• Keine Ergebnisse gefunden

A comparaKve analysis of coastal environmental condiKons in the eastern Norwegian Sea and southern Barents Sea by means of Arc$ca islandica growth records

N/A
N/A
Protected

Academic year: 2022

Aktie "A comparaKve analysis of coastal environmental condiKons in the eastern Norwegian Sea and southern Barents Sea by means of Arc$ca islandica growth records"

Copied!
1
0
0

Wird geladen.... (Jetzt Volltext ansehen)

Volltext

(1)

0   5000   10000   15000   20000   25000   30000  

0.00   0.10   0.20   0.30   0.40   0.50  

Spectral  Density  

Frequency    (1/y)  

0   5000   10000   15000   20000  

0.00   0.10   0.20   0.30   0.40   0.50  

Spectral    Density    

Frequency  (1/y)  

Study  area  

We   examined   the   shells   from   two   sampling   sites   the   northern   Norwegian   coast   (69°39'N   18°57'E)   and   the   Kola   Peninsula   coast   (69°11'N   36°05'E)     (Fig.1).   Both   localiKes   are   in   the   realm   of   the   Norwegian   Coastal   Current   (aMer   crossing   the   border   to   Russia   it   is   called   the   Murman   Coastal   Current).   It   is   expected   that   similariKes   in   the   oceanographic   condiKons   are   reflected   in   the   shell,   possibly   occurring  with  certain  Kme  lag.  

A  comparaKve  analysis  of  coastal  environmental  condiKons  in  the   eastern  Norwegian  Sea  and  southern  Barents  Sea  by  means  of  

Arc$ca  islandica  growth  records  

 

Trofimova  T 1* ,  Beierlein  L 2 ,  Basova  L 1 ,  SukhoKn  A 3  and  Brey  T 2  

 

1

Saint-­‐Petersburg  State  University,  St.  Petersburg,  Russia.  

2

Alfred  Wegener  Ins$tute  Helmholtz  Centre  for  Polar  and  Marine  Research,  Bremerhaven,  Germany.  

3

Zoological  Ins$tute  of  Russian  Academy  of  Science,  St.  Petersburg,  Russia.  

*Email:  trofimova.te@gmail.com  

Figure   1   The   map   of   the   study   area   showing   the   main   ocean   circulaKons   (arrows).   Blue   stars   showing   the   two   locaKons   of   the  sampling  points,  1:  Norwegian  coast,  2:  Barents  Sea  coast.  

Arrows   show   the   distribuKon   of   the   currents,   in   red:   AtlanKc   current,  blue:  ArcKc  current,  green:  Coastal  current  (Norwegian,   Murman)    (Map  from  SKansen  et  al.,  2005).  

Materials  and  methods  

The  shell  material  for  this  study  comprises  30  and  32  shells  of  A.  islandica  from  the  Norwegian  Sea  and  Russian  coast  of  the  Barents  Sea  respecKvely.  All  shells  were  collected  alive  and  soM  part   were  removed  immediately  aMer  collecKon.    

For  the  invesKgaKon  of  the  annual  and  inter-­‐annual  growth  variability  all  collected  shells  were  cut  parallel  to  the  line  of  strongest  growth  (LSG)  (Fig.2)  and  3-­‐mm  thick-­‐secKons  were  a`ached   to  a  glass  slide.  AMer  grinding  and  polishing,  the  cross-­‐secKons  were  stained  in  Mutvei´s  soluKon.  Annual  growth  bands  were  idenKfied  and  measured.  To  obtain  the  environmental  influence   we  will  use  the  so-­‐called  standardized  growth  index  (SGI)  (e.g.  Wanamaker  Jr.  et  al.,  2009).  

AMer  the  cudng  the  second  part  of  the  shell  was  used  for  stable  oxygen  isotope  (δ18O)  analysis  (the  result  is  not  presented  here).  

SGI  Kme  series  were  analysed  for  significant  spectral  components  using  soMware  package  kSpectra    (procedure  described  in  Brey  et  al.  2011).  

Preliminary  results  

The  maximum  onthogeneKc    ages  are  118  years  for  the  shells  from  the   Barents  Sea  and  82  years  for  the  Norwegian  shells.  

The   A.   islandica   growth   Kme   series   comprise   1999   single   increment   measurements   for   the   shells   from   the   Norwegian   coast   and   1893   measurements  from  the  Barents  Sea  coast.  Hereby,  they  cover  a  77  year   period  (1927-­‐2004)  and  a  113    year  period  (1897-­‐2010)  respecKvely  (Fig.

3).    

Spectral   analysis   (Fig.4)   of   the   SGI   records   indicate   a   similarity   for   both   localiKes  in  the  2-­‐3  year  periodicity.  NoKceable  cyclic  variability  in  water   temperature   with   the   same   periodiciKes   have   been   found   in   that   area     (Bochkov,  2005).  The  signals  with  frequencies  0.08  yr-­‐1  (period  12  yr),  0,18   yr-­‐1  (5,5  yr)    and  0,22  yr-­‐1  (4,5  yr)  were  detected  only  in  the  Barents  Sea   SGI  record.    

Future  work  ques>ons  

• Is  there  a  significant  difference  in  the  growth  of  A.  islandica  from  the   Barents  Sea  and  Norwegian  Sea?  

