• Keine Ergebnisse gefunden

Charge-carrier transport measurements through single molecules

N/A
N/A
Protected

Academic year: 2022

Aktie "Charge-carrier transport measurements through single molecules"

Copied!
211
0
0

Wird geladen.... (Jetzt Volltext ansehen)

Volltext

(1)

Charge-Carrier Transport Measurements through

Single Molecules

Cuvillier Verlag Göttingen

(2)

!

"#

$ % &''(

(3)

!"

# $ %"

&' (( " ())*

'

(4)

!" # $ %& '(()

* & +& & '((,

- .#...#...#.

­ %+/0012 /120!$& $ '(()

3& 4)()5 $

6 (55 #57)'7#(

68 (55 #57)'7#'

999

! 2 : $

/ & 6

; <=& >?

!"& '(()

$

- .#...#...#.

(5)
(6)

! " #

$%

& ' ! (%

!) *

* $% +

, -$!- .$#

/ !)

!0- ! &

1 '2$ 3

(7)

! "# $

% "

& ' ( )

&* ' & +

'* , $

! ,* " %

% -. %/

+ "* +0

/ ** +

1* 2 1 )3 ++

+/

* 1* 2 /0

1# /0

* 1* 2 /

2 4*# "5 6 &'&'1 00 7 /

'*** 1 1** /+

% ** //

% 1 1 !** $0

% !8' 9'&: $

% !8'*! 9'4: $/

(8)

v

! ""

# $ "#

"%

% ! &' "

%# ()!! * %

% +

%

! "# $

%

& ##' (

) *

(9)
(10)

!"##$ % &' (

)( *( +,

$ % -( ./01

2 " 3'

4' ( 4

* & 5 $ %

) %'

6 4' 4'

*7 ..8 $)4

4'' *'

) $

9: 6'

'() ( $%'

( ( ;'

4 ' $ %

'' + 4

( 0 <88 $ *

= $ '

= 4'

') ( 4 (

.0 #$%

(11)

! " ! # $

% & & '( %)* #

+ , -

.

+ /$ 0 #

# # & #

1 $ & 2 3

" $ !

$& #

1 , 415 !

! ! 1

0 & &

6 & $ $

4)% %* 5 /$ 4%7 %* 5

0 $ 4& 0 8 9* 5 & $& #

$ 0 ! 4%( 95 :

$ ! %* 6

1 & ! ( # %* !#

; & 1 &

$& 0 !

%: ! < = ,

¼

!

& 0 $

40 %(* 5 $ 1#

1 & 3 ! 0 $

.#

&- 4, % > 5 ? <

< = ,

¼

?

# #

4 8 *() 5 + ! 1 < ! ,

¼

!

(12)

ix

! "#$

$ # % & # #$ !

" '$ !

(

'$ # ) "" ! #$ *+'%

#$ $ " )

, # "

# ( " # '$

%- $ "

'$ % #

#$ . $ / 0

# %(#$ ' - #$ )

#

" %1% ! $ ' '

$1'! " 2 # &

' # 3 ! $ "

# $ $ ' !

#$ ) -

%# $ & $ $0

" " " #

. - 2

! / 0

2$ . 4 $ '$

' - $ . "

4 $ %- '1'$1' &

%- $

(13)

!

" #

$ #%

& ' !

( ! $ !

"' )" * +, - $ ' !

.'! ! ' )/" 0/"-

' ')/# 0/#- 0' /"

&! ' +,1 ) 2+ '&- ' & ' /#

' '3' 4, 5 )/"- 6+ 5 )/#-

# $

0 "

78898 ' ! $ "

: !# $ '!

! #

8!;'! ! ' $!

' ! '

# 9 ; ' 5

! $ 8 '

5 5 ,<2 ' ! =64 ' !

. $! / >

% ! 0 ?

; " ! : !'

0 ' ''>

,@A< ' ! ' ! 5

! ' ' 0

3' %

(14)

xi

!

"# $ %

&'( ) ) '

* "

+ ) ,

+ , * )

* ) '

" #- -

$ ) , '

)) ) .

