• Keine Ergebnisse gefunden

Assessing the role of uncertain precipitation estimates on the robustness of hydrological model parameters under highly variable climate conditions

N/A
N/A
Protected

Academic year: 2022

Aktie "Assessing the role of uncertain precipitation estimates on the robustness of hydrological model parameters under highly variable climate conditions"

Copied!
18
0
0

Wird geladen.... (Jetzt Volltext ansehen)

Volltext

(1)

Contents lists available atScienceDirect

Journal of Hydrology: Regional Studies

j o u r n a l h o m e p a g e :w w w . e l s e v i e r . c o m / l o c a t e / e j r h

Assessing the role of uncertain precipitation estimates on the robustness of hydrological model parameters under highly variable climate conditions

B. Bisselink

a,∗

, M. Zambrano-Bigiarini

b

, P. Burek

c

, A. de Roo

a

aEuropeanCommission,JointResearchCentre(JRC),DirectorateforSustainableResources,Italy

bFacultyofEngineeringandSciences,UniversidaddeLaFrontera,Temuco,Chile

cInternationalInstituteforAppliedSystemsAnalysis(IIASA),Laxenburg,Austria

a r t i c l e i n f o

Articlehistory:

Received6April2016

Receivedinrevisedform1September2016 Accepted2September2016

Keywords:

Satellite-basedrainfallestimates Highlyvariableclimateconditions Differentialsplit-sample Calibration

Modelparameterrobustness Hydrologicalmodelling SouthernAfrica

a b s t r a c t

Studyregion:FourheadwatersinSouthernAfrica.

Studyfocus:ThestreamflowregimesinSouthernAfricaareamongstthemostvariablein theworld.Thecorrespondingdifferencesinstreamflowbiasandvariabilityallowedusto analyzethebehaviorandrobustnessoftheLISFLOODhydrologicalmodelparameters.A differentialsplit-sampletestisusedforcalibrationusingsevensatellite-basedrainfallesti- mates,inordertoassesstherobustnessofmodelparameters.Robustmodelparameters areofhighimportancewhentheyhavetobetransferredbothintimeandspace.Forcali- bration,themodifiedKling-Guptastatisticwasused,whichallowedustodifferentiatethe contributionofthecorrelation,biasandvariabilitybetweenthesimulatedandobserved streamflow.

Newhydrologicalinsights:Resultsindicatelargediscrepanciesintermsofthelinearcorrela- tion(r),bias(ˇ)andvariability()betweentheobservedandsimulatedstreamflowswhen usingdifferentprecipitationestimatesasmodelinput.Thebestmodelperformancewas obtainedwithproductswhichingestgaugedataforbiascorrection.However,catchment behaviorwasdifficulttobecapturedusingasingleparametersetandtoobtainasingle robustparametersetforeachcatchment,whichindicatethattransposingmodelparam- etersshouldbecarriedoutwithcaution.Modelparametersdependontheprecipitation characteristicsofthecalibrationperiodandshouldthereforeonlybeusedintargetperiods withsimilarprecipitationcharacteristics(wet/dry).

©2016TheAuthors.PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCC BYlicense(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Hydrologicalmodelsarewidelyusedforwaterresourcesmodelling,bothdroughtandfloodforecasting,andclimate changeimpactassessmentstudies,amongothers.Beforeapplyingthesemodelstheirrobustnessneedstobetestedvis-à-vis withthespecificmodellingobjectivetobuildmodelcredibilityandensuremodelapplicability(Klemeˇs,1986).Operational modelsoftenneedtobecalibratedtoobtainnumericalvaluesofmodelparameters.Theaimofacalibrationprocessisto obtainparameterswhichallowanacceptablerepresentationofthehydrologicalbehavioroftheselectedcatchment,and moreovertoobtainparameterswhicharerobustand,therefore,betransposabletowardsothertimeperiodsaswell.This

Correspondingauthor.

E-mailaddress:bernard.bisselink@jrc.ec.europa.eu(B.Bisselink).

http://dx.doi.org/10.1016/j.ejrh.2016.09.003

2214-5818/©2016TheAuthors.PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBYlicense(http://creativecommons.org/licenses/by/

4.0/).

(2)

assumptionmightonlybevalidiftheuncertaintyintheobtainedmodelparametersislowand/ortheconditionsbetween thecalibrationandvalidationperiodaresimilar(stationaryconditions).However,therearemultiplereasonsthatmightlead tochangesinmodelparametersintimeand,therefore,raisealackofmodelrobustness.Themostobviouscausemightbe aninappropriatemodelstructure(Buttsetal.,2004;BulyginaandGupta,2009;ReusserandZehe,2011;LinandBeck,2012;

Seilleretal.,2012).Recently,Coronetal.(2014)showedtheinabilityofthreemodelsofincreasingcomplexityinreproducing thewaterbalanceondifferentsub-periods.Anotherexplanationforthelackofmodelrobustnesscanbemiscalibration(i.e.

pooroptimizationalgorithm)orovercalibration(i.e.insufficientcalibrationperiod,toomanyparameters,wrongobjective function)ofmodelparameters,asshownbyWageneretal.(2003),HartmannandBárdossy(2005),Sonand Sivapalan (2007),Guptaetal.(2009),Ebtehajetal.(2010),EfstratiadisandKoutsoyiannis(2010),Andréassianetal.(2012),Gharari etal.(2013)andZhanetal.(2013).Inaddition,changesintimeofsomecatchmentfeatures(e.g.,landusechangeand management,operationalrulesofreservoirs,changesingroundwaterlevel)arereflectedinthemodelinputdata,andmight alsoleadtolackofmodelrobustness.For example,Feniciaetal.(2009)showedthemajorroleofchangesinlanduse managementandforestageonthecatchments’behavior.

Toassessthemodel’srobustnessunderhighlyvariableclimateconditionsthestandardsplit-sampletest,usedtocalibrate themodelinoneperiodandtestthemodelinanotherperiod,isnotsufficientenough.Klemeˇs(1986)proposedamore powerfultest,thesocalleddifferentialsplit-sampletest,wherecalibrationandvalidationperiodsarechosentorepresent markedlydifferenthydro-meteorologicalconditionsofthecatchment.Thisdifferentialsplit-sampletestshouldbeapplied wheneveramodelistobeusedtosimulateflowsinabasinunderconditionsdifferentfromthosecorrespondingtothe availableflowrecord(Klemeˇs,1986).Arobustmodelshoulddemonstrateitsabilitytoperformequallywellintheselected calibrationandvalidationperiods.Studiesthatperformedadifferentialsplit-sampletestarerelativelyscarce,becausemost modelsfailthistest(Seibert,2003).ThestudiesofRefsgaardandKnudsen(1996),Donnelly-MakoweckiandMoore(1999), Xu(1999),Seibert(2003),Wilby(2005)andChiewetal.(2009)allappliedadifferentialsplit-sampletest.Mostofthese studiesfoundadecreaseinmodelperformanceduetothesensitivityofthemodelparametersinrelationtodifferentclimate conditions.Morerecently,Merzetal.(2011)foundinatestfor273Austriancatchmentsthattheparameterscontrolling snowandsoilmoisturewerestronglyinfluencedbyclimaticconditions.Vazeetal.(2010)andCoronetal.(2012)conducted studieswithfourandthreehydrologicalmodels,respectively,onsoutheasternAustraliancatchments.Theyalsofounda strongclimateinfluenceintheirmodels.AccordingtoLietal.(2012)dryperiodscontainmoreinformationformodel calibrationcomparedtowetperiods,whentheyinvestigatedthetransposabilityofmodelparametersfordryand wet conditions.

Forsuccessfulstreamflowpredictionsthemodelshouldbeforcedwithaccurateprecipitationdata(Beven,2004).The impactofprecipitationinputonmodelperformanceiswelldocumentedinerroranalyses(Kavetskietal.,2003,2006),asa functionofcatchmentsize(Moulinetal.,2009),raingaugedensity(BárdossyandDas,2008)orusingvariousgeostatistical methods(Sunetal.,2000).However,modelrobustnessproblemsduetoincorrectestimationsofprecipitationamountsare rarelyreportedinhydrologicalmodelling,whileitiswellknownthatsucherrorsmighthaveasignificanteffectonthefinal valuesofmodelparameters(Oudinetal.,2006).