• Which  factors  control  the  shell  growth  in  both  populaKons?  

• Do  we  get  seasonal  signals  from  A.  islandica  shells  measuring  stable  oxygen   isotopes  (δ18Oshell)?  

• Can  we  reconstruct  water  temperatures  using  δ18O?  

References  

Bochkov  U.  A.,  (2005)  Long-­‐scale  oscillaKons  of  water  temperature  in  “Kola-­‐  secKon”/”100  years  of  oceanographical  observaKons  in  “Kola-­‐secKon”  in  Barents  Sea.-­‐  Thesis  book  of  InternaKonal     conference-­‐Murmansk,  PINRO    p.  47-­‐65  (in  Russian).  

Brey    T.,  et  al.,    (2011)  The  bivalve    Laternula  elip$ca  at  King  George  Island  –  A  biological  recorder  of  climate  forcing  in  the    West  AntarcKc  Peninsula  region.-­‐  Jour.  of  Mar.  Syst.  88  p.542-­‐552.  

SKansen  J.E.,et  al..,  (2005)  Joint  PINRO/IMR  report  on  the  state  of  the  Barents  Sea  ecosystem  2005/2006.-­‐  IMR/PINRO  Joint  Report  Series,  3/2006:  122.  

Wanamaker  Jr.  A.,    et  al.,(2009)  A  late  Holocene  paleo-­‐producKvity  record  in  the  western  Gulf  of  Maine,  USA,  inferred  from  growth  histories  of  the  long-­‐lived  ocean  quahog  (Arc$ca  islandica).-­‐  

InternaKonal  Journal  of  Earth  Science  98:  19-­‐29.  

   

Figure  4  Power  spectra  of  the  A.islandica  SGI  Kme  series  (A-­‐Barents  sea,  B-­‐Norwegian  coast),  produced  by  MulK  Taper   Method  (MTM).  Red  lines  indicate  red  noise  95%  confidence  level.  

Objec>ves  

• To   analyse   the   growth   variability   in   shells   of   Arc$ca   islandica   and   to   compare  the  results  of  the  Norwegian  and  the  Russian  populaKons.  

• To  determine  the  external  factors  controlling  the  annual  shell  growth   variability  in  A.  islandica.  

• To   check   for   decadal   oscillaKons   within   the   growth   pa`erns   of   A.  

islandica.  

• To  use  stable  oxygen  isotopes  (δ18O)  to  reconstruct  seasonaliKes  and   water  temperatures  on  a  sub-­‐annual  level.  

Acknowledgements  

This  study  is  financially  supported  by  Federal  Ministry  of  EducaKon  and  Research  (BMBF)  via  GEOMAR.    We  are  grateful  to  the  POMOR  master  program  and  project  leader  Dr.  Heidemarie  Kassens.        

Figure  3  Time  series    of  A.  islandica  growth,  using    standardized  annual  growth  index  (SGI),  A  –  from  the  Norwegian  

coast  (based  on  1999  increment  measurements  in  30  Individuals),  B-­‐  from  Barents  Sea  coast  (based  on  1893  increment   measurements  in  23  individuals).  Yellow  line  shows  the  number  of  measured  increments  in  a  relaKon  to  the  calendar   years.  

A   B  

-1.8 -1.4 -1.0 -0.6 -0.2 0.2 0.6 1.0 1.4 1.8

0 5 10 15 20 25

1897 1907 1917 1927 1937 1947 1957 1967 1977 1987 1997

Standardized GrowthIndex SGI

N Increments

Year -1.8

-1.4 -1.0 -0.6 -0.2 0.2 0.6 1.0 1.4 1.8

0 5 10 15 20 25 30

1927 1937 1947 1957 1967 1977 1987 1997

Standardized GrowthIndex SGI

N Increments

Year

A   B  

2-­‐3  yr

 

2-­‐3  yr

 

12  yr

 

5,5  yr

 

Figure  2  LeM  valve  of  Arc$ca  islandica  (sampled  on  the  

Norwegian  coast).  Red  line  indicate    LSG  (line  of  strongest   growth.  

Referenzen

ÄHNLICHE DOKUMENTE

Lantuit & Pollard (2008): Fifty years of coastal erosion and retrogressive thaw slump activity on Herschel Island, southern Beaufort Sea, Yukon Territory,

In this thesis we investigate by means of flux models and satellite data the ability of the West- ern New Siberian (WNS) flaw polynya to modify the stratification of the water

Fig. 4: Timeseries of vertical mean monthly mean potential temperatures from the model simulation at a) the Kara Strait (total water column) and b) the southern part of the

It is shown that the temperature distribution and related thermal properties of snow-covered sea ice can be represented by a one-dimensional thermody- namic sea ice model, on

This is reflected in differences in the temporal patterns of vertical particle flux in relation to new production in the euphotic zone, the composi- tion of particles

The same matter was distributed in spots on the surface of snow patch NO.l as well as on the surface of the active layer on the slopes of the ravine (Fig. The brook, which was fed

Young epicontinental Barents - northern Kara shelf marginal and Pechora, West Siberian intracontinental basins occur on the continental margin.. Each structure of this

Significant coherence at semidiurnal frequency is found between nearly all pairs of instruments having either vertical or horizontal separation, especially in