• Keine Ergebnisse gefunden

Monte Carlo: a study on BCC Fe

N/A
N/A
Protected

Academic year: 2022

Aktie "Monte Carlo: a study on BCC Fe"

Copied!
13
0
0

Wird geladen.... (Jetzt Volltext ansehen)

Volltext

(1)

Siebe Rossen1,2, Phivos Mavropoulos1, Timo Schena1, Stefan Blügel1 and Theo Rasing2

1 Peter Grünberg Institut and Institute for Advanced Simulation, Forschungzentrum Jülich and JARA, 52425 Jülich, Germany

2 Institute for Molecules and Materials, Radboud Universiteit Nijmegen, 6525 AJ Nijmegen, The Netherlands

DPG Regensburg 14-03-2013

Tight-binding spin dynamics and tight-binding

Monte Carlo: a study on BCC Fe

(2)

Motivation

Study of laser-induced magnetization dynamics

Scientific interest: excitation on the time scale of exchange

Technological interest: magnetization reversal within 100ps

Accurate atomistic description outside equilibrium needed

System studied: BCC Fe for T>0K

K. Vahaplaret al, 2009 Phys Rev Lett 103, 117201

(3)

Localized versus delocalized description

Heisenberg model

ij i j

i j i

E J m m

 



 

Stoner model

   

IR2

E k E k

and: E

   

k E k IR2

Stoner criterium (T=0K): ID E  F 1

(4)

Characteristics

Heisenberg model

Reasonable TC

Qualitative correct above TC

Stoner model

Failure description for T>0K

No Curie-Weiss law above TC

However Heisenberg model lacks

Itinerant character of electrons around εF

Large cohesive energies and specific heat

Unified approach needed:

Rigorous description of non-collinear state

Electronic structure via tight binding Picture taken from:

NoncollinearMagnetism, David Hobbsand Jürgenhafner

ij i j

i j i

E J m m

 



 

(5)

Tight binding

Free energy:

F in terms of ψ:

     

0 , , , 0

, ,

,

ˆ j

k n k n i k n j i

k n i j

E f H

 



  

0

2

0

1

2 4

LCN

i i i id i i i

i i i

F E U n n I m m B m





Pinning of charge

Stoner model

Constraint field

spin independent kinetic + potential energy

    

'

'

, , ,

,

i k n, F k n i k k n i

k n

f S



mi tr ˆi ˆ

i ˆi

c   tr

Parametrizationof Ĥ0:M. J. Mehland D.A. Papaconstantopoulos, 1996, Phys. Rev. B, 54 andJ. C. Slaterand G. F. Koster, 1954, PhysRev94, 1498-1524

(6)

Variational Hamiltonian

Minimalisation free energy:

Obtained Hamiltonian:

 

,

0

k n i

F

   

k n, i k n, i 1

i



under the constraint:

0

    

0

1 1 ˆ

ˆ ˆ ˆ ˆ ˆ ˆ

4 4

j j

TB i i ij j i i i i i i

i i

H H U n n I m B S I m B

 

       

(7)

Description of a NC state

Problem to be solved:

Magnetic moment directions:

Self-consistency for fixed moment directions!

ˆ ˆ

HTB  c ES c

     

'

' ˆ

ˆi k, F k k

i i

k

f c Sc



 

 

mi tr

 ˆiˆ

, , ni , ,

n i

c n i

(8)

Torques

Validity adiabatic approximation?

Spin wave frequencies whole BZ ~ 0.1eV/ħ 1eV/ħ (~ kBTC/ħ)

Electron hopping frequency 3d bandwidth (W/ħ) (WFe~ 5eV)

Better look at*:

Torque**: ˆ ˆ , ˆ

2 i 2 Hub i

d i

dt H

* D. M. Edwards, JMMM 45 (1984) 151-156

 

1 ˆ

2 i i i

d m B

dt   Bi

** L.M. Small and V. Heine., 1984 J. Phys. F: Met. Phys.14 3041

(9)

Spin dynamics and Monte Carlo

Add temperature bi and damping λ:

Computational effort:

Number of time steps: 103 - 106

Per time step: ~ 10 iterations

Per iteration: diagonalization of Ĥ ~ NK· NA3

Thermodynamic properties: Monte Carlo

Reduces number of time steps

Metropolis criterion:

 

, 0

i

bfluc t

     

,fluc fluc, 2

i j ij

b t b s D   t s with:

m T D kB

     

i

i i i i i i i

de e B b e e B b

dt        

and

 

 

exp Eold Enew / k TB

(10)

Monte Carlo results

System:

125 atoms per unit cell

8 k-points

500MC steps per T

4 averages

(11)

Conclusions

We developed a TB spin dynamics and Monte Carlo code

Self-consistent constraining fields are the torques in SD

Thermodynamics properties via tight binding MC

Outlook: use of large computer systems

(12)

Aknowledgements

Forschungzentrum Jülich:

MSc. Timo Schena dr. Phivos Mavropoulos

prof. Stefan Blügel

Radboud Universiteit Nijmegen:

dr. Johan Mentink

prof. Mikhail Katsnelson prof. Andrei Kirilyuk

dr. Alexei Kimel prof. Theo Rasing

(13)

Thank you for your attention!

Referenzen

ÄHNLICHE DOKUMENTE

In the second place, the problems are not as great for supply-constrained programs as for demand—ruled ones, as it is possible to get an experimental group which is sufficiently

Depending on the availability of funds, ACLS will provide fellowships for up to eleven recently tenured faculty, most of whom will spend a year at one of several residential

Diese sind die Ergebnisse von Computersimulationen [1, 2, 3], die zeigen, wie die intrinsischen Eigenschaften von Elektronen, wie etwa ihr kleiner Magnet und dessen Verbreitung

Bl ¨ugel Institut f ¨ur Festk ¨orperforschung and Institute for Advanced Simulation, Forschungszentrum J ¨ulich and JARA, 52425 J ¨ulich, Germany... Motivation: Rare-Earth Oxides

3 Institute for Complex Systems 2, and Institute for Advanced Simulations 2: Theory of Soft Matter and Biophysics, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany..

North Korea’s past proliferation activities and the failure to promptly detect the Syrian reactor cannot but lead to more scrutiny over whether North Korea might sell Burma a

The report finds that “analysis leads to only one conclusion: this technology is only for nuclear weapons and not civilian use or nuclear power.” It continues, “*This information]

Paper copies of the information and application materials may be obtained from the Administrative Officer, School of Historical Studies, Institute for Advanced Study, Einstein