Consideringtheimportanceoftheprecipitationinputonthereliabilityofmodelpredictions,itisextremelychallengingto performreliableapplicationsofhydrologicalmodelsinungaugedordata-scarseareas.ForAfrica,“groundtruth”precipitation isverysparseand,thereforeremotesensingcanbeanidealtechniqueforobtainingtimeseriesofprecipitationtobeused asinputdataforhydrologicalmodellingstudies.Applicationsofsatellite-basedrainfallestimates(SRFE)forhydrological modelingarewelldocumented(fore.g.,Thiemigetal.,2013;Artanetal.,2007;Behrangietal.,2011;Gourleyetal.,2011;

StisenandSandholt,2010;CohenLiechtietal.,2012),observinglargedifferencesinparametervaluesobtainedfromdifferent rainfallinputs(BitewandGebremichael,2011).However,mostofthesestudiesperformthestandardsplit-sampletestanddo notdiscusstherobustnessoftheobtainedmodelparametersandhowthemodelstructurecompensatefortheprecipitation inaccuracy,andmoreoveriftheyaretransposabletotimeperiodsotherthanthesinglevalidationperiod.

TheaimofthisstudyistodeterminetherobustnessofthefullydistributedLISFLOODhydrologicalmodelbyusingdif- ferentprecipitationestimatesasmodelinput.Toachievethisaim,thisresearchfocusesonfivemainresearchquestions:(i) Howaccuratearethedifferentprecipitationdatasetsforstreamflowsimulations?(ii)Whatistheeffectofuncertaininput data(precipitation)ontheestimatesofmodelparameters?(iii)Howwillthemodelparametersobtainedbycalibration compensateforprecipitationinaccuracy?(iv)Canadifferentsourceofprecipitationovercomerobustnessproblems?(v) Isasinglecalibrationparametersetsufficientforhydrologicalforecastingorclimatescenariomodelling?Theseresearch questionsareansweredperformingadifferentialsplit-sampletesttocalibratetheLISFLOODhydrologicalmodelusingdif- ferentprecipitationsources,toshowdifferencesinmodelparametersandtoensureaminimumstandardforoperational validationofthissimulationmodel.SouthernAfricaisselectedasacasestudybecauseofitshighlyinterandintra-annual hydrologicalvariability,mainlyduetorainfallpatternscharacterizedbyeventsofshortdurationandhighintensities.There- fore,theprecipitationestimatesmightpresentlargedifferenceswithgroundobservations,i.e.,theycanbehighlyinaccurate.

Thecorrespondingdifferencesinstreamflowbiasandvariabilitywillallowustoassessdifferencesinmodel’sbehaviorand robustnessofmodelparameters.

Thepaperisorganizedasfollows.Section2presentstheprecipitationestimatesandotherhydrologicalmodeldataused inthisresearch,providingadescriptionofthesensitivityanalysis,calibrationprocedureandclimatecharacteristicsduring thehydrologicalsimulations.Section3containsadescriptionofthecalibrationandvalidationresultsofthedifferentialsplit-

(3)

sampletest,whileSection4givesadescriptionofthemodelparameters,theirrobustnessanduncertainty.Theconclusions arefinallypresentedinSection5.

2. Methodology

2.1. Hydrologicalmodel

LISFLOODisaGIS-basedspatially-distributedhydrologicalrainfall-runoffmodel(DeRooetal.,2000;VanDerKnijffetal., 2010;Bureketal.,2013).Drivenbymeteorologicalforcingdata,LISFLOODcalculatesacompletewaterbalanceatadaily timestepandeverygrid-celldefinedinthemodeldomain.Processessimulatedforeachgridcellincludesnowmelt,soil freezing,surfacerunoff,infiltrationintothesoil,preferentialflow,redistributionofsoilmoisturewithinthesoilprofile, drainageofwatertothegroundwatersystem,groundwaterstorage,andgroundwaterbaseflow.Runoffproducedforevery gridcellisroutedthroughtherivernetworkusingakinematicwaveapproach.Lakes,reservoirsandretentionareasor polderscanbesimulatedbygivingtheirlocation,sizeandin-andoutflowboundaryconditions.LISFLOODiscurrently usedforstudiesdealingwithwaterresources(Mubarekaetal.,2013;Sepulcre-Cantoetal.,2012),climatechangeimpact assessment(DankersandFeyen,2008,2009;Feyenetal.,2009;Rojasetal.,2012),flashfloodforecasting(Alfierietal.,2012) andfloodforecastingforEurope(Bartholmesetal.,2009;Pappenbergeretal.,2011;Ramosetal.,2007;DeRooetal.,2011;

Thielenetal.,2009)andrecentlyforAfrica(Thiemigetal.,2015).

Spatiallyvariableinputparametersandvariableswereobtainedfromdifferentdatabases.Soilpropertieswerederived fromtheHarmonizedWorldSoilDatabase(HWSD).ForestfractionandlandusecoverwereobtainedfromtheGlobalLand Cover2000(GLC2000)dataset(Bartholoméetal.,2003).Inadditiontolandcover,thevegetativepropertieswereobtained fromtheVGT4AFRICAProject.AmoredetaileddescriptionofthestaticinputmapsforAfricaisgivenby(Bódis,2009).Water useinformationfromtheGlobalCropWaterModel(GCWM–SiebertandDöll,2008,2010)isdynamicallycoupledwith LISFLOOD.Itisassumedthatwaterissubtractedsolelyfromthestreamflowandnotfrominternalstorages.

ThedrainagenetworkoftheAfricanriverbasinswereobtainedusingasequenceofupscalingoperationsperformedon therivernetworkderivedfromaShuttleRadarTopographyMission(SRTM;Jarvisetal.,2008)elevationmodelwithspatial resolutionof90m.Withtheupscalingfromafinetowardsacoarserscaletheaccuracyofthedrainagenetworkdatacan belostandmanualcorrectionsshouldbeapplied.However,inthecurrentpan-Africansetupweappliedanewalgorithm developedbyWuetal.(2011)forautomaticupscalingofrivernetworks,whichsuccessfullyaddressesmostoftheupscaling issues.

Meteorologicalforcingdataforthepan-AfricandomainoftheLISFLOODmodelwereobtainedfromtheERA-Interim reanalysisdataset(Simmons etal.,2007).GriddeddataproductsofERA-Interiminclude alargevarietyofsurface and upper-airparameters.Hereweretrieved3-hourlyordailyestimatesofwindspeed,minimumandmaximumtemperature, dewpointtemperature,andsolarandthermalradiationatagridof0.25fromtheoriginalGaussianreducedgrid(about 0.7).Afterwards,thePenman-Monteithformulawasusedtocomputepotentialevapotranspiration,evaporationratesfor openwaterandbaresoilsurfaces,tobeusedasinputdataforthehydrologicalmodel.Thecurrentpan-Africansetupof LISFLOODusesa0.1grid,whichmeansthatallthedatasetswerere-sampledto0.1ofspatialresolution.

2.2. Data

2.2.1. Precipitationsources

TheprecipitationproductsusedinthisworkaretheNationalAeronauticsandSpaceAdministration(NASA)Tropical RainfallMeasuringMission(TRMM)3B42version6(hereafter3B42V6)andthelatestversion7(3B42V7),theNational OceanicandAtmosphericAdministration(NOAA)ClimatePredictionCentermorphingtechniqueversion1.0(CMORPHV1.0), ERA-InterimprecipitationcorrectedusingtheGlobalPrecipitationClimatologyProject(GPCP)dataset(ERAIGPCP),theGlobal SatelliteMappingofPrecipitationmovingvectorwithKalmanfilter(GSMaP),ThePrecipitationEstimationfromRemotely SensedInformationUsingNeuralNetworksproduct(PERSIANN)andTheNOAAAfricanPrecipitationEstimationAlgorithm (RFE2.0).Abriefdescriptionofeachproductisgivenbelow.

TheTRMM3B42V6producthasbeenproducedsince1998andtheestimatesareproducedinfourstages(Huffman etal.,2007):(1)themicrowaveestimates(TMI,AMSR-E,SSM/IandAMSU-B)precipitationarecalibratedandcombined, (2)infrared(IR)precipitationestimatesarecreatedusingthecalibratedmicrowaveprecipitation,(3)themicrowaveand IRestimatesarecombined,and(4)rescalingtomonthlydataisappliedusingmonthlygaugedata.Thelatestversion,the 3B42V7,isareprocessedversionof3B42V6withchangesinthealgorithmandincludesadditionaldatasets(Huffmanetal., 2010;HuffmanandBolvin,2012).Both3B42V6and3B42V7productestimatesareavailableapproximately2monthsafter observation,butaremoreaccurateandsuitableforresearchcomparedtothenear-real-timeproducts(Huffmanetal.,2007, 2010).Theyarereleasedona0.25by0.25gridata3-hourlytemporalresolutionandcoveralllatitudesbetween50Nand 50S.

ThemaininputsfortheCMORPHV1.0arethecombinedIRandmicrowaveestimates.Thepassivemicrowaveestimates areinterpolatedusingatmosphericmotionvectorsfromtwosuccessiveIRimagesat30-minintervals(Joyceetal.,2004).