" / /'#' ) 0

) " ,

- 1) 1" "

+ -

$" + ,'

- "

,$ 1 2&1"!

3 1"! 4 )"

# )

/5#6'#*' 7 /5'#*' '

) 6' " # 7 '

'

0( * )"8'

9:9'; 99'; " #

7 0 )

6' < " # '

) ) , 1

;

< ) "

(15)

!

"# $% #

& % '

# # ' #(

)*

' ( %

# (+(+ (+ ('

# &(# )$

,, ,-, '* . . # (

/ (

'% / #

0 ,,

' (

1 %

(16)

! "

# # # $ ##

# %

# &'() #%

# #

$ $ %

%# #

% # % " #

##$ & &*

# #

+ " % ##

" " " #% $#

#

# # % # ##

# # #% % %

# ( ,** -

. / " ## ## ##

# %

$ &( 0 "

# % %"

# # #

# #%

(17)

!"#

$ %

&

' & ( )

*

)

+

)

* $ )

)

,"

# - ) & ) ,. # -

/& , 0 1# 2- &

3 ,! 1- 4 )

) !#

5 %

$ 6%7

+

¼

) 4 &

, !#2-

)

' ,) 8 -

* +

¼

)

9 )

3 ) , 0 #!" -

(18)

xv

¼

!

" #

$ %$&" '

(

)

* +

( ,

#

*

-

- + .

-

,

/

.

0 /

)

(19)

!"# $

%& %& " $

%& %& "

' ( )" %& %& $

* + ," %& %& - ,"

./0/1230/

$ 4

$ $ *

# 5

/ $

6

6

7

8 1 9( :+- "

8 #

6 ;< 4 $:=$

* >=9

4

6

$

( > )

$

1

(20)

xvii

!

" #$ #$ %

&

" " #'

() #* + #* %,

!-./.

0

1

234 24 !

#5$ % 3

5'$

6

1

7 8 8

(21)

! "!

#

! ! $

% &'

(22)

!

"

#$%& $ '()* $%

)+ , -

$ % $%

-!

# '.&

/-! 0 / ** #$

1 $2 &

(+ #$ 1 $2 & 3

4+ 3

(23)

!" #

$ % & ' (

!

# %' ) $

* $ +

''

' ) & !

', ' -

' ) +

& %

'

% #

' . # # !

# #

'

) + /0 ,' 1 #

2 03 45' !

' ,' 1

' ) +

$ #

' ) 6 '7 #

$ ' )

# # #

# '

#+ $' )$

# '

$ 8 # ' -

$#

'

(24)

xxi

! "

#

$

(25)
(26)

! "

! # "

"

$ " %

"

! " &

!&

' "! !(

¯ " "

¯ ) ! " * "

+ &

,

¯ - " !

, ' "

(27)

¯

¯

¯

¯ !

" #

(28)

!

" # $#%&

'( $)*& +

,

-

.##/

0 .

# / . #

#1 / 2

'( 3 4

(29)

! " # $ %

& '

!

( !

$ )

* !

" +*,

!

- ! (

(

. ! / ! 0

¯ 1

- 0

* 2

¯ 1

- 0 )

! ( ( !

!*(3+1

* ( %

4 2! ((

( ! !

0 1 % ! 0

0 ! !

(5 2! 6 !

0 ! 2

! 3+1

( *

(30)

3

A

B

A C

Diffuse transport

Quantum point contact (QPC) Ballistic transport

l db

l db

l db

width w

width w

! !

" #

! $ % # $%# & $%#

"

! "# $%% #

# & '

$( !

)

(31)

! " ! #$

! % & ' (

! % )*

+ ! !

)* , ! -.- ! +

' /!

' +/ / -- /

0 1 2 1-

! ! 3 -

!+ #4 (5 )*-

6 ! !

- 7 -8 / Ë/

' ! ' -

9 ' ' ' ' -

7 +/ / /

+ ! - / + / Ë- :

/ ! +

(32)

5

f , μ l l

left reservoir scatterer right reservoir

S f , μ r r

lead lead

i l o l

i r o r

y x z

 

!

