   physiology,   but   also   greatly   influences   the   genetic   predisposition   for   diseases  and  influences  patient  outcomes.[163]  One  well-­‐known  example  is  the  red-­‐green   colour  vision  defect  that  occurs  in  about  8  %  of  males  but  only  in  0.5  %  of  females  of   Northern   European   ancestry.[164][165]   Other   widely   known   examples   are   the   risk   of   myocardial  infarctions  that  is  higher  for  men  at  any  given  age[166]  or  the  risk  of  breast   cancer  were  about  99  %  of  the  cases  occur  in  females[166].  

 

Personalized   medicine   provides   improvement   of   prognosis,   diagnosis   and   therapy   outcomes   adapted   to   each   patient’s   genetic   predisposition.[167][168][169][170][171]   Both   the   prevention   and   cure   of   disease   is   potentially   achievable   in   personalized   medicine   by   predicting   the   disease   risk   among   healthy   individuals   and   the   therapeutic   response   among   patients[3].   In   disease   prevention,   the   key   step   is   the   identification   of   high-­‐risk   individuals  that  may  develop  major  common  diseases,  such  as  cardiovascular  disorder,   diabetes  and  cancer,  and  then  selecting  the  most  appropriate  preventive  intervention  to   protect   them   from   these   diseases.[3]   This   strategy can substantially   reduce   disease   incidence  and  it  is  particularly  important  for  hard-­‐to-­‐treat  disorders,  such  as  cancer.[3]  

Referenzen

ÄHNLICHE DOKUMENTE

culated microwave radiances depending on the variation of the geophysical parameters. In our method we use only those geophysical parameters which contribute most to the

Measurements from light vessels are compared to results of the rain algorithm applied to light ships' weather observations and humidity measurements. Small upper right figure

·-r.. Within the subbasins, there are cyclonic circulation patterns with the net transport between the b as ins is determined by the river runoff into the subb

According to the velocity distribution (Figures 6 and 7) the salinity maximum was located at the northern end of an westward-flowing current.. band, which

It is found that pattern of c1ystal size spectrum (single-mode or bi-mode), shape of ice c1ystals (spherical or non-spherical), the mean size and concentration of ice crystals are

Wahrend Alkenone irn "frisch" sedimentierten Material einer Algenblilte langsamer abgebaut werden als organisch gebundener Kohlenstoff, verringert sich diese

12 Abbildung 4: Dargestellt sind die Methoden, die bei der Bearbeitung der unterschiedlichen Daten (GLORIA, PARASOUND, MSCL) zum Einsatz kommen und die Ziele,

In der vorliegenden Studie kann über die Menge an CaC0 3, die durch Kotballen in die Sinkstoffallen eingetragen wurde, nur eine Schätzung gemacht werden, da weder