• Keine Ergebnisse gefunden

Homocoupling of terminal alkynes on calcite (10.4)

N/A
N/A
Protected

Academic year: 2022

Aktie "Homocoupling of terminal alkynes on calcite (10.4)"

Copied!
6
0
0

Wird geladen.... (Jetzt Volltext ansehen)

Volltext

(1)

Homocoupling of terminal alkynes on calcite (10.4)

Antje Richter

a

, Manuel Vilas-Varela

b

, Diego Peña

b,

, Ralf Bechstein

a

, Angelika Kühnle

a,

aInstitute of Physical Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, Mainz 55099, Germany

bCentro de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS) and Departamento de Química Orgánica, Universidade de Santiago de Compostela, Santiago de Compostela 15782, Spain

a r t i c le i n f o

Keywords:

On-surface synthesis Glaser coupling Terminal alkynes Atomic force microscopy Bulk insulator Molecular electronics

a b s t r a ct

On-surfacesynthesishasbeenidentifiedashighlyversatilestrategytopreparemolecularstructuresonsurfaces withsingle-atomprecision.InspiredbytheclassicalGlasercoupling,homocouplingofterminalalkyneshasat- tractedgreatattentionforon-surfacesynthesis.Thiscouplingisknownforprovidingarigidandlinearlinkage, whichishighlyinterestingforthesynthesisofmolecularwires.Formolecularwireformation,non-conductive substratesareneededforelectronicdecoupling.Sofar,however,couplingofterminalalkyneshasnotbeen performedonabulkinsulatorsurface.Here,wepresentanatomicforcemicroscopystudy,indicatingthat4,4″- diethynyl-[1,1′:4′,1″-terphenyl]-2′,5′-dicarboxylicacidundergoesdimerizationbyhomocouplingoftheterminal alkynemoietyonthe(10.4)surfaceofthebulkinsulatorcalcite.Ourresultssuggestthatuponlow-temperature depositionmonomersarefoundonthesurface,whichcanbedimerizedbyannealingthesample.Whenfollowing ahigh-temperaturedepositionprotocol,thedimerizationappearstohappenalreadyinthecrucibleanddimers aredepositeddirectly.Ourwork,thus,indicatesthathomocouplingofterminalalkynescanalsobeperformed onanon-metallicsurface,inlinewitharecenttheoreticalstudythatsuggesttheroleofthesurfacebeingthe constrainofthechemicalmotionratherthancontributingintermsofelectrontransfer.

© 2017ElsevierB.V.Allrightsreserved.

1. Introduction

Thebottom-upsynthesisoffunctionalmolecularstructurehasat- tractedgreatattentioneversinceRichardFeynmangavehisinspiring speechin1959,claimingthat“Thereisplentyofroomatthebottom” [1]. Inthespirit of thisidea, itwasKarl-Heinz Riederandcowork- erswhohavedemonstrated thatallstepsof achemicalreaction can beperformedusingthetipofascanningtunnelingmicroscope[2].In thispivotalwork,theclassicalUllmann couplingof iodobenzenehas beeninducedonacopper(111)surface,demonstratingmolecularengi- neeringatthesinglemoleculelevel.Nowadays,thefieldofon-surface synthesisisahighlyactiveresearcharea,whichholdsgreatpromises forthefabricationoftailor-madefunctionaldevicesatsurfaces[3–6]. Ullmann-likecouplinghasbeenusedasapopularlinkingmotifonvar- iousmetalsurfaces[7–12].Toenlargethepossiblelinkingschemesfor on-surfacereactions,Glaser-inspiredhomocoupling[13]hasbeenex- ploredasaroutetocoupleterminalalkynesandconstructrigidlin- earlinkers[14,15].Thisreactionhasfirstbeenpresentedusing1,3,5- triethynyl-benzeneonasilver(111)surface[16],butisnowwellstudied onawiderangeofconductivesurfaces[17–20].Interestingly,inoneof thesestudies,thedimerizationofthe1,4-diethynylbenzeneprecursor moleculesinthecruciblehasbeenreported,whichhasbeeninduced

Corresponding authors.