½

!"

# $ $

$ %

& '$ ( )

( ' '

&

*

»

!+

!$$, '$ $ '

$ !"

'

( - .

  /

¾

"

¾

¾

¾

¾

!0

$

&

(33)

¼

¾

¾

£

! "# $

£

%

& ! !

$ $

'$ $

(

) *"+$ ,-. /

01

!

2

3 4 5$ 3

$ 6 !

7/$ 7/ $ 6 4 '$ 6 2

¾

8

! 9

¾

/ & 6$

$ /

¾

: #;

< # = > &

?

! ?

@ >

⎜ ⎜

½½

½¾

¾½

¾¾

⎟ ⎟

⎜ ⎜

¼

¼

⎟ ⎟

:

(34)

7

¼

¼

!"# $ !

$

!"$!

$

 

%

&

!"$

'

(

!"")$

*

Ý

Ý

Ý

Ý

! " #

" $ % % &

# &'

' #

( %)

* #

+

,- - .

/ & # " ,-0-,-

1 # 23(4 5.4 56 $ & !

/ ,-0-,- & 1

/ # & *

7-

(35)

!"#

$

%

¾

&

¾

'

¾

(!!')

Conductance [G ] 0

Gate Voltage [V]

-2.0 - 1.8 -1.6

0 0 0 0 0 1 2 3 4 5

0.3 K 0.6 K 1.6 K 4.2 K

A 2D Electron gas B Na-Na junction (T = 4.2K)

10

Piezo Voltage [V]

20 30

Conductance [G ] 0

0 1 2 3 4 5 6 7 8 9

!"#$ % &'& (' '

!)*#$ + ,

, - + '

- . / - %/

$

'*

$ ! + , ,

(-' .) / !0(1)

(36)

9

! ! "!

! # ! ! $

%

& ' Æ "! !

$

( $ ! ! $ )

! $$* + ,-./ 0 )

! ! !

1

¾

¾

2&&34

5 ! 2

64

¾

)

! # ( 73 ! & ,&/ 0

! $! ) # ! $$)

! " 8 )

) ,39 :79 &/ &32;4 ! "

<)< 8 ! =;> " 2 $ 4 # )

! ! ! ! $

! !$ ! ! $ ")

!$ $! $3

0 ) ! ! ! #

) ! $ $$ !)

! 1 0 !

!! ! ! $)

! + ,-:9 --/ 0 $ !$!

,&3/ ! ! $ $1 0 !

!!

(37)

!

" #! $

% &!

'

(

&

) #!

* !

" +

, - .

' / 0

!

" +1

%

!

% !

!

(38)

11

μ 1 μ 2

E f -eV +eV

à 1-2 / A

B left electrode

right electrode

Molecule

à 2-3 / à 3-4 /

à 4-5 /

à N-1-N /

Hopping process

Quantum tunnelling

! "#$ !

%

&

' (

&

( $ )

! *

) *

+ *

)

)

* * *

(39)

!

!

!

" #

$

%

& ' (()!

$

%

&

'

$

!

μ r μ l

E f -eV

+eV

à l / à r /

Vacuum level

,

Work

function Work

function

A One-level model B Ã = Ã l + Ã r ~ 0

,

- ,

I/G Diff

V

C Ã = Ã l + Ã r = 0

,

- ,

I/G Diff

V

$ % $

%

(40)

13

!

"

#

$

% &

' ( (( )

( *) + ) , -! ,

)

.

/ )

, 0 1 )

(

() /

) / 2

3/ ( ) 4

5!

"

#

6

1 ) ) )

) 0

+ ) / (

(

) ) ( ( ,

( (

* ) ( ( ( 4

( /

/ 2

(41)

!" #$

%&' ()

*+

,

* +

¾

*,+

¾

*--.+

!" /0 *--(+

,

1

½

 ½

*+

%

*

+

*

+) *--2+

3 0 *--(+ !4 5

! 0 *6 -7*3++

5

4

8

6 5

9

559

: 9

!

;

(42)

15

!

!

