• Keine Ergebnisse gefunden

AMF species richness

N/A
N/A
Protected

Academic year: 2022

Aktie "AMF species richness"

Copied!
24
0
0

Wird geladen.... (Jetzt Volltext ansehen)

Volltext

(1)

Eidgenössisches Departement für Wirtschaft, Bildung und Forschung WBF

Agroscope

www.agroscope.ch I gutes Essen, gesunde Umwelt

Monte Verità, 8.10.2019

Diversity of arbuscular mycorrhizal fungi in agricultural systems

Fritz Oehl

(2)

Name der Präsentation 2 Autor

(Vesicular-)Arbuscular Mycorrhizal structures

Fine arbuscles – Aarum Type

Coiled arbuscle – Paris Type

Cavagnaro et al. 2001

AM fungi in agricultural systems Fritz Oehl

Corazon-Guivin et al. 2019

(3)

Name der Präsentation 3 Autor

Extraradical mycelia

Giovannetti et al. 2001

Leek - Allium porrum - roots

Cherry - Prunus avium -roots

AM fungi in agricultural systems Fritz Oehl

(4)

Name der Präsentation 4 Autor

Glomerales

De la Providencia et al. 2005

Gigasporales

Extraradical mycelia

AM fungi in agricultural systems Fritz Oehl

(5)

Name der Präsentation 5 Autor

AMF spore population in a natural grassland in Europe

AM fungi in agricultural systems Fritz Oehl

(6)

Name der Präsentation 6 Autor

1999: 2x3 Spore formation types = 3 AMF families, 6 genera; ca. 150 species

Glomoid

Glomus Radial-glomoid =

Sclerocystoid

Gigasporoid Acaulosporoid

Entrophosporoid

Scutellosporoid

AM fungi in agricultural systems Fritz Oehl

(7)

Name der Präsentation 7 Autor

Acaulospora alpina

Pacispora robigina

Pacispora franciscana

Dominikia aurea

Glomus badium

Orbispora pernambucana Funneliglomus

sanmartinensis

Otospora bareae

Microkamienskia peruviana Rhizoglomus venetianum

Archaeospora

europaea Cetraspora

helvetica

2019: 16 AMF families, 49 genera, ca. 320 species

Baltruschat et al. 2019

AM fungi in agricultural systems Fritz Oehl

Racocetra

beninensis

(8)

Name der Präsentation 8 Autor

Land use intensity

Integrated Production Organic Farming

1. DOK Long-term field experiment in Therwil BL Organic versus conventional farming since 1976/78

Geology: periglacial Loess Soil type: Haplic Luvisol

BIO-Organic BIO-Dynamic

NON-fertil.

Manure-Conventional Mineral-Conventional

Site: DOC field trial, Therwil (BL)

AM fungi in agricultural systems Fritz Oehl

Conventional

(9)

Name der Präsentation 9 Autor

Hierachical cluster analysis on AMF spore populations in conventional and organic farming systems

IP/CON-MIN

1.4 IP/CON-CON

BIO-ORG BIO-DYN BIO-NON

1.4

Oehl et al. 2004

AM fungi in agricultural systems Fritz Oehl

Σ: 32 species

30 26

24 22 24

AMF

species

richness

(10)

Name der Präsentation 10 Autor

Impact of chemical soil parameters

on spore density of different AMF species

AMF orders / AMF species r (linear regression)

Glomerales/Paraglomerales pH (H2O) Organic carbon Available P (E1) Available K Weed species

Oehlia diaphana -0.26 -0.48* 0.51* 0.42 0.26

Funneliformis caledonius -0.36 -0.21 0.56* 0.63* -0.36

Claroideoglomus etunicatum 0.19 0.09 -0.33 -0.36 0.34

Rhizoglomus fasciculatum 0.06 0.09 -0.16 -0.14 0.19

Fu. mosseae 0.28 0.08 -0.05 -0.10 0.06

Dominikia compressa 0.10 0.26 -0.14 -0.09 0.20

Fu. geosporus 0.00 0.08 -0.09 0.16 -0.40

Paraglomus laccatum, albidum & occultum 0.29 -0.19 -0.27 0.46 -0.25

Septoglomus constrictum 0.37 0.31 0.08 0.03 -0.03

Rh. invermaium 0.19 -0.03 -0.20 -0.3 -0.37

Diversisporales/Gigasporales

Pacispora dominikii 0.62* 0.21 -0.51* -0.20 0.61*

Scutellospora calospora 0.10 0.24 -0.48* -0.55* 0.32

Cetraspora pellucida -0.27 -0.28 -0.48* -0.58* 0.48*

Acaulospora paulinae & sieverdingii 0.09 -0.14 -0.62* -0.67* 0.40

Ac. thomii 0.13 -0.24 -0.49* -0.55* 0.43

Ac. laevis 0.04 -0.15 -0.53* -0.57* 0.38

Ac. longula 0.23 0.26 -0.70* -0.58* 0.56*

Ac. scrobiculata 0.21 -0.42 -0.66* - 0.57 * 0.39

Oehl et al. 2011

AM fungi in agricultural systems Fritz Oehl

(11)