E-mail addresses: diego.pena@usc.es (D. Peña), angelika.kuehnle@uni-bielefeld.de , kuehnle@uni-mainz.de (A. Kühnle).

byannealingthecrucibleto105°Cduringmoleculedeposition[17]. Moreover,theformationofunwantedsideproductsuponlinkageofa lineardiethynylterphenylonflatterraceshasbeenaddressedbyusing thealignmentofthemoleculesatthestepedgesonavicinalAg(877) surface[21].Also,photochemicalactivationasanalternativerouteto annealinghasbeensuccessfullypresented[19].Adetailedtheoretical studyhasbeendevotedtounravelthemolecularreactionmechanism of1,3,5-triethynyl-benzenelinkingonAg(111)andtouncovertherole ofthesurface,whichisexplainedbyconstrainingthemolecularmotion ratherthancontributingchemicallyintermsofelectrontransfer[22].

Intheviewofthisgrowingbodyofresearch onmetalsurfaces it isinterestingtoraisethequestionastowhetherhomocouplingofter- minal alkynescan also beachieved on abulk insulatorsurface. For thispurpose,weinvestigate4,4″-diethynyl-[1,1′:4′,1″-terphenyl]−2′,5′- dicarboxylicacid(DETDCA,Fig.1a)onthe(10.4)cleavageplaneofcal- cite(Fig.1b)usingdynamicatomicforcemicroscopy(AFM)operated inultrahighvacuum(UHV).

Themoleculeisequippedwithtwoethynylgroups,whicharein- tendedforon-surfacehomocoupling.Additionally,themoleculeisalso equippedwithtwocarboxylicacidfunctionalities,whichhaveprevi- ouslyproventoactassuitableanchorsonthecalcite(10.4)surfaceand preventthedesorptionatelevatedtemperatures.Density-functionalthe- orycalculationshavesuggestedaninteractionofthecarbonylgroups

https://doi.org/10.1016/j.susc.2017.12.012

Received 8 September 2017; Received in revised form 5 December 2017; Accepted 22 December 2017 Available online 27 December 2017

0039-6028/© 2017 Elsevier B.V. All rights reserved.

(2)

A. Richter et al. Surface Science 678 (2018) 106–111

Fig. 1. (a) Model of 4,4 -diethynyl-[1,1 :4 ,1 -terphenyl] 2 ,5 -dicarboxylic acid (DETDCA) molecule studied here. (b) Model of the calcite (10.4) surface with the crystallographic axes.

The surface unit cell is marked by the black rectangle. The scale bar applies to both subsets.

Scheme 1. Synthesis of diyne DETDCA.

withthecalciumionsviaelectrostatics,whilethehydroxylgroupsform hydrogenbondswiththecalcitecarbonategroupoxygenatoms[23,24]. Furthermore,adetailedinvestigationtowardsapossibledeprotonation hasbeenperformed,suggestingatransitionofthehydrogenfromthe hydroxylgrouptowardstheoxygenofthecarbonategroupunderfor- mationofahydrogenbond[23,24].Twoanchorgroupswerechosen hereforsymmetryreasonsandtoalsopromotemolecule-moleculein- teractionsthatcanbebeneficial fortheformationofanorderedself- assembledstructureascomparedtomobilespecies.

OurexperimentalresultsindicatethatDETDCAdimerizeinthecru- ciblewhenchoosingahigh-temperaturedepositionroute.Whenfollow- ingalow-temperaturedepositionroute,themonomersaredepositedon thesurface.Uponannealingthesampleaftermonomerdepositionre- sultsinAFMimagesthatcanbereadilyexplainedbythedimerization ofthemoleculesonthecalcite(10.4)surface.Thus,ourworkprovides experimentalindicationforextendingtheconceptofon-surfacehomo- couplingofterminalalkynestoabulkinsulatorsurface.