Thefinalproductincludestheraw,satelliteonlyprecipitationestimatesaswellasbiascorrectedandgauge-satelliteblended precipitationproducts.Theoriginalproducthasaveryhighspatialresolution:8kmgridandhalf-hourlytimestep.However,

(4)

Fig.1. ElevationmapofSouthernAfricaincludingthefourheadwaterswiththeoutletsmarkedasblackdots.

bothradarandsatelliteprecipitationdatasetsaregriddedtothe0.25 gridandaggregatedtoa3-htimesteptoensure commonspatialandtemporalscalesinaglobalbeltextendingfrom60Nto60S.

TheERAIGPCPisestimatedbythenumericalmodelbasedontemperatureandhumidityinformationderivedfromassim- ilatedobservationsoriginatingfrompassivemicrowaveandinsitumeasurements(Deeetal.,2011).Balsamoetal.(2010) reportedonsystematicbiasesintheERA-Interimprecipitationdata.Tocorrectforthesebiases,theERA-Interimprecipitation iscorrectedusingtheGPCPdataset.DetailsoftherescalingmethodcanbefoundinBalsamoetal.(2010).

ThemaindatasourcesfortheGSMaPalgorithmareTRMM/TMI,Aqua/AMSR-E,DMSP/SSMI,andIRdata.Inadditionto these,AMSU-B’sareincludedintheGSMaPproduct.ThealgorithmusestheKalmanfiltertoretrievetheprecipitationrate (Ushioetal.,2009)andrefinestheprecipitationateach0.1pixelusingtherelationbetweentheIRbrightnesstemperature andsurfaceprecipitationrates.

PERSIANNisdevelopedwithartificialneuralnetworksestimatingprecipitationratesusingIR.Theaccuracyisimproved withadjustmentsinthenetworkparametersusingprecipitationestimatesfrommicrowaveandgroundrainrateswhere available(Hsuetal.,1997).

TheRFE2.0product(Hermanetal.,1997)isbasedonacombinationofpassivemicrowaveandIRprecipitationestimates.

DailyraingaugestationdatafromGlobalTelecommunicationSystem(GTS)recordsisusedforbiascorrection.Thespatial resolutioncorrespondstoa0.1gridwhichextendsfrom40Nto40Sand20Wto55E.

Forthisstudy,eachprecipitationsourceisresampled(nearestneighboralgorithm)ontoa0.1commongrid,fromJuly 2001untilJune2010atadailytimesteptodrivetheLISFLOODhydrologicalmodel.

2.2.2. Observedstreamflow

TheclimateoftheSouthernAfricanregionischaracterizedashighlyvariable,bothtemporallyandspatially.Manyrivers passthroughdifferentclimatezonesfromtropicaltoextremelyarid,andthestreamflowregimesareamongstthemost variableintheworld(GorgensandHughes,1982).WaterresourcemanagementisofhighimportanceforSouthAfricato maintainreliablewatersuppliesattimesofwaterstress.Therefore,allmajorriversarebeingregulatedtosomedegree (Walmsleyetal.,1999).

Fourheadwaterswereselected(Fig.1)forthemostimportantriversinSouthernAfrica,tryingtoexcludetheunnatural flowregimesdownstreamasmuchaspossible.Dailystreamflowrecordswerecollectedfrom4gaugingstations(Fig.1), providedbytheDepartmentofWaterAffairsinSouthAfrica(www.dwaf.gov.za),fortheperiodJuly2001untilJune2010.

2.3. Selectionofstudyarea

Asdescribed inSection2.2.2,fourheadwatersin SouthernAfricawithnear-undisturbedhydrologicalregime were selectedforanalysis.However,man-madereservoirsexistinbothregionsA2andA3,buttheirsmallregulationcapac- ityhavelittleimpactonstreamflowamount,asobservedintheflowdurationcurves(notshownhere).Thelocationsof

(5)

Table1

Physiographiccharacteristicsforthestudyarea.ThecharacteristicsarecalculatedbasedontheERA-Interimforevapotranspiration(PET)andtemperature (TA),andERA-interimcorrectedwithGPCPfortheprecipitation(P).

Type Variable A1 A2 A3 A4

Station Name Roodewal Oranjedraai TugelaFerry Overvloed

River Kraai Orange Tugela WhiteMfolozi

Catchment Orange Orange Tugela Mfolozi

Topography Area(km2) 8667 24960 12987 3917

Elevation(m) 1848 2297 1291 1047

Climate HI(−) 0.56 0.70 0.67 0.69

P(mmyear−1) 748 832 875 876

PET(mmyear−1) 1342 1186 1310 1267

CORR(−) 0.29 0.47 0.49 0.53

TA(C) 12.6 10.5 16.8 17.0

Q(m3s−1) 23.4 105.6 43.4 5.8

theheadwatersareshowninFig.1,whileTable1liststheclimaticandtopographicalattributesoftheselectedcatchments.

ThefourheadwatersarelocatedinorontheEasternplainsoftheDrakensbergmountainrangewherethemostimportant riversoriginate.Thesizeoftheheadwatersrangefromabout3917km2forA4toabout24960km2forA2,andtheaverage elevationrangesfrom1047(A4)to2297(A1)metersa.s.l.(seeTable1).

Accordingtothecalculatedhumidityindex(HI=P/PET),theclimateintheselectedheadwatersissub-humidwithan averageannualprecipitation(P)rangingfrom748(A1)to876(A4)mmyr1(accordingtoERAIGPCP).Theaverageannual evapotranspiration(PET)rangesfrom1186(A1)to1342(A4)mmyr−1.ThePearsonproduct-momentcorrelationcoefficient (CORR)betweenmonthlymoisture(P)andenergy availability(PET)rangesfrom0.29 to0.53showingagood positive correlationinA2,A3andA4(>0.4)which,accordingtoPetersenetal.(2012),representsareaswithastrongseasonal precipitationregime.Precipitationoccursmainlyduringthesummermonths(i.e.OctobertoMarch)andthemajorsources ofrainfallduringsummerarethunderstorms,orographicallyinducedstorms(Tysonetal.,1976),andoccasionallytropical cyclones(DysonandVanHeerden,2001;ReasonandKeibel,2004).Althoughthesesystemsmayresultindevastatingfloods, theyareanimportantsourceofwatertosupplytheincreasingwaterdemandinthisarea.Theaverageannualtemperature (TA)rangesfromabout10.5Cinthemountainousareas(A2)to17Cintheheadwaterwiththelowestelevation(A4).The averagemonthlystreamflow(Q)rangesfrom5.8(A4)upto105.6m3s1(A2),butthehighrainfallvariabilityresultsinlarge fluctuationsofthestreamflowregime.

2.4. Sensitivityanalysis

Beforeusingacalibrationproceduretoobtainparametervaluesforthehydrologicalmodel,weidentifiedparameters withthehighestinfluenceinsimulatedstreamflow.InthecurrentLISFLOODversion,experienceofthemodeldevelopment teamsuggeststhefollowingparameterstobecalibrated.TheUpperZoneTimeConstant(UZTC)andLowerZoneTime Constant(LZTC)reflecttheresidencetimeofwaterintheupperandlowergroundwaterzone,respectively.Assuch,they controltheamountandtimingofoutflowfromthegroundwaterreservoir.TheGroundwaterPercolationValue(GwPV) controlstheflowfromtheupperandlowergroundwaterzone.TheGroundWaterLossFraction(GwLoss)istherateofflow outofthelowergroundwaterzone,expressedasafractionoftheinflow,GwPV.TheXinanjiangparameter(bXinan)isan empiricalshapeparameterintheXinanjiangmodel(ZhaoandLiu,1995)thatisusedtosimulateinfiltration.Itcontrolsthe fractionofsaturatedareawithinagridcellthatiscontributingtorunoff;henceitisinverselyrelatedtoinfiltration.The PowerPreferentialFlowParameter(PPrefFlow)isalsoanempiricalshapeparameterofthefunctiondescribingtheflowthat bypassesthesoil-matrixanddrainsdirectlytothegroundwater.TheChannelManningparameter(CCM)isamultiplierthat isappliedtotheManning’sroughnessmapsofthechannelsystem.Thehigherthevaluethemorefrictionthewaterwill experienceandresultinginalowerspecificstreamflow.Theevaporationinputdoesnothavealargespatialvariationand issubjecttoerrorsinSouthernAfrica(Hughes,2006;Hughesetal.,2010).Moreover,therearelargedifferencesbetween actualevaporationestimatespartiallydependentonprecipitation(Trambaueretal.,2014).Topartiallyconsideruncertainties onthemagnitudeoftheevaporation,relatedtothedifferentprecipitationsources,amultipliertotheevaporationinput (CalEvap)isalsocalibrated.Inaddition,forcatchmentswithupstreamreservoirs(A2andA3,with2reservoirseach)aset offourreservoirparametersareincludedtodescribetheinflowandoutflowstreamflows.Finally,thetwelveparameters selectedfortheglobalsensitivityanalysesarelistedinTable2.

