• Keine Ergebnisse gefunden

Changes,  variability,  and  seasonality  of  sea  ice  energy  budgets

N/A
N/A
Protected

Academic year: 2022

Aktie "Changes,  variability,  and  seasonality  of  sea  ice  energy  budgets"

Copied!
27
0
0

Wird geladen.... (Jetzt Volltext ansehen)

Volltext

(1)

Changes,  variability,  and  seasonality   of  sea  ice  energy  budgets  

   

24 Sep 2014

Marcel Nicolaus, Stefanie Arndt, Christian Katlein

(2)

Sunlight and Transmittance

(3)

Snow Rules

• Physical  proper.es  

•  Thermal  

•  Op.cal  

• Surface  characteris.cs  

•  Melt  ponds  

•  Satellite  signatures  

• Mass  balance  

•  Snow  depth  

•  Snow  density  /  mass  

• Fresh  water  

(4)

Changes: The Ice Age Proxy

•   Surface  proper.es  

•   Physical  proper.es:  Dri@  and  Dynamics  

•   Thickness  distribu.ons  

•   Habitat  changes  

(5)

Albedo Changes

•   Decrease  in  surface  albedo    

•   Increase  of  solar  heat  input   (1-­‐2  %/year)  

=>  Develop  maps  and  trends   for  in-­‐  and  under-­‐ice  fluxes  

Perovich  et  al.  (2011,  AOG)  

(6)

Seasonality

6  

85%

15%

85%

15%

65%

35%

50%

50%

70%

30%

20%

80%

Nicolaus et al. (2010, JGR and CRST)

•   Results  from  the  dri@  of  Tara  

•   At  one  dri@ing  MYI  site  

•   Great  .me  series,  no  spa.al  variability  

(7)

Seasonality at Tara

Nicolaus et al. (2010, JGR and CRST) 7  

15 Aug 23 June

01 July 11 June

Albedo Transmittance

16 Jul – 12 Aug

(8)

Under-Ice Investigations

(9)

View from Below: Level Ice

(10)

View from Below: Ridged Ice

(11)

Transmittance through Sea Ice

Nicolaus  et  al.  (2012  &  2013,  GRL)  

10 m

20%

0%

•  40%  ponds  on  FYI:  11%  

•  23%  ponds  on  MYI:    4%  

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35

0 5 10 15 20 25 30 35

FYI white

FYI ponds MYI white

MYI ponds

Transmittance

Frequency (%)

1%

14%

4%

20%

(12)

Observed Changes in Summer

Nicolaus  et  al.  (2012  &  2013,  GRL)  

Transmission: + 200%

Albedo: - 50%

Absorption + 50%

(13)

August 2011 – Upscaling

Nicolaus  et  al.  (2012  &  2013,  GRL)  

Concentration Pond Fraction Age Irradiance

(14)

August 2011 – Fluxes into the ocean

Nicolaus  et  al.  (2012  &  2013,  GRL)  

Sea ice only Ice + Ocean

(15)

Seasonality of Transmittance

New up-scaling method for calculation of under-ice radiation

01#

Jan# EMO# MO# MO+14d# EFO# FO# FO+60d#Dec#31#

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

Transmittance

FYI

melting FYI new FYI new MYI melting MYI MYI

I" II" III" IV" V" VI" I"

Pond"

covered"

sea"ice"

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

Transmittance

FYI

melting FYI new FYI new MYI melting MYI MYI

I Winter II Early melt

III Continuous melt IV Summer

V Fall freeze-up

VI Continuous freeze

Total transmittance of pond covered sea ice.

Parameterization

Arndt  &  Nicolaus  (2014,  TCD)  

(16)

Seasonality of Transmitted Fluxes

Apr May Jun

Jul Aug Sep

§  Surface flux is same order of magnitude as ocean heat flux

§  96 % of the annual under-ice radiation are transmitted in only 4 months (May to August)

§  Highest fluxes

(= melt rate) in June

Monthly mean of transmitted heat fluxes through Arctic sea ice in 2011.

§ Add parameterization of transmittance for the entire year 2011

Monthly mean of 20×105 Jm-2

20 cm sea-ice melt/month

Arndt  &  Nicolaus  (2014,  TCD)  

(17)

Annual Trend (Sea Ice Only)

(a)$ (b)$

Trend in annual total solar heat input through Arctic sea ice from 1979 to 2011.