2. Experimentalsection 2.1. Moleculesynthesis

ThesynthesisofDETDCAwasperformedinfivestepsfollowingthe routeshowninScheme1.First,commerciallyavailablediester1was treatedwith Tf2Otoobtainbistriflate2in 91%yield. Then,double Pd-catalyzedSuzuki couplingofbistriflate2withtwoequivalentsof boronicester3ledtotheisolationofdiyne4in78%yield.Finally,se- quentialtreatmentofcompound4withK2CO3,KOHandHClafforded DETDCAin69%yield(seesupportinginformationfordetails).

2.2. Surfacepreparationandmoleculedeposition

CalcitecrystalswerepurchasedatKorthKristalle(Altenholz,Kiel, Germany).Beforemountinginthesampleholder,thecrystallographic directionswereidentifiedbasedonthecrystal’sbirefringence[25].Prior tomoleculedeposition,thesamplewascleavedinsituandannealedat 625K.Atomicallyresolvedimageswereobtainedtocheckthecleanli- nessofthesurfaceandtoconfirmthecrystallographicdirections.The DETDCAmoleculesweredepositedfromahome-builtKnudsencell.Two differentdepositionprotocolswereused.Forthelow-temperaturedepo- sitionroute,acrucibletemperatureof355Kandadepositiontimeof about12–15hwasused.Forthehigh-temperaturedepositionroute,a crucibletemperatureof445Kandadepositiontimeof45mintofew hourswasused.

2.3. Atomicforcemicroscopyimaging

Forimagingthemolecularstructuresonthebulkinsulatorsurface, weusedynamicAFMimagingoperatedunderUHVconditions.Avari- abletemperature,beamdeflectionAFM(VTAFM)fromScientaOmicron (Taunusstein,Germany)wasusedintheso-calledfrequencymodulation mode.Siliconcantilevers fromNanosensors (Neuchâtel,Switzerland) witheigenfrequenciesintheorderof300kHzandforceconstantsof about40N/mwereused.Theimagechannelsaswellastheslowand fastscandirectionsaregivenintheupperrightcorneroftheimages.

Duringimagingthesamplewaskeptatroomtemperature.

(3)

Fig. 2. AFM images acquired after low-temperature deposition before annealing the sample. Depending on the deposition protocol, low (a–c) and high (d–f) molecular coverages can be achieved.

Fig. 3. High-resolution AFM image of the (5 ×1) structure with a superimposed model of a possible DETDCA monomer structure. The surface directions and the supercell are marked.

3. Resultsanddiscussion 3.1. Low-temperaturedeposition

Aftermoleculedepositionusingthelow-temperaturedepositionpro- tocol(sublimationtemperatureofabout355Kfor12–15h),molecu- larislandsarefoundonthesurfaceasshowninFig.2a–c.Inthelow- coverageregime,theseislandsexhibitfuzzyedges,whichareindicative ofhighmoleculemobility,resultingincharacteristicsteakyfeatures.A zoomontoanislandinthelow-coverageregime(Fig.2c)doesnotre- vealaninnerstructure.Whenincreasingthecoverage(Fig.2d–f),the islandstructuresbecomemorestable,whichisexplainedbyareduced

moleculemobility.Azoomontoanislandinthehigh-coverageregime unravelsahighlyorderedinnerstructure(Fig.2f).