Thevariance-basedmethodofSobol(Sobol’,2007)wasselectedasaglobalsensitivityanalysistechniquetoidentifythe relevantmodelparameters.Here,theSobol’salgorithmproposedbySaltellietal.(2010)isusedtoquantifythefirst-and total-orderindicesofeachmodelparameterdescribedintheprevioussection.Thefirst-ordersensitivityindex(Si)measures thedirectcontributionofeachmodelparametertothetotalmodeloutputvariance.Bydefinition,thesumofthefirst-order indicesofeachsinglecalibrationparameterissmallerorequalto1.Thefirst-orderindexprovidesameasureofthedirect importanceofeachparameter,andthelargerthefirst-ordersensitivityindexthemoreimportanttheparameter.Onthe otherhand,thetotal-ordersensitivityindex(Sti)isameasureofthetotaleffectofeachparameter,i.e.,itsdirecteffectand alltheinteractionswithotherparameters.Ifthefirst-ordersensitivityindexisequaltothetotal-ordersensitivityindexfor

(6)

Table2

LISFLOODcalibrationparameterswithbothupperandlowerbound.

Parameter Unit Min Max

UZTC days 5 40

LZTC days 50 2500

GwPV mmday−1 0.5 2

GwLoss 0.01 0.70

b Xinan 0.01 1

PPrefFlow 1 4

CCM 0.1 15

CalEvap rnlim rflim rnormq rndq

m3s−1 m3s−1

0.8 0.10* 0.81* 0.1* 12*

1.2 0.80* 1.0* 20* 1200*

*RangesarereservoirdependentandonlyusedforregionA2andA3intheglobalsensitivityanalysis.

Fig.2. Barplotsofthesensitivityindiceswithrespecttothecalibrationparametersforeachprecipitationsourcebasedontheperiod2002–2006.Foreach precipitationsource,twobarsaredisplayed:theleftoneisforfirst-ordersensitivityindicesandtherightoneisforthetotal-ordersensitivityindices.

agivenparameter,itmeansthatthisparameterdoesnotinteractwiththeotherparameters.Conversely,ifthefirst-order sensitivityindexislowerthanthetotal-ordersensitivityindex,itindicatesstronginteractionsbetweenthisparameterand otherparameters(highcomplexitymodel).Notethatthesumofthetotal-ordersensitivityindicesmaybelargerthan1 (becausesomeeffectsarecountedmorethanonceinthesum).

TheSobol’smethodwasusedtoidentifythemostimportantparameterswhentheLISFLOODmodelwasforcedwith eachoneofthesevenSRFEdescribedinSection2.2.1.Theevaluationofboththefirst-andtotal-ordersensitivityindices isshowninFig.2.ForregionA1(Fig.2a),themostsensitiveparametersarerelatedtoinfiltration(PPrefFlow,bXinan), groundwaterprocesses(GwLoss)and evaporation(CalEvap). BothGwLossand bXinanareclearlythemostimportant variablesforeveryprecipitationsource.TheparameterPPrefFlowisfoundtohaveaveryweakdirectinfluence,butahigh

(7)

interactionwiththeotherparameters.ForregionA2(Fig.2b),themostinfluentialparameterisGwLossformostofthe SRFEs,exceptfortheRFE2.0precipitationproduct.GwLossexplainsbyitselfmorethan50%ofthemodeloutputvariance.

Severalprecipitationproductsledtomodelparametershighlyrelatedamongstthem(i.e.,theyarenotindependent),as shownbytheheightdifferenceoftheverticalbarsrepresentingthesumofallfirst-ordersensitivityindices:50%ormore.

ForregionA3(Fig.2c),onlythreeparameters(GwLoss,PPrefFlowandCalEvap)areinfluentialforthemodeloutputvariance.

Theinteractionbetweentheparametersis variable,withweakinteractionforCMORPHV1.0and stronginteractionfor RFE2.0.Fig.2dshowssimilarresultsforregionA4,butwithastrongerdirectinfluenceandaweakerinteractionamongst thosethreeparameters.Notethattheparametersrelatedtothereservoirs(regionsA2andA3)areofnoimportanceat allforthemodeloutputvariance.Theaforementionedresultsshowthatonlyparametersrelatedtoevaporation(CalEvap), infiltration(PPrefFlow)andgroundwaterprocesses(GwLoss)arethemostimportantforthenextcalibrationstep.Thestrong interactionsobservedamongstthemclearlyindicatethattryingtooptimizeoneparameteratatimewouldbeinefficient.

Althoughanindependentcalibrationofonlythemostimportantparameterscouldbeattempted,wecalibratedjointlythe 8parameters(UZTC,LZTC,GwPV,GwLoss,bXinan,PPrefFlow,CCMandCalEvap).Theparameterstobecalibratedandtheir respectivephysically-reasonablerangesarelistedinTable2.Theparametersrelatedtothereservoirsareneglectedinthe calibrationprocedureastheywerenotidentifiedasimportantduringtheglobalsensitivitystep.

2.5. Calibrationprocedure

TheopensourcehydroPSORpackagev0.3-3(Zambrano-Bigiarini,2013;Zambrano-BigiariniandRojas,2013)wasused forcalibratingtheLISFLOODmodelinthefourselectedcatchments.hydroPSOisanewglobaloptimisation/calibrationtool basedontheParticleSwarmOptimisation(PSO)algorithm.hydroPSOisaneffectiveandefficientcalibrationtool,asshown inrecentapplicationswithdifferenthydrologicalandenvironmentalmodels(Thiemigetal.,2013;Braueretal.,2014a,b;

AbdelazizandZambrano-Bigiarini,2014;Silaletal.,2015).MoredetailsabouthydroPSOcanbefoundinZambrano-Bigiarini andRojas(2013)andZambrano-Bigiarinietal.(2013).

Thedifferentialsplit-sampletestwasperformedovertwotimeperiodsoffouryears(Jul2002–Jun2006andJul2006–Jun 2010),runningtheLISFLOODmodelwithadailytimestep.Foreachmodelsimulationapre-runisperformedtoinitializethe groundwaterstorageandsubsequentlyanadditionalwarm-upperiodofsixmonthsisusedtoinitializethewaterstorage componentsofthemodel.

TheobjectivefunctionchosentodrivetheoptimizationwasthemodifiedKling-Guptaefficiency(KGE)betweensimulated andobservedstreamflows(Klingetal.,2012),whichwasmaximizedtowardsanoptimalvalueof1.

KGE=1−

K+L+M, (1)

whereKisthecorrelationterm

K=(r−1)2 (2)

Lthebiasterm L=

ˇ−1

2

(3) andMthevariabilityterm

M=(−1)2 (4)

withristhePearsonproduct-momentcorrelationcoefficient,ˇisthebiasratio:

ˇ= s

o

(5) andisthevariabilityratio:

= CVs CVo =

s s o o

(6) whereisthemeanstreamflow(m3s−1),CVisthecoefficientofvariationandisthestandarddeviationofthestreamflow (m3s1),andtheindicessandorepresentsimulatedandobservedstreamflow,respectively.KGE,r,ˇ,andhavetheiropti- mumatunity.ThehydrologicalperformanceisclassifiedasmentionedinThiemigetal.(2013)andaccordingKling’sreview comment(2016):excellent(KGE≥0.9),good(0.9>KGE≥0.75),intermediate(0.75>KGE≥0.5),poor(0.5>KGE>0.0)and verypoor(KGE≤0.0).MoreinformationaboutKGEinrelationtootherobjectivefunctionscanbefoundinGuptaetal.

(2009).Althoughthemodelwasrunwithdailytimesteps,theresultsofthecalibrationareanalyzedonamonthlybasis.

2.6. Climatecharacteristicsof2002–2006and2006–2010

ThecalibrationofLISFLOODiscarriedoutforeachofthesevenprecipitationproductsdescribedinSection2.2.1,using twocalibrationperiodswithhighlydifferentclimatecharacteristics:2002–2006and2006–2010.Fig.3summarizesthe

(8)

Fig.3.Barplotswiththechangeincorrelation(panelsa,d,g,j),mean(panelsb,e,h,k)andvariation(panelse,f,i,l)between2002–2006and2006–2010 foreachprecipitationsourceandobservedstreamflowineachstudyareaA1(panelsa,b,c),A2(panelsd,e,f),A3(panelsg,h,i),andA4(panelsj,k,l).The valueof2002–2006istheupperorlowervalueoftheverticalbaraccompaniedwiththeblackdot.

climatecharacteristicsofeachselectedcatchment,byshowingtherelationbetweenmonthlyprecipitationandobserved streamflowduringthetwocalibrationperiods.Fig.3willbeusedasaguidelinetoexplaintheresultswhicharepresented inthefollowingsection.