"

# $

% &' ( $

% )' ( $

% &' ( $

% )'

( *+,

- #

. / 0

1 2

%. +

¼

0 .3+40

¼

%.

¼

0 2 !

(43)

!

"

¼

# $%&'%(

¼

&

$%&%)( * +!

$("

'

$

(

¾

#$'(

¾

$%&''(

, , , "$(,,$(

-. & /

, + ,

%&'! ,&&,

,

& .

. $&&

(&

&

(44)

17

!"# !"$

% &

!"

'()#

!"

* !"

Æ

+ , %

"

%

$ %

' - ( (- . . .-

) #

% /

* / /

0 1 2 1 0 # 3 '4

#

&#

-

%

"

(45)

A Molecular structure of Benzene B Molecular Orbitals

C Electrostatic Potential Surface

C

C C C C

C C H

H

H H

H

H

H H

H H

H

H

Organic Chemistry notation Kekulé structure

Simplified representations Shell model

! " #

$ % % ! %

&#' ###%# ( %

# "

(46)

19

!"

!#"

$ %

(47)

!"# $$# %%& '(# )%# )$&

*

+

, -!%./

, -!!"/ -!!'/

0

+

12 3242

5642 1

5642-

5642/ 3242-

3242/4

7 ,

-

/8. -!%9/

--

//8. -!%$/

-

/ :

(48)

21

!

! "##$ %

!

! ! & '

()!* ! &+

! ! !

! ! !

, ! - !

*.-%+ /

!

0 1 22

! . !

! !

! ! & *0

1*++

. !

! * +

*0 1*3++

!

! 4 5

(49)

μ r μ l

E f -eV

+eV

eV<h

e A

B

Elastic tunneling

μ r μ l

E f -eV

+eV

eV>h

e

Inelastic tunneling

ie

e ie

= +

C

A I

-h

+h

D G = dI/dV

-h +h

E

dG/dV = d I/dV 2 2

-h

+h V

V

V

 

  

 

! "

# $ $ %

& '

(50)

! "

# $

% %

% & & $

' ' ( )*+, -.)/ % &

)*0)

1 23 4 54 6 % !

7 1 ( -,/ % " $

(51)

! "

!

#

$

%&'( &)* %+,( ,-*

./ ! 01234 0

5 +0244 123

2 %))* # 6

$

7

. !

5 3 !

! # 5 +054 8

3 123

9 3

123

5

: # !

5 +04 123 ;

$ 9 $ ;

.

123

8

(52)

25

F Tunable gap

Fixed gap

Mercury drop D STM / AFM

e -

E Crossed-wire

SAM

B

I def

Hg

C Electromigration A SAM / Nanopore B Magnetic bead

Au Au Au

Au Si

Au Au

Au/Ni

Silica E

E=0

! " # $" %

& & ' (

)* &

+% $

, -.

, * &

/

(53)

!

" "

!

# $%&' ()* +

,

" " - #

. $%&' ()*

/

0

-%

1

2%3

½¼

. -%2%3

½¾

.

%45% ! $6*

# # 7 8

9 !

#

!: -!:.9 $);*

0 &&-.

!: !

0 &&-<.=-+. !

/ ! ##

7

(54)

27

STM tip

Surface

Au bridge

A B A C D

! ""

#$

!"# $"

% % "

&

' (

) *+,- +./

" 0 ) 1

!

2 " )

%

0

(

(55)

! " #

# $ $ #

! % &

' "( '! ) $

!$! # *

+,! - # ($ ./012

$ # #

- ! $

! * 3- $ $( ! 4 (

. %$ &!.*22 ,56 ,6 5 $ 4

$ $

# " 776 78! * #

($ # $ (9 $ +6 8,! : - $

;$ $ $ #

# # 8 . %$ &!. 22! % "

# $ ! *

# $ < &) 9

" # " < 8&!

0 # (

$ ! 0 $( $

! * $$

< ! = $ #

- ;

$( < ! 0 # 3 !$!

# # # $ ! : #

# - # ! 4 (

# 3 > $

! : - ?8$ # $

3 $ # !

- !