Tofurtheranalyzethisstructure,weperformedahigh-resolutionex- perimentasshowninFig.3.Inthisimage,the(5×1)superstructureof themolecularislandisindicatedbyawhiterectangle.Wesuperimpose amodelofthemoleculestotheimagetoprovideanimpressionofthe moleculardimensions.Thissuperimposedmodelsuggeststhattheunit cellcontainsoneDETDCAmonomer.Wealsoprovideamodelforthe underlyingcalcitecrystaltoillustratethearrangementofthemonomers onthecalcitesurface.Westress,however,whilethedimensionsandori- entationofthemoleculesarewelldefinedfromtheexperiment,theab- solutepositionofthemoleculesonthesurfaceisunknown.Inthemodel,

(4)

A. Richter et al. Surface Science 678 (2018) 106–111

Fig. 4. AFM images acquired after low-temperature deposition and annealing the sample to 555 K for about one hour. A model illustrating the proposed alignment of the dimers within the stripes is given in the inset in (c).

Scheme 2. Expected on-surface coupling of DETDCA.

weassumethatthemoleculeisnotflat,giventhatthesidegroupsinthe 2-position,namelyhydrogenandcarboxylicacidgroup,wouldoverlap.

Tocircumventthisoverlap,arotationofthebenzeneringstransverse themolecularaxesisexpected.Hence,onlyonecarboxylicacidgroup wouldanchortothesurfacewhilethesecondoneispointingupwards andperhapsformsahydrogenbondswiththeacidgroupoftheneigh- boringmolecule.

Next,weannealedthesampleafterlow-coveragemoleculedeposi- tionasshowninFig.2a–cto555Kforaboutonehour.Theresultof suchanannealingexperimentisshowninFig.4.Theoverallappear- anceoftheislandshasremainedunchangeduponannealing,ascanbe seenbycomparingthetwooverviewimagesshowninFigs.2aand4a, respectively.However,theinnerstructureoftheislandshaschanged significantlyasdemonstrateinthezoomimagegiveninFig.4c.After annealing,astripe-likestructureisobserved,exhibitingsomewhatir- regularstripeswithawidthofabout4.5nm.Thiswidthfitsinlength withdimerizedDETDCAmoleculesthatarelinkedviahomocoupling oftheterminalalkynes,asillustratedintheinsetinFig.4c.Moreover, theislandedgesappearwell-definedanddonolongerpresentthefuzzy structurethatwasobservedfortheas-depositedmolecularislands.As- sumingthatthedimerspossessareduceddiffusivityonthesurfaceas comparedtothemonomers,thisobservationisinlinewiththeabove madeinterpretationofDETDCAdimerization(Scheme2).

3.2. High-temperaturedeposition

Wealsoperformeddepositionexperiments ontoasampleheld at roomtemperaturewithincreasedsublimationtemperature(445K)in an attempted to reduce the long sublimation times needed for the

above-mentionedlow-temperaturedepositionprotocol.Whensublimat- ingwithasublimationtemperatureof445Kforabout15h,molecular islands asshown inFig.5a–careobtained.These islandsexhibitthe characteristicstripe-likeinnerstructurethatwasreportedaboveforthe annealedsampleobtainedafterthelow-temperaturedepositionproto- col.However,acleardifferencecanberecognizedwhencomparingthe islandstructuresinFig.4(low-temperaturedepositionafterannealing) andFig.5a–c(high-temperaturedepositionwithoutannealing).Forthe high-temperature depositionprotocolwithout annealing,fuzzy edges andstreakyfeaturesinbetweenthemolecularislandsareobserved,in- dicativeofdiffusingmolecularspecies. Thesehigh-temperaturedepo- sition resultscan be explainedbythedirectsublimationof DETDCA dimers,i.e.,wesuggestthatthehighsublimationtemperatureinduces dimerizationdirectlyinthecrucibleashasbeenreportedbeforefor1,4- diethynylbenzene[17].Besidesthedimers,fewmonomersmightbede- positedsimultaneously.Thesemonomersmightdiffuseinbetweenthe island,resultinginthestreakystructuresobservedintheimagesshown inFig.5a–c.