ForregionA1,thelowestcorrelationbetweentheobservedstreamflowandprecipitationisobservedforCMORPHV1.0in 2002–2006andPERSIANNin2006–2010.Thehighestcorrelationbetweenobservedstreamflowandprecipitationisfound usingthe3B42V7productforbothcalibrationperiods(Fig.3a).Thedifferenceintheamountofobservedstreamflow(Q, Fig.3b)between2002–2006and2006–2010isnegligiblewhereasthestreamflowin2002–2006isslightlylowercompared to2006–2010.Thedifferenceinprecipitationamountfromdifferentproductsisdispersed,withtheCMORHPV1.0asthe wettestandtheRFE2.0asthedriestproductfor2002–2006,whilefor2006–2010GSMaPisthewettestandRFE2.0isthe driest.NotethattheprecipitationmeanfortheCMORPHV1.0,ERAIGPCPandPERSIANNproductsin2002–2006arelarger comparedto2006–2010,whichisincontrastwiththeobservedstreamflowwhichislargerin2006–2010comparedto 2002–2006.Thevariabilityoftheobservedstreamflowislargerin2002–2006comparedto2006–2010(Fig.3c),whichis also,buttoalesserextent,observedfromthe3B42V6,CMORPHV1.0,3B42V7,ERAIGPCPandRFE2.0products.Incontrast, thevariabilityfromtheGSMaPandthePERSIANNproductislargerin2006–2010comparedto2002–2006.

ForregionA2,thedistributionofthecorrelation,meanandvariabilitybetweentheprecipitationproductsandobserved streamflowin2002–2006and2006–2010isquitesimilarasforregionA1.Thelowestcorrelationbetweentheobserved streamflowandprecipitationisagainobservedforCMORPHV1.0in2002–2006andPERSIANNin2006–2010.Thehighest correlationbetweenobservedstreamflowandprecipitationisfoundwiththeERAIGPCPproductforthe2002–2006period and3B42V7forthe2006–2010period(Fig.3d).Theamountofobservedstreamflowishigherforthe2006–2010period comparedtothe2002–2006period(Fig.3e).Fortheprecipitation,theCMORPHV1.0productisthewettestandtheRFE2.0 productthedriestoutofallproductsforthe2002–2006period.For2006–2010,theGSMaPproductisthewettestand theRFE2.0isthedriestproduct.Thevariabilityoftheobservedstreamflowisin2002–2006slightlylargercomparedto 2006–2010(Fig.3f).ThePERSIANNprecipitationproducthasthelargestvariabilityinbothperiodsbutacontradicting distributioncomparedtotheobservedstreamflowbetween2002–2006and2006–2010.Therestoftheproductshavea similarprecipitationvariabilitydistributionbutamuchlowervaluecomparedtotheobservedstreamflow.

ForregionA3,thelowestcorrelationbetweentheobservedstreamflowandprecipitationisobservedforCMORPHV1.0 in2002–2006andPERSIANNin2006–2010.Thehighestcorrelationbetweenobservedstreamflowand precipitationis foundwiththeERAIGPCPproductfor2002–2006and3B42V7for2006–2010(Fig.3g).Theamountofobservedstreamflow ishigherforthe2006–2010periodcomparedtothe2002–2006period(Fig.3h).Fortheprecipitation,theCMORPHV1.0 productisthewettestandtheRFE2.0productthedriestoutofallproductsforthe2002–2006period.For2006–2010,the 3B42V7productisthewettestandtheRFE2.0isthedriestproduct.Thevariabilityoftheobservedstreamflowislargerin

(9)

Fig.4.BarplotsofcalibrationresultsintermsofKGEinthetwoperiodsofthedifferentialsplitsampletest:2002–2006and2006–2010,foreachprecipitation product.Panelsa),b),c)andd)correspondtoregionA1,A2,A3andA4,respectively.

2002–2006comparedto2006–2010(Fig.3i).ThePERSIANNprecipitationproducthasthelargestprecipitationvariability inbothperiods,whileERAIGPCPhasthelowest.

ForregionA4,thecorrelationbetweentheobservedstreamflowandprecipitationisquitesimilarforallprecipitation productsforbothcalibrationperiodswithahighercorrelationforthe2002–2006period(Fig.3j).Thedifferenceintheamount ofobservedstreamflowbetween2002–2006and2006–2010isnegligible(Fig.3k).Forprecipitation,theCMORPHV1.0 productisthewettestandRFE2.0isthedriestforthe2002–2006period.For2006–2010,PERSIANNisthewettestand RFE2.0isthedriestproduct.Thevariabilityoftheobservedstreamflowisin2002–2006muchlowercomparedto2006–2010 (Fig.3l).ThePERSIANNprecipitationproducthasthelargestvariabilityinbothperiods.

3. Results

3.1. Calibration

Fig.4showsthebestvaluesofKGEobtainedinthetwocalibrationperiodsofthedifferentialsplitsampletest:2002–2006 and2006–2010,whentheLISFLOODmodeliscalibratedwitheveryprecipitationproductforeachstudyarea.Inaddition, takingintoaccountthathighvaluesofK,LandM(Eqs.(2)–(4))leadtolowvaluesofKGE(Eq.(1)),wecomputedtherelative contributionsofK,L,andMtotheKGEvaluesobtainedineachcalibration(100·K,LorMK+L+M),inordertoidentifythe limitingfactorthatpreventsKGEtoachieveanidealvalueof1.0.Fig.5showstherelativecontributionofeachlimitingfactor totheKGEvalue:K,L,M(Eqs.(1)–(4)),whichrepresenttheimpactofthelinearcorrelation(r),bias(ˇ)andvariability() betweensimulatedandobservedstreamflowonthecalibrationresults.

ThecalibrationresultsforA1(Fig.4a)weredeemedtobesatisfactory(intermediateorgood)forthesimulationswith products3B42V6,3B42V7,ERAIGPCPandRFE2.0inbothcalibrationperiods.Ontheotherhand,calibrationresultsforthe CMORPHV1.0andPERSIANNwerepoorfortheperiod2002–2006calibrationbutintermediatefor2006–2010.Theopposite wastrueforsimulationsforcedbytheGSMaPproduct.Fig.5ashowswithverticalbarstherelativecontributionofK,Land MtotheKGE,makingclearthatthepoorperformanceofmodelsimulationsforcedbyCMORPHV1.0andPERSIANNduring 2002–2006wasmainlyduetoapoorcorrelationbetweensimulatedandobservedstreamflow(highKvalue).Thesefindings areinagreementwiththeresultsofFig.3a,wherebothCMORPHV1.0andPERSIANNpresentedthelowestcorrelationwith

(10)

Fig.5. Barplotswiththerelativecontribution(in%)ofthecorrelation(K),bias(L)andvariability(M)whichpreventtheKGEtoachieveanoptimum valueof1.0.Foreachprecipitationproduct,K,LandMwerecomputedinthetwocalibrationperiodsofthedifferentialsplitsampletest:2002–2006and 2006–2010.Panelsa),b),c)andd)correspondtoregionA1,A2,A3andA4,respectively.

observedstreamflowduring2002–2006.However,thisrelationisnotalwaysvalidasthemodelperformancefor2006–2010 withPERSIANNisreasonablygoodinspiteofPERSIANNhavingthelowestcorrelationwiththeobservedstreamflowout ofallprecipitationproducts.Ontheotherhand,Fig.4ashowsthatsimulationsforcedbyGSMaPweretheworstforthe 2006–2010period,whichwasmainlyduetothehighrelativecontributionofthebiastermL(Fig.5a).Thepreviousresultisin agreementwiththefactthatGSMaPwasthewettestprecipitationproductduringthatperiod(seeFig.3b).Calibrationresults forA2(Fig.4b)areintermediateorgoodforthesimulationsdrivenbyproducts3B42V6,3B42V7,ERAIGPCP,GSMaPand RFE2.0forbothcalibrationperiods.ThepoorperformanceoftheCMORPHV1.0andPERSIANNsimulationsinthe2002–2006 periodwascausedbya lowcorrelationbetweenobservedand simulatedstreamflow(Fig.5b).Fig.3dshowsalsolow correlationsbetweenprecipitationandobservedstreamflowin2002–2006,forbothCMORPHV1.0andPERSIANN.Fig.5b showsthatthepoorperformanceofthePERSIANNsimulationsin2006–2010wasthelowcorrelationbetweenobservedand simulatedstreamflow,possiblyrelatedtothepoorestcorrelationbetweenprecipitationandobservedstreamflowobtained byPERSIANNoutofallproductsin2006–2010(Fig.3e).