Name der Präsentation 11 Autor

2. ‘Oberacker’ Long-term field experiment in Rütti BE Tillage versus No-tillage, ÖLN/PEP conventional

- Since 1994

- Soil type: Sandy-loamy Luvisol/Cambisol, sandig-lehmige Parabraun-/Braunerde - pH 5.7-6.2 in topsoil, pH 6.3-6.5 in subsoil

- 6y crop rotation:

- Sugar beet, winter wheat, winter protein peas, corn, broad bean, winter barley

- In collaboration with Wolfgang Sturny, Claudia Maurer, Andreas Chervet, Murielle Rüdy, Urs Zihlmann

Maurer et al. 2014

AM fungi in agricultural systems Fritz Oehl

(12)

Name der Präsentation 12 Autor

AM fungal species richness in

‘Oberacker’ long-term field experiment

Species

richness no-till Stdev

Species richness

tillage Stdev

Winter protein peas 21 17

Winter wheat 17 15

Interim crops after wheat 17 14

Winter barley 15 11

Interim crops after barley 21 12

Broad bean 20 10

Mean species richness 18.5 2.5 13.2 2.6

Total species richness 33 21

Maurer et al. 2014

After 20 months culturing in the greenhouse on

grass/clover from winter

barley field 23 24

Köhl et al. 2014

AM fungi in agricultural systems Fritz Oehl

(13)

Name der Präsentation 13 Autor

Multidimensional scaling of AM fungal communities from Oberacker, in microcosms after 20 months

Köhl et al. 2014

AM fungi in agricultural systems Fritz Oehl

(14)

Name der Präsentation 14 Autor

AM fungal spore communities from ‚Oberacker‘ experiment

Tillage Conservation tillage

AM fungi in agricultural systems Fritz Oehl

(15)

Name der Präsentation 15 Autor

3. Pinot Gris - On farm ‘experiment’ in Hainfeld DE Tillage versus No-tillage after 38 years, conventional

No-till Tillage

27.2 (1.5) Mean species richness 17.8 (1.5)

34 Total species richness 24

Oehl & Koch 2018

AM fungi in agricultural systems Fritz Oehl

(16)

Name der Präsentation 16 Autor

4. FiBL long-term field experiment in Frick AG Tillage versus Reduced-tillage, Bio-systems

Grassland

Conventional farming

Reduced Tillage

Conventional Tillage

AM fungi in agricultural systems Fritz Oehl

(17)

Name der Präsentation 17 Autor

4. FiBL soil tillage experiment

- Since 2002

- In our study, conventional IP systems in the neighbourhood of the experiment were included, and a adjacent grassland from FiBL

- Soil type: clayey Cambisol, tonige Braunerde;

pH 7.5-7.7 in topsoil, pH 7.8-8.2 in subsoil

- 6y crop rotation in FiBL experiment:

> maize, winterwheat, sunflower, spelt, 2y grass-clover - Part of PhD thesis of Verena Säle,

collaboration with Alfred Berner & Paul Mäder

AM fungi in agricultural systems Fritz Oehl

© FiBL

Reduced Tillage RT

Convent Tillage CT

(18)

Name der Präsentation 18 Autor

AMF species richness

0 5 10 15 20 25

Bio Grassland

No-till F&S

No-till Slurry

Bio-till F&S

Bio-till Slurry

IP-till1

38 33 33 33 28 28

AMF species richness: Σ: 53 species

AMF species richness in the FiBL tillage experiment

Säle et al. 2015

AM fungi in agricultural systems Fritz Oehl

(19)

Name der Präsentation 19 Autor

AMF species at study sites in Frick

3 Classes 5 Orders 8 Families 17 Genera 53 Species

Glomeromycetes Glomerales Glomeraceae Glomus & Rhizoglomus & Oehlia 12 Funneliformis & Septoglomus 11

Dominikia 2

Sclerocystis 3

Entrophosporaceae Claroideoglomus 3

Entrophospora 1

Diversisporales Diversisporaceae Diversispora 2

Pacispora 1

Acaulosporaceae Acaulospora 4

Gigasporales Scutellosporaceae Scutellospora 1

Archaeosporomycetes Archaeosporales Ambisporaceae Ambispora 2

Archaeosporaeae Archaeospora 4

Palaeospora 1

Paraglomeromycetes Paraglomerales Paraglomeraceae Paraglomus 5

60-80% of AMF species and > 90% of spores from Glomerales & Paraglomerales:

> typical for calcareous sites in Europe

AM fungi in agricultural systems Fritz Oehl

(20)

Name der Präsentation 20 Autor

Selected AMF species in the FiBL tillage experiment - with or without indicator potential

Oehlia diaphana Sclerocystis sinuosa

Septoglomus nigrum

Glomus badium Dominikia aurea Funneliformis geosporus

Funneliformis caledonius

AM fungi in agricultural systems Fritz Oehl

(21)

Name der Präsentation 21 Autor

AMF species richness in different soil types, climates & land use intensities

Soil type

Natural ecosystem type Natural systems Organic farming/ Low input Reduced tillage systems High-input systems

Calcaric Leptosol Oehl et al. 2010

Grasslands 27-33 20-25 21-23

Calcaric Regosol Oehl et al. 2003

Grasslands 24-31 22-24/13

Calcaric Chernosem Baltruschat et al.

26-33 23-27 16-19

Haplic Luvisol Wetzel et al. 2014 Oehl et al. 2003, 2004, 2005, 2009

Grasslands 26-32 25-31 25-33* 22-24 (IP Suisse)

16-19 (Conv.) Humic Cambisol

Oehl et al. 2010

Grasslands 32-39 21-25

Vertic Cambisol Säle et al. 2015

Grasslands 38 33-33 28-32

Cambisol/Luvisols Maurer et al. 2018, *

Grasslands 33-35 26-30 25-27 20

Ferralsol(semi-humid to semi-arid) Tschabi et al. 2008

Sudan and Guyana savanna (forests)

28-38 15-19 (Yam fields) 5-10 (Cotton fields)

Ferralsol(semi-humid) Pontes et al. 2017a

Cerrado savanna forest 26-33 24-26 15-21

(-28) Ferralsol(semi-arid)

Pontes et al. 2017b

Caatinga dry savanna (forest) 44 29-36

Ferralsol(semi-arid) Marinho et al. 2019

Caatinga dry savanna (forest) 51-56 25-42 AM fungi in agricultural systems

Fritz Oehl

(22)

Name der Präsentation 22 Autor

Summary and Conclusions

Land use intensity, soil type and climate strongly affect AMF communities

Low input systems generally have high AMF species richness and diversity, comparable with those of natural systems

AMF indicator species can be named for different land use intensities, soils and climates

 In Central Europe, Funneliformis caledonius and Oehlia diaphana are representative AMF species for intensively managed agricultural systems

 Several AMF species are indicators for low-input agricultural systems, such as Cetraspora helvetica and Gigaspora margarita

 Others, such as Glomus badium and Septoglomus nigrum, are indicators for no- or reduced tillage systems

 It is still difficult to predict the beneficial potential of single AMF species in respect to their different ecosystem services and their environments

 A higher diversity of AMF fungi in soils usually is accompanied by a higher general soil biodiversity

 Both should lead to more active and biologically more buffered soils, and thus to a higher biological soil fertility and stability, and to enhanced plant growth and health

AM fungi in agricultural systems Fritz Oehl

(23)

Name der Präsentation 23 Autor

Thank you very much!

For your attention and all support!

(24)

Name der Präsentation 24 Autor

Agroscope – Research for Agriculture and Nature

Danke für Ihre Aufmerksamkeit Thank you for your attention!

Agroscope gutes Essen, gesunde Umwelt

AM fungi in agricultural systems Fritz Oehl

Referenzen

ÄHNLICHE DOKUMENTE

The main objectives were (i) to compare yield, baking quality and several parameters of nutrient use efficiency of modern winter wheat cultivars derived from organic and

More specifically, our natural language interface allows users to search for accommoda- tions throughout Austria by formulating the query in a natural language sentence either in

The study assessed: (i) How the growth suitability of industrial crops can be defined under the given natural constraints of European marginal agricultural lands; and (ii)

Generalized DEA Model for Multiple Criteria Decision Making 169 Halme, M., Joro, T., Korhonen, P., Salo, A., and Wallenius, J., 1999, A value efficiency ap- proach to

INTERNATIONAL INSTITUTE FOR APPLIED SYSTEMS ANALYSIS 2361 Laxenburg, Austria... ENERGY DEVELOPMENT: IN RETROSPECT

Moreover, we will formulate a general and easy to check condition for exponentially stabilizing feedback laws that is equivalent to the linear-exponential input-to-state

Diversity is a fundamental principle throughout SOLIBAM. The underlying hypothesis is that diverse populations in organic input systems are more resilient to

In the mixed farming case study, total nitrogen input was the management indicator with the highest correlation with all other management indicators (e.g. negative corre- lation