Next,weexaminedtheeffectofannealingandirradiatingthestruc- turesasobtainedafterhigh-temperaturedeposition.Wefoundthatboth, annealingthesampletoabout555Kandirradiatingthesamplewitha mercurylamp(wavelength220–590nm),resultedinthesamefinalcon- ditions.Thisobservationagreeswithpreviousresultspresentedinthe literaturethathavedemonstratethatcouplingofterminalalkynescan beinducedbyboth,annealingorirradiation[19].Thechangesinduced areillustratedinFig.5d–f,whichshowasampleafterirradiationfor about12h.Ascan beseen,theinnerstructureislargelyunchanged.

However,theedges appearmuchmore welldefined andthestreaky featuresinbetweentheislandsarevanished.Thisresultindicatesthat

(5)

Fig. 5. AFM images acquired after high-temperature deposition before (a–c) and after (d–f) irradiating the sample.

remainingmonomersreactuponannealingorirradiation,thus,thedif- fusingspeciesareremoved.

Tosummarize,wesuggestthatboth,annealingto555Kandirradiat- ingwithmercurylamp(wavelength220–590nm)caninducehomocou- plingoftheterminalalkynes.Thefactthatthisispossibleintheabsence ofametalsurfaceindicatesthatelectrontransferfromthesupportsur- faceisnotrequiredtoinducethereaction.Thisisinlinewitharecent theoreticalstudyoncouplingofterminalalkynesonAg(111)[22].In thelatterstudy,itwasconcludedthatthesurfaceplaysacentralrole forthereactioninconstrainingthemolecularmovementaswellassta- bilizingreactionintermediates.Itis,however,notchemicallyactivein asensethatit,e.g.,donateselectrons.Forthepresentcase,wespeculate thatthecarboxylicacidgroupsatthemoleculecorearecrucialforan- choringthemoleculetothesubstrateandconstrainthemobilityonthe surface.Thelimitedmobilitymayfurthermoreexplainwhyonlydimers andnotrimersorlargeroligomersareformed.Thisinterpretationisin agreementwithpreviousobservationsinliteratureonAg(111)[19].

4. Conclusion

Inconclusion, we presented an experimental AFM study investi- gatingthestructureformationandreactionofDETDCAmoleculeson the(10.4)surfaceofthebulk insulatorcalcite.Whendepositingthe moleculesfollowingalow-temperaturedepositionroute,highlyordered islandsarefoundonthesurfacethatexhibita(5×1)innerstructure.

Thisstructurecanbereadilyexplainedbyanorderedarrangementofthe DETDCAmonomers.Thecharacteristicstreakyedgesoftheseislandsare explainedbydiffusingmonomerspecies.Uponannealing,theseislands drasticallychangetheirstructure,asisexpectedwhenthemonomers dimerize.Now,islandswithastripedinnerstructurearefoundonthe surface.Interestingly,thewidthofthestripesfitsinsizewiththelength ofadimer.Moreover,thefuzzyedgesarevanished,givingfurtherev- idenceforanon-surfacedimerization.Forthehigh-temperaturedepo- sitionprotocol,thestripedislandsareobtaineddirectly,indicativeofa directdepositionofthedimers.Thisresultcanbeeasilyexplainedby adimerizationinthecrucible,whichhasbeenobservedbeforeforan- otherdiynemolecule.Alsohere,fuzzyedgesvanishafterannealingor

irradiation,indicativeoffewremainingmonomersthataredeposited duringthehigh-temperatureroute.

AuthorContributions

Themanuscriptwaswrittenthroughcontributionsofallauthors.All authorshavegivenapprovaltothefinalversionofthemanuscript.

Acknowledgments

WegratefullyacknowledgefinancialsupportfromtheEUthrough grantPAMS(seventhframeworkprogramGA610446),theAgenciaEs- tataldeInvestigación(MAT2016-78293-C6-3-R),theXuntadeGalicia (CentrosingulardeinvestigacióndeGaliciaaccreditation2016-2019, ED431G/09)andtheEuropeanRegionalDevelopmentFund(ERDF).We thankRobertLindnerforhelpinthelaboratory.