ThecalibrationresultsforA3(Fig.4c)aresatisfactory(excellent,intermediateorgood)forthe3B42V6,3B42V7,CMOR- PHV1.0,ERAIGPCPandRFE2.0simulationsforbothcalibrationperiods.TheresultsoftheGSMaPandPERSIANNsimulations wereintermediatein2002–2006andpoorforthe2006–2010period,mainlyduetotheweakcorrelationbetweensimulated andobservedstreamflow(Fig.5c).ThepreviousresultispossiblyduetothelowcorrelationbetweenGSMaPandPERSIANN precipitationandtheobservedstreamflow,whichwerethepoorestoutofallproductsin2006–2010(Fig.3g).

InregionA4(Fig.4d),thecalibrationresultsforthe2002–2006periodwereintermediateorgoodonlyforthe3B42V6, 3B42V7andERAIGPCPproducts.ThepoorresultsobtainedwithCMORPHV1.0,GSMaP,PERSIANNandRFE2.0productswere mainlycausedbythedifferenceinthevariabilityterm(MinEqs.(1)and(4))betweensimulatedandobservedstreamflow, whichisapparentlyrelatedtohighvariabilityofthoseprecipitationproducts(Fig.3l).TheCMORPHV1.0,GSMaP,PERSIANN andRFE2.0arematchingthevariabilityofthestreamflowmorecloselycomparedtothethreeremainingproducts.Con- troversially,highprecipitationvariabilityofthesefourprecipitationproductsresultsinstreamflowoverestimationdueto overestimationofbothrainfallamountandduration.ThecalibrationresultsofthesimulationsforcedbyERAIGPCPand PERSIANNin2006–2010werepoorduetothecontributionofcorrelation(KterminEqs.(1)and(2))andbias(LterminEqs.

(1)and(3))betweensimulatedandobservedstreamflow,respectively.ThisisinagreementwithFig.3j,wherethecorre-

(11)

Fig.6.BarplotsofthevalidationresultsintermsofthevariationofKGE(KGE=KGEcalibrationrun2002–2006(2006–2010)minusKGEvalidationrun 2002–2006(2006–2010)withoptimumparametervaluesobtainedfrom2006–2010(2002–2006))inthetwoperiodsofthedifferentialsplitsampletest foreachprecipitationproduct.Panelsa),b),c)andd)correspondstoregionA1,A2,A3andA4,respectively.

lationbetweenERAIGPCPprecipitationandobservedstreamflowisthelowest,andwithFig.3kwherethemeanmonthly precipitationofPERSIANNishighestoutofallproducts.

3.2. Robustnessofmodelparameters

Inordertotesttherobustnessofthemodelparametersobtainedineachcalibrationperiod,allthe“optimum”parameter setswerevalidatedonanindependenttimeperiodwithadifferentclimatologicalregime,asexplainedinSection2.6,for eachheadwaterandprecipitationproduct.Inparticular,whenusingthedifferentialsplit-sampleapproach,theperformance ofmodelparametersobtainedduringthecalibrationin2002–2006(2006–2010)wascomparedagainsttheperformance ofavalidationrunobtainedwithmodelparameterscalibratedintheothertimeperiod2006–2010(2002–2006).Fig.6 showstheKGEvaluesofthevalidationperiodrunin2002–2006(2006–2010)usingtheoptimumparametersetobtained duringthecalibrationrunin2006–2010(2002–2006)withthelatterreference(KGE=KGECAL−KGEVAL).Ontheother hand,Fig.7showsforeveryprecipitationproduct,studyareaandcalibrationperiod,therelativecontributionofK,Land MtotheobtainedKGEofthevalidationrun.Modelparametersobtainedduringcalibrationareconsideredrobustifthe modelperformsequallywellinthevalidationrunusingmodelparametersderivedinadifferentprecipitationregime,i.e., theKGE shouldbesmall.NotethatinasmallnumberofcasestheKGE valuesobtainedduringthevalidationrunare higherthantheKGEvaluesobtainedduringthecalibrationruninthesameperiod(e.g.,PERSIANNinA4).Thisisduetothe aggregationfromdailytomonthlyvaluestocomputetheKGE.

Fig.6ashowsthat“optimum”parametersetsobtainedforalmostalltheproductsinthestudyareaA1weredeemedrobust, asshownbythesmallvalueofKGE.TheonlyexceptionwastherundrivenbytheERAIGPCPprecipitation,whichshowed animportantreductioninmodelperformancewhenrunningthemodelin2002–2006withparametersobtainedforthe 2006–2010timeperiod.TheverticalbarsinFig.7ashowthattheKGEinthe2002–2006validationperiodfortheERAIGPCP productsismainlylimitedbythebias(L)betweensimulatedandobservedstreamflow.Thecomparisonofobservedand simulatedhydrographs(notshownhere)revealsthattheobservedstreamflowinthevalidationperiod2002–2006isslightly lowercomparedtothecalibrationperiod2006–2010.Controversially,theaverageERAIGPCPprecipitationin2002–2006is wettercomparedto2006–2010,whichresultsinanoverestimationoftheobservedstreamflow.

(12)

Fig.7.Barplotswiththerelativecontribution(in%)ofthecorrelation(K),bias(L)andvariability(M)whichpreventKGEtoachieveanoptimumvalueof 1.0.Foreachprecipitationproduct,K,LandMwerecomputedinthetwovalidationperiodsofthedifferentialsplitsampletest:2002–2006and2006–2010.

Panelsa),b),c)andd)correspondtoregionA1,A2,A3andA4,respectively.

AfterthevalidationinregionA2(Fig.6b)themodelperformancewiththeparametersforcedwiththe3B42V6,3B42V7, ERAIGPCPandRFE2.0productsaredeemedrobustforboth periods.Notethat,incomparison withthecalibration,the contributionofthebias(L)becomesamorepronouncedvariableinreducingtheKGEinmostoftheproducts.Thisiseven morepronouncedinregionA3(Fig.6c).Inbothcalibrationperiods(Fig.4c)thelimitingfactorismostlydominatedbythe correlation(K)orvariability(M),whereasinthevalidationthelimitingfactoristhebias(L)betweensimulatedandobserved streamflow(Fig.7c)sometimesresultinginlargereductionsoftheKGE.InFig.3hisfoundthattheaverageprecipitationof theCMORPHV1.0,ERAIGPCP,PERSIANNandRFE2.0productsishigherin2002–2006comparedto2006–2010.However,the oppositeistruefortheobservedstreamflowandconsequentlythisresultinbiasissuesandthereforealackofrobustness betweencalibrationandvalidation.Calibratingtheseprecipitationproductsin2006–2010(dry)andvalidatingthemin 2002–2006(wet)resultinanoverestimationoftheobservedstreamflowastheaverageobservedstreamflowislower andtheaverageprecipitationishigherinthevalidationperiodcomparedtothecalibrationperiod.Theoppositeisalso valid.Calibratingtheseprecipitationproductsin2002–2006(wet)andvalidatingthemin2006–2010(dry)resultinan underestimationoftheobservedstreamflowastheaveragestreamflowishigherandtheaverageprecipitationislowerin thevalidationperiodcomparedtothecalibrationperiod.

ThelimitingfactorforpoorcalibrationresultsinregionA4wasmostlydominatedbythevariabilityterm(M).However, poorvalidationresultsareobservedinFig.6dduetoboththevariability(M)andbias(L)termaslimitingfactors(Fig.7d).

OnlythereductioninKGEofthevalidationoftheERAIGPCPsimulationsislowinbothperiods,butthecalibrationresults in2006–2010werealreadypoorduetopoorcorrelationbetweenobservedandsimulatedstreamflow.Forthisreason,no robustmodelparametersarefoundinregionA4nomatterwhichprecipitationproduct.

4. “Optimum”parametersetsunderhighlyvariableclimateconditions

AsseeninFig.7thebias(L)betweenobservedandsimulatedstreamflowisanimportantfactorinthelossofmodel performanceinthevalidationperiod.Apparently,themodelparametersarecompensatingthebiasbetweensimulatedand observedstreamflowduringthecalibrationbutthesemodelparametersfailtocapturetheobservedstreamflowduringthe

(13)

Fig.8.Barplotswiththerelativechange(in%)inthemagnitudeofthebestparametersetfoundinthe2002–2006and2006–2010calibrationperiods, whereasthevalueof2002–2006istheupperorlowervalueoftheverticalbaraccompaniedwiththeblackdot.Thelowerandupperboundvaluesforthe parameters(Table2)represent0and100%respectivelyandonlytheparameterswithatotal-ordersensitivityindexlargerthan0.1areincluded(Fig.2).

validationperiod.Compensationforcorrelationandvariabilityfailurebetweenobservedandsimulatedstreamflowisless pronouncedastheyarethedominantlimitingfactorsinthecalibrationperiods.