(56)

29

!" #

$% &

' !'#(( #

% ) *

' !'((#*

% +

* ,* * ,* -. /"

0 ,

, 0

1

¾

' 2(

* *

+ ' !(

3 ' 2( *

+ * *

* * 4

$ %

5 +4 % 6 -7 8

9./* $%

: ' ;'#(( & %

)% * % 2

' ;'((

(57)

t

h d

t s

L

B A constriction

metal film

underetch isolation

substrate pushing rod

separated electrodes

!

"# $ %

#

! "

# $

$" %

(58)

31

Fixation of a manually notched wire

A B Picture of the wire with attached cables

Piezo

Supports

Notch Adhesive

Notch

! !

"# ! # $ %

% &'

() %

# # ) * !

+ ,((-.

!" #"" !" $

% & '()

*

(59)

! "

# $%&$%% '%'

( ) ) &

* $ #$*( +

,- * .

/ Æ

' 0 + + $* '

$* + , Æ

' 0

$* + +

) # 1

)2( 34

#5--)(

) 34

'6 #1)-#(

34( 7++

0 #)(

+ #84(

9+

6 6 + +

!

, *

1)

#$::( ! #) ; / ;( <

# ( $::

+ - Æ

' 0

= / '6

(60)

33

!" # $

% $ &"' $(

% $ &"'" # $ $

( ()* ( "

'" # & ( '+))

% $ &"'" #

()* $

$ % $ &"'," # ( $

-' &+ , " # % $

&". /0 ( 1 "

." 2 $ 3+ (

4 ( ++ ++ % $ &"." # )

( ' 5 $ ( ) $ % $ &"."

-" ( $ $ (

$ $ )& % $ &"'6"#

( ( ) $ "

7 $ ( ,8 ( $

)) "

,8 $ ( ,8

9 ) $ $ (

: $ $) $ (

( " % $ &"- , ) 6 $ ,6 $

( $

4 ,8 " # (: :

: ( $)

$ $ ( " /

(61)

PMMA 950K PMMA 200K Polyimide Metallic substrate

Electrons

PMMA 950K PMMA 200K Polyimide Metallic substrate

Metal

Polyimide Metallic substrate

Excess material

Metallic substrate

Ions

Polyimide

Metal Metal

Cantilever bridge

E-beam lithography Evaporation

Lift-off Reactive Ion Etching (Isotropic)

A

C D

B

Under cut

!" #

#" $ # # %

" & '# # %(

# # "

!

(62)

35

12 12

10

5

5

5 6.5

6.5

2 2 2 2

5 18

0.4 2.0

15.5 23

5 5

5 5 5

Alignment marker d=0.5

Alignment marker d=0.5

Alignment marker d=0.5 Alignment

marker d=0.5

2.0

A B

1 :m

Au Au

! "#

B A

Electrical contacts Differential thread

Substrate Bolts Thermal coupler

Pushing rod Temperature sensor

$ % $%

!

(63)

! " #$ %&'

(

!

)*+

,- . /- + 0!

1 !

$

$2$ $ 2$

34 ,! 5 !

6 ,, !$

, ,- 7

,-

½¾

!

8 9(:- && ---, Æ

$ ; !!

< ,5,-!

" $ 4 4

# =>%9! >

$4 7

" $ 4

(64)

37

ta Me cs lli str ub ate

Spring-loaded contacts

Contact pads

Pushing rod UV-structured E-beam structured bridge

Upper Bolt

Lower Bolt Substrate

Bending beam

!

!" #"" $

%&' (( ))%'*""+"$ ,

- '

& %' #"" . #+"

+"" $

(65)

! " " # "

$" "%"%

$& " "& ' $ ''" & "

( '& )& & '%

' ' ' '' "* "

+ ",#

",

-'"'' &

) .#" #

" , #

"

, /'" # " ) '

& 0## 1 ' '* $

"' #

"

- * ( & & "' % %

, 0## 1 $ 2

" '$ ''

''& "& "' & " 3

$ ' ' 4 '' " ' /

&" # "&

" % 5 %

& 6 0 1 & /'

" '&051"' #)

" ) '& "' "' /

" ''& ''4'& ' '

'' 5 '' /'

% ,1 & # $

7,1 , $ 38 "

8 " & ' %

" % ' & ' ' $ ''

2 ' %

(66)

39

A B

He recirculation

HP 4156B

p sensor

Motor controller Motor controller Motor controller

T controller SR830

Manipulation access

Setup 1 Setup 2

Feedthrough Cryostat

Motors

Switch box

! "# $ %

! & ' % (

! "#

$ %&' ( $) *' $!'#

+ ( , ÁÎ, $-.'