References

[1] R.P. Feynman , There’s plenty of room at the bottom, Eng. Sci. 23 (1960) 22–36 . [2] S.-W. Hla , L. Bartels , G. Meyer , K.-H. Rieder , Inducing all steps of a chemical reaction

with the scanning tunneling microscope tip: towards single molecule engineering, Phys. Rev. Lett. 85 (2000) 2777–2780 .

[3] A. Gourdon , On-surface covalent coupling in ultrahigh vacuum, Angew. Chem. Int.

Ed. 47 (2008) 6950–6953 .

[4] G. Franc , A. Gourdon , Covalent networks through on-surface chemistry in ultra- -high vacuum: state-of-the-art and recent developments, Phys. Chem. Chem. Phys.

13 (2011) 14283–14292 .

[5] R. Lindner , A. Kühnle , On-surface reactions, ChemPhysChem 16 (2015) 1582–1592 . [6] C. Nacci , S. Hecht , L. Grill , The emergence of covalent on-surface polymerization, in: A. Gourdon (Ed.), Advances in Atom and Single Molecule Machines: On-Surface Synthesis, Springer, Heidelberg, 2016, pp. 1–21 .

[7] L. Grill , M. Dyer , L. Lafferentz , M. Persson , M.V. Peters , S. Hecht , Nano-architec- tures by covalent assembly of molecular building blocks, Nature Nanotech. 2 (2007) 687–691 .

[8] R. Gutzler , H. Walch , G. Eder , S. Kloft , W.M. Heckl , M. Lackinger , Surface mediated synthesis of 2D covalent organic frameworks: 1,3,5-tris(4-bromophenyl)benzene on graphite(001), Cu(111), and Ag(110), Chem. Commun. (2009) 4456–4458 . [9] J.M. Cai , P. Ruffieux , R. Jaafar , M. Bieri , T. Braun , S. Blankenburg , M. Muoth ,

A.P. Seitsonen , M. Saleh , X.L. Feng , K. Müllen , R. Fasel , Atomically precise bot- tom-up fabrication of graphene nanoribbons, Nature 466 (2010) 470–473 . [10] L. Lafferentz , V. Eberhardt , C. Dri , C. Africh , G. Comelli , F. Esch , S. Hecht ,

L. Grill , Controlling on-surface polymerization by hierarchical and substrate-directed growth, Nat. Chem. 4 (2012) 215–220 .

[11] J. Eichhorn , D. Nieckarz , O. Ochs , D. Samanta , M. Schmittel , P.J. Szabelski , M. Lackinger , On-surface Ullmann coupling: the influence of kinetic reaction pa-

(6)

A. Richter et al. Surface Science 678 (2018) 106–111

rameters on the morphology and quality of covalent networks, ACS Nano 8 (2014) 7880–7889 .

[12] S. Zint , D. Ebeling , T. Schlöder , S. Ahles , D. Mollenhauer , H.A. Wegner , A. Schirmeisen , Imaging successive intermediate states of the on-surface Ullmann re- action on Cu(111): role of the metal coordination, ACS Nano 11 (2017) 4183–4190 . [13] C. Glaser , Beiträge zur Kenntniss des Acetenylbenzols, Ber. Dtsch. Chem. Ges. 2

(1869) 422–424 .

[14] F. Klappenberger , Y.-Q. Zhang , J. Bjo ̈rk , S. Klyatskaya , M. Ruben , J.V. Barth , On-sur- face synthesis of carbon-based scaffolds and nanomaterials using terminal alkynes, Acc. Chem. Res. 48 (2015) .

[15] P. Siemsen , R.C. Livingston , F. Diederich , Acetylenic coupling: a powerful tool in molecular construction, Angew. Chem. Int. Ed. 39 (2000) .