InFig.8thelengthoftheverticalbarsshowtherelativechangeinthemagnitudeofthebestparametersetfoundinthe twocalibrationperiods.Ingeneralitcanbeobservedthatthe“optimum”parametersetsdiffersignificantlybetweenthe calibrationperiods.Differentvaluesfoundfortheoptimumparametersetsindifferenttimeperiodsareaclearindication ofparametricuncertaintyintheobtainedmodelparameters(Beven,1993).

ForregionA1(Fig.8a),thedifferenceinthemodelparametersbetweenthecalibrationperiodsisnegligibleformost precipitationproductsexceptforRFE2.0.ThemodelparametersGwLossandCalEvaparereachingtheuppervaluesofthe calibrationrangeforalmostallprecipitationproductsinbothcalibrationperiods.Thismeansthatthemodelparameters arecompensatingtheexcessofrainfallbyeliminatingwaterbothtodeepergroundwaterandbyincreasingtheevaporation ratetomatchtheobservedstreamflow.Typically,theseparametervaluesresultinbiasproblemsbetweensimulatedand observedstreamflowdependingonwhetheronecalibrationperiodisdrierorwettercomparedtotheotherperiod.For example,Fig.8ashowsthattheoptimumvaluefortheGwLossandCalEvapparameterswerefoundintheupperboundary oftheircalibrationrange,whenLISFLOODwascalibratedwithERAIGPCPin2006–2010.However,validatingtheprevious optimumparametersetduringawetterperiod(Fig.3b)resultsconsequentlyinanoverestimationoftheobservedstreamflow (Fig.5a).AlthoughtheresultsforboththecalibrationandvalidationinbothperiodsfortheRFE2.0precipitationproduct aresatisfactory(Figs.4aand6a),theobtainedmodelparametersarequitedifferent.However,therangeofthetwomost sensitiveparameters,GwLossandbXinan(Fig.3a)issmall.

ForregionA2(Fig.8b),largedifferencesinthebestparametersobtainedinthetwocalibrationperiodsareobserved.As seeninFig.2bthemodelperformanceisthemostsensitivetotheGwLossparameterformostoftheprecipitationproducts.

AlargevariationintheGwLossvaluebetweenthetwocalibrationperiodsisneededtocompensatefortheprecipitation differencebetweenthetwoperiods,resultingmostlyinareductioninmodelperformanceintheindependentvalidation periods(Fig.6b).ThemodelparametervaluesfromthePPrefflowandCalEvapareconsiderablydifferentfortheRFE2.0 productbetweenthecalibrationperiodswhilethemodelperformanceandrobustnesswasjudgedtobegood.Apparently,

(14)

thehighinteractionbetweenthemodelparametersforcedwithRFE2.0producedgoodresultsevenwithadifferentsetof parameters.

ThesmallreductioninKGEinthevalidationperiodsforthe3B42V6,3B42V7andERAIGPCPprecipitationproductsin regionA3isprobablyrelatedtothelowmodelparameterrangesofthemostsensitivemodelparametersfortheseproducts (Fig.8c).Moreover,thesearealsotheproductswithsmalldifferencesbetweenthemeanprecipitationinbothcalibration periodsandthereforecompensationishardlyneeded.

ForregionA4,themodelparametersreachtheupperboundariesoftheparameterrangestoeliminatewatertomatchthe observedstreamflowforthewetterCMORPHV1.0,GSMaPandPERSIANNproducts(Fig.8d).Althoughthemodelparameter rangesforthe3B42V6,3B42V7andERAIGPCParerelativelysmall,themodelparameterswerenotcapabletocompensate forthehighvariabilityofthestreamflowandmatchtheobservedstreamflow.

5. Conclusion

Inthisstudy,weappliedthedifferentialsplit-sampletesttoinvestigatetherobustnessofmodelparametersofafully distributedhydrologicalmodel,bycalibratingthemodelforcedbysevensatellite-basedprecipitationestimates.Formodel calibrationweusedthemodifiedKling-Guptaefficiency(KGE)asobjectivefunction,whichallowedustodifferentiatethe relativecontributionoflinearcorrelation(r),bias(ˇ)andvariability()betweenthesimulatedandobservedstreamflowto theobtainedKGEvalue.WeselectedfourregionsinSouthernAfricawithhighlyvariableclimateconditions,whichresulted inlargeprecipitationdifferencesbetweenthesevenprecipitationproducts.Largediscrepanciesintermsofther,ˇand betweenthesimulatedandobservedstreamflowwereobservedwhenusingSRFEsasmodelinput.Followingadifferential split-sampleapproachtotesttherobustnessofthebestparametersetsoftheLISFLOODmodel,theobservedstreamflowtime seriesweresplitintwoperiodswithhighlydifferentclimaticcharacteristic:2002–2006and2006–2010,andthenmodel parametersobtainedduringcalibrationinoneperiodweretransferredtotheotherperiodtoassessitsperformance.Thus, twooptimizedparametersetswerevalidatedontwoindependenttimeperiods,whichisessentialinhighlyvariableclimate andnon-stationaryconditions(Xu,1999).FromtheresultsobtainedinthisworkitcanbeconcludedthataSRFEproduct whichisaccurateenough(incomparisontogroundobservations)canhelptoavoidfuturemodelrobustnessproblems.

Therefore,accurateprecipitationestimatesareessentialforobtainingrobustmodelparametersbeforeextrapolatingthem intimeandspace.However,thisstatementiscatchmentandtimeperiodspecific,asthecatchmentbehaviorinhighly variableclimateisdifficulttocaptureandonthelimitofmodel’scapability.Therefore,hydrologicalanalysesorpredictions whicharebasedontransferredmodelparametersinhighlyvariableclimateornon-stationaryconditionsshouldbetaken withcare.Notethatreasonsforthelackofmodelrobustnesscanbemultiple(seeIntroduction)andweonlytakeuncertain precipitationestimatesintoaccount.

Wesummarizeourfindingsasfollows:

•The(lackof)modelperformanceintermsofKGEdifferssubstantiallybetweenmodelrunsdrivenbythesevendifferent precipitationproductsandispartiallyreflectedbytheirprecipitationcharacteristics.Ahighpositivecorrelationbetween theupstreammonthlyprecipitationestimateandtheobservedstreamflowprovedtobea goodaprioriindicatorfor obtaininggoodmodelperformanceinaposteriorcalibrationprocess,aslongastheprecipitationvariability(CV)isnottoo high.Highprecipitationvariabilityoftenresultsinoverestimationofthedurationoftherainfalleventsand,therefore,an overestimationofthetotalamountsaswell(e.g.,ther(P,Q)betweenPERSIANNandobservedstreamflowinregionA4for 2002–2006is0.56(significant),buttheCVoftheprecipitationhasavalueof1.21whichresultinapoorKGEof0.24).

•Modelparametersrelatedtoinfiltration(PPrefFlowandbXinan)andwaterlossesintermsofgroundwater(GwLoss)and evaporation(CalEvap)arethemostsensitiveparametersfortheLISFLOODmodelinSouthernAfrica.Theseparameters aremostlyimportanttocompensatethebiasedprecipitationinputs.Mostlikely,forwetprecipitationproducts(e.g., CMORPHV1.0)theinteractionbetweenthemodelparametersislessimportantcomparedtodryproducts(e.g.,RFE2.0).

Tocompensatetheprecipitationbiasthisparametersfindtheiroptimumvalueintheupperorlowerboundsoftheir calibrationrange.Thesensitivemodelparametersofdryprecipitationproductsinteractmuchmorewitheachother,as thetimingandshapeofthehydrographbecomesimportantifcompensatingtheprecipitationbiasislessdominant.

•Parametersetsobtainedduringcalibrationcompensate,uptoacertainextent,thebiasintheprecipitationestimateto matchtheobservedsteamflow,asthebiasishardlyalimitingfactorfortheobtainedKGE inthecalibrationprocess.

Therefore,tominimizethelackofmodelperformanceinthevalidationperiods,thedry/wettrendoftheprecipitation estimateshouldbeingeneralagreementwiththedry/wettrendoftheobservedstreamflow.

•Thecompensationoftheprecipitationcharacteristicsbetweenthecalibrationperiodsleadstodifferentoptimumparam- etersetsunlessthemodelparametersreachtheupperlimits,whichmeansthatthecatchmentsbehaviorisnotcaptured withintheparameterranges.Thisoftenhappenedifthesimulatedstreamflowoverestimatestheobservedstreamflow andtheparametersGwLossandCalEvapreachtheirupperlimittomatchtheobservedstreamflow.