§ Light transmission

increases by 1.5% per year Arctic-wide since 1979

§ Over 32 years: 1.6 times more warming and melt

§ Apply to all years 1979-2011

Arndt  &  Nicolaus  (2014,  TCD)  

(18)

Recent AUV mission

Photo:  Chris.an  Katlein  

(19)

Optical Properties - Scattering

Irradiance

(180°)

Radiance

(7°)

Katlein  et  al.  (2014,  JGR)  

(20)

Irradiance / Radiance

​𝝈↓𝑯 >​𝝈↓𝑽 

Katlein  et  al.  (2014,  JGR)  

§ Isotropy C=π=3.14

§ Mostly used, but overestimation of irradiance by >50%

§ Anisotropy C<2.5

§ More realistic fluxes

(21)

Irradiance / Radiance

Katlein  et  al.  (2014,  JGR)  

§ Isotropy C=π=3.14

§ Mostly used, but overestimation of irradiance by >50%

§ Anisotropy C<2.5

§ More realistic fluxes 𝑪=𝝅

(22)

Parameterization of C=Irrad/Rad

Katlein  et  al.  (2014,  JGR)  

§ Best fit of anisotropy

§ Error < 5%

§ For isotropic case C=2.5

§ Boundary effect

§ Correct conversion of radiance to irradiance is possible: anisotropy needed

C( γ )=2.5-2 γ

(23)

Spectral Radiation Buoy

Wang et al. (2014, JGR)

§ Fully autonomous measurements

(24)

Spectral Radiation Buoy

Wang et al. (2014, JGR)

(25)

Bio-Physical Observatory (drifting)

•   Instrumenta.on  

•  1  Thermistor  Buoy  

•  2  Spectral  Radia.on   Buoy  

•  3-­‐5  Data  

Transmission  

•  6  CTD  

•  7  ADCP  

•  Deployment  2014/15  

Figure:  H.  Flores  

(26)

Autonomous Stations (Buoys)

Snow Depth Sea-Ice Thickness

Energy budgets

(27)

Summary

•   Snow  rules  and  we  need  beber  snow  data  sets  

•   Seasonality  of  light  transmission  

•   Highest  fluxes  in  June  

•   96%  in  4  summer  months  only  (May-­‐Aug)  

•   Trends  in  light  transmission  

•   Increase  of  1.5%  /  year  

•   Strongly  related  to  the  loss  of  mul.-­‐year  sea  ice  

•   Op.cal  proper.es  of  sea  ice  

•   Scabering  is  anisotropic    

•   Conversion  of  radiance  to  irradiance  is  possible  (use  C<2.5)  

•   Future  direc.ons  

•   Similar  studies  for  Antarc.c  sea  ice  

•   Towards  AUV  measurements  

•   More  connec.on  to  biological  studies  (primary  produc.on)  

•   Applica.ons  in  GCMs  

Referenzen

ÄHNLICHE DOKUMENTE

Oxygen fluxes: ex situ &amp; in situ Diffusive oxygen uptake (DOU) = Bacterial remineralisation Method: Micro-profiling. Total oxygen

often a conglomerate of floes of different ice types with varying surface and bottom topography, thickness etc., smaller scale features caused by ice dynamics like ridges and

Right: Changes of the annual solar heat flux through Arctic sea ice for the years 1979 to 2011.. Figure 4: Input data sets and parameterization for the Arctic-wide upscaling

During a winter expedition in the Weddell Sea in 2013, we studied the community composition of under-ice fauna using a Surface and Under-Ice Trawl (SUIT) (in the upper image)

Based on these total transmittances for FYI and MYI obtained by field measure- ments in combination with additional data sets of sea ice concentration, sea ice types and surface

Improvement of parameterization for light trans- mission through Arctic sea ice including melt pond distribution and melt season durations.. Inclusion of ice

• Association of sea ice properties (thickness) with sympagic amphipods and polar cod and inversely correlated with association of water temperature and the amphipod T.libellula. •

Monthly correlation between detrended anomalies of bootstrap SIC and wind speeds from NCEP Reanalysis data, 1979 to 2006... Black arrows show statistically significant trends at