[16] Y.-Q. Zhang , N. Kep čija , M. Kleinschrodt , K. Diller , S. Fischer , A.C. Papageorgiou , F. Allegretti , J. Björk , S. Klyatskaya , F. Klappenberger , M. Ruben , J.V. Barth , Ho- mo-coupling of terminal alkynes on a noble metal surface, Nat. Comm. 3 (2012) 1286 .

[17] H.-Y.Y. Gao , J.-H.H. Franke , H. Wagner , D. Zhong , P.-A.A. Held , A. Studer , H. Fuchs , Effect of metal surfaces in on-surface Glaser coupling, J. Phys. Chem. C 117 (2013) 18595–18602 .

[18] H.-Y.Y. Gao , H. Wagner , D. Zhong , J.-H. Franke , A. Studer , H. Fuchs , Glaser coupling at metal surfaces, Angew. Chem. Int. Ed. 52 (2013) 4024–4028 .

[19] H.-Y.Y. Gao , D. Zhong , H. Mönig , H. Wagner , P.-A. Held , A. Timmer , A. Studer , H. Fuchs , Photochemical glaser coupling at metal surfaces, J. Phys. Chem. C 118 (2014) 6272–6277 .

[20] J. Eichhorn , W.M. Heckl , M. Lackinger , On-surface polymerization of 1,4-diethynyl- benzene on Cu(111), Chem. Commun. 49 (2013) 2900–2902 .

[21] B. Cirera , Y.Q. Zhang , J. Björk , S. Klyatskaya , Z. Chen , M. Ruben , J.V. Barth , F. Klap- penberger , Synthesis of extended graphdiyne wires by vicinal surface templating, Nano Lett. 14 (2014) 1891–1897 .

[22] J. Bjo ̈rk , Y.-Q. Zhang , F. Klappenberger , J.V. Barth , S. Stafstro ̈m , Unraveling the mechanism of the covalent coupling between terminal alkynes on a noble metal, J.

Phys. Chem. C 118 (2014) 3181–3187 .

[23] C. Paris , A. Floris , S. Aeschlimann , M. Kittelmann , F. Kling , R. Bechstein , L. Kan- torovich , A. Kühnle , Increasing the templating effect on a bulk insulator surface:

from a kinetically trapped to a thermodynamically more stable structure, J. Phys.

Chem. C 120 (2016) 17546–17554 .

[24] A. Richter , V. Haapasilta , C. Venturini , R. Bechstein , A. Gourdon , A.S. Foster , A. Kühnle , Diacetylene polymerization on a bulk insulator surface, Phys. Chem.

Chem. Phys. 19 (2017) 15172–15176 .

[25] S. Kuhn , M. Kittelmann , Y. Sugimoto , M. Abe , A. Kühnle , P. Rahe , Identifying the absolute orientation of a low-symmetry surface in real space, Phys. Rev. B 90 (2014) 195405 .

Referenzen

ÄHNLICHE DOKUMENTE

Top branches of spruces a well exposed to the electric field and collect the radon daughters from the air.. Method: The top needles of spruces under HV line were picked and

Different approaches to the deposition of Mn 12 single molecule magnets on the Au(111) surface and their characterization by a broad variety of techniques are investigated with

revealed that orientation had no effect on error scores for detecting component changes, while the detection of configural alterations was strongly impaired when faces were

We, therefore, use dcTST in this paper in order to compute equilibrium transport rates of methane and ethane inside the micropores and at the external surface of an all-silica

For the fluorescence experiments, a microgel concentration of 0.1 wt % in a saturated pyrene solution was used and the I 1 / I 3 ratio as a function of temperature was measured.

14 In the absence of CR in the solution, calcite (10.4) exhibits characteristic rhombic etch pits, which are con fi ned by the energetically most favorable (10.4) planes

- the type of charging (static charging, rubbing), - the value of the initial surface potential. • Charging can be reversed by application of opposite

States of crisis have historically triggered the potential for radical change in terms of artistic and literary creation, the writing of history, and the emergence of new