•TheCMORPHV1.0,GSMaPandPERSIANNproductsare–ingeneral–notsuitabletodrivehydrologicalmodelingstudiesin theSouthernAfricanregionwiththeLISFLOODmodelastheseproductsoftenhaveapoorcorrelationwiththeobserved streamflowandgeneratemuchmorerainfallcomparedwiththeotherproducts,whichresultsinlargedifferencesbetween simulatedandobservedstreamflows.Thebestmodelperformanceisobtainedwithproductswhichingestgaugedatafor

(15)

biascorrection(3B42V6,3B42V7,ERAIGPCPandRFE2.0products)resultinginthebestconditionsintermsofther,ˇand betweensimulatedandobservedstreamflow.

•AccordingtoVazeetal.(2010)andLietal.(2012),modelscalibratedoverdryperiodsperformbetterinwetperiodsthan theotherwayround.Thesefindingsmightbetrue(notexhaustivelyverifiedhereduetolowsamplesize)becauseof thecommonoverestimationofobservedstreamflowin(semi-)aridareasinhydrologicalmodelling(Vazeetal.,2010;

Gallartetal.,2007;Perrinetal.,2007;LidénandHarlin,2000;Ganetal.,1997;Hughes,1997).However,thesefindings donotruleoutrobustmodelparameters.Accordingtoourfindings,modelparametersobtainedfordrycatchmentswith occasionalrainfalleventsandthereforeahighintra-andinterannualvariabilityinstreamflow(e.g.,A4)arenotableto capturethecatchments’behavior.Thismaybeduetothefactthatthemodelparametersarehighlyinfluencedbyafew eventsandthereforehaveahigherriskforerrorswhentransferredtoadifferentperiod.Moreover,thespatialresolution oftheprecipitationproductsmightbetoocoarse(0.1or0.25)foranaccuratedetectionoflocalheavyprecipitationevents and,therefore,theydonotcapturewellthevolumeandtimingofthepeakflowsespeciallyinasmallcatchmentlikeregion A4.

•Differentcalibrationperiodsrelatedtoprecipitationorstreamflowvariability(wet/dry)resultindifferentoptimumparam- etersobtainedinthecalibrationphase,whichreflectstheeffectofnon-stationarityconditionsontheparameterestimates (Beven,1993).However,theparameterdistributiontendstoshowmorespreadwith“insensitive”modelparameterscom- paredto“sensitive”parametersinthetimeperiodsusedforcalibration(Fig.8).Forthisreasonalongwiththeinteraction betweenparameters,themodelisabletoproducegoodresultswithadifferentsetofparameters,i.e.equifinality(Beven, 1993).Therefore,anestimationofparameteruncertaintyandtheirlackofrobustnesswouldonlymakesenseon“sensitive”

modelparameters.

•ThebehaviorofcatchmentsinSouthernAfrica,butprobablyalsoinotherareaswithhighlyvariableclimateconditions (e.g.,AustraliaortheIberianPeninsula)isdifficulttocaptureusingasinglemodelparametersetforthewholesimulation period.Transposingtheseparameterstoothertimeperiods(scenariosinclimateimpactstudies)orareas(inregionalization studies)shouldbecarriedoutwithcaution.WeagreewiththeconclusionofVazeetal.(2010)thatmodelparameters obtainedfromawet(dry)calibrationperiodshouldbeusedforperiodswhereawetter(drier)futureispredicted,which doesnotmeanthattheparametersarerobust.

Conflictofinterest

Theauthorsdeclarethattherearenoconflictofinterest.

Acknowledgments

ThisworkwascarriedoutwithintheframeworkoftheFP7EUprojectGLOWASIS.Observedstreamflowdatainthisstudy havebeenobtainedfromtheDepartmentofWaterAffairsinSouthAfrica.

WethankHaraldKlingandananonymousreviewerforprovidingvaluablecommentstoimprovethemanuscript.

AppendixA. Supplementarydata

Supplementary data associated with this article can be found, in the online version, at http://dx.doi.org/10.1016/j.ejrh.2016.09.003.

References

Abdelaziz,R.,Zambrano-Bigiarini,M.,2014.Particleswarmoptimizationforinversemodelingofsolutetransportinfracturedgneissaquifer.J.Contam.

Hydrol.164,285–298,http://dx.doi.org/10.1016/j.jconhyd.2014.06.003.

Alfieri,L.,Thielen,J.,Pappenberger,F.,2012.Ensemblehydro-meteorologicalsimulationforflashfloodearlydetectioninsouthernSwitzerland.J.Hydrol.

424–425,143–153,http://dx.doi.org/10.1016/j.jhydrol.2011.12.038.

Andréassian,V.,LeMoine,N.,Perrin,C.,Ramos,M.H.,Oudin,L.,Mathevet,T.,Lerat,J.,Berthet,L.,2012.Allthatglittersisnotgold:thecaseofcalibrating hydrologicalmodels.Hydrol.Process.26,2206–2210,http://dx.doi.org/10.1002/hyp.9264.

Artan,G.,Gadain,H.,Smith,J.L.,Asante,K.,Bandaragoda,C.J.,Verdin,J.P.,2007.Adequacyofsatellitederivedrainfalldataforstreamflowmodeling.Nat.

Hazards43,167–185,http://dx.doi.org/10.1007/s11069-007-9121-6.

Bárdossy,A.,Das,T.,2008.Influenceofrainfallobservationnetworkonmodelcalibrationandapplication.Hydrol.EarthSyst.Sci.12,77–89.

Bódis,K.,2009.DevelopmentofaDataSetforContinentalHydrologicModelling.EuropeanCommission,JointResearchCentre,Ispra, http://dx.doi.org/10.2788/46925.

Balsamo,G.,Boussetta,S.,Lopez,P.,Ferranti,L.,2010.EvaluationofERA-InterimandERA-Interim-GPCP-rescaledprecipitationovertheU.S.A.

Bartholmes,J.C.,Thielen,J.,Ramos,M.H.,Gentilini,S.,2009.TheeuropeanfloodalertsystemEFASpart2:statisticalskillassessmentofprobabilisticand deterministicoperationalforecasts.Hydrol.EarthSyst.Sci.13,141–153.

Bartholomé,E.,Belward,A.S.,Achard,F.,2003.GlobalLandCover2000database,EuropeanCommission,JointResearchCentre.

Behrangi,A.,Khakbaz,B.,Jaw,T.C.,AghaKouchak,A.,Hsu,K.,Sorooshian,S.,2011.Hydrologicevaluationofsatelliteprecipitationproductsoveramid-size basin.J.Hydrol.397,225–237,http://dx.doi.org/10.1016/j.jhydrol.2010.11.043.

Beven,K.J.,1993.Prophecy,reality,anduncertaintyindistributedhydrologicalmodeling.Adv.WaterResour.16,41–51, http://dx.doi.org/10.1016/0309-1708(93)90028-E.

Beven,K.J.,2004.RainfallRunoffModelling:ThePrimer.JohnWiley&SonsLtd.,NewYork.

Bitew,M.M.,Gebremichael,M.,2011.AssessmentofsatelliterainfallproductsforstreamflowsimulationinmediumwatershedsoftheEthiopian highlands.Hydrol.EarthSyst.Sci.15,1147–1155,http://dx.doi.org/10.5194/hess-15-1147-2011.

Referenzen

ÄHNLICHE DOKUMENTE

Mit Hilfe unserer FFT Algorith- men vergleichen wir die finiten Risiken der finiten und der asymptotischen minimax Sch¨ atzer sowie der Sch¨ atzer, die auf der O

ciated with the creation of reservoirs are supposed to be known functions E. ) of their useful capacities. The choice of a water supply system is determined mainly by the

There is no change of energy supply pattern (Figure 3.8). 6) As for the demand sector of miscellaneous thermal uses, while LWR electricity meets about 40% of the total demand

Furthermore, in the case that we have enough direct evidences and good recommendations, this makes our model also quite robust to sybil attacks [4], since it is no longer possible

Theo- rem 1 implies upper semicontinuity of 2, also in this topology, but under t h e condition of strong asymptotic stability of the equilibrium set KO with

Mann's test allows us to confirm that, on the average, in 43 % and 32.3 % of cases - following the appearance of trends in the mean values and in the variances - there

Significance for lowland areas: It can be clearly seen in the 20 river basins examined in this study that discharge from water towers is indeed very important for lowlands and

Our study on the robustness of Google Scholar delivers surprising results: It seems that Google Scholar is far easier to spam than the classic Google Search for web