# / )#$!'-. # + , 0

0123 4 %.5# ("

( $-& ' $!.'

(67)

!" # $% #

! "## $ % ! "& ' $ $

()

$ * + ,

% -

+ ) .

* , /0$

(68)

41

A B

V DC

I(V ) DC

DUT V DC

L = 35 H

V AC

C = 68 uF

dI/dV AC (V ) DC DUT

DC measurement AC measurement

C Switch box for in-situ changing the instrument

DC Instrument AC Instrument DUT

Switch box

! "

# $

! "# $%&! ' (&&)!

* +"%&& ! , -

. -. ) .+++$$ ") ,

,

(69)

­

!

" # $

% &

'() %*

+ &

' *

,

(

&

' - .'

'/ - . '

0 1 2 3

& &

'() %*

4 &

' *

,

3

1 5 6 " %

Á7Î

+

%

,

­

!""

(70)

!" #

$ ! % %

&% !' % '

% % % !

% % # % % '

% '

%

&

(% # )$** + % ,

% (%

- ).$ + / !

! % "

( % .)0 1$ 0 23+

% ! 45

% % %

'% % !

6 " %

!" &

(71)

!"

# $%& !'() )*+ ,(" $

-

# -

.

# $%&

)/ !// % * #

') !)/ 0 #

1 % *2

3 4!

4// 5 *)5 1)6 2 # 7

# / 5

8/ 0

# 7 9

(72)

45

!

"

!"

¼

! #$

¼

!! %#!

Æ

¼

!

¼

" %&& ' (

) * %#!

(73)

!"# $

%

&''#

( ) ## $ * !# $

+ ,"- . ) # $ /# (

0 *

1+

*

*

& + * % + 2+

##3 Æ

45 6

&#( &3# ( 7 &##

Æ

%* 7

+ 8

* *9 7 &'##

Æ

7

#:#

* * * +6 0 7

* ; 7 9

* < 7 * 27

3# ## 5 + * =

; 7 +

2 + 7

35+ + * ; 7

9

(74)

47

! " ! Æ

#

$ #

%# &'&()* !+

" !, Æ

#

-

Æ

!" #$

Æ

% " & #$

Æ

' " ( "

" "

)

Æ

%

(75)

! "

#

$

% &

#

&

% '

(

&

# ( )*

' ( )*

$ +,-. ! ! )/

$ * )

0

& #

#

1

(76)

49

!

"#

$%»$ 

& '

(% $)*%

'

+ ( , -

./01 )) $+% +

2

3 4 5 6 ./71 $ )) $8%%

$ +

¾

% ! #

9):0¡:7

½¼

"

 7:*;"

$))%

" <

#

9 :

"

¾

½

$% $)=%

$%

(77)

A

B

μ r μ l

E f

-eV +eV

Vacuum level

Work function

Work function

I

Ideal tunneling barrier

General tunneling barrier

μ r

μ l

E f

-eV +eV

Vacuum level

Work function

Work function

I

d

N

N (x)

) d d 2

d 1

(78)

51

Æ

! "

# Æ

$ % &"

" % "

' Æ

%

() Æ

#(* +, -. # /

¼

0

123

! "#$%

&

¼

' ()

¼

*

(79)

Æ

!

" # Æ

" $

% & '( ! Æ

)) *

* + % ,

! -

+ *

+ , & '( .

/ ) 0 $1)

& '(

Æ

) 2

)

3 *

44 #

! * .

*

4'.

/ )5 )61 0 '(( 768

! )

9 :;< ; !

! !

7 8

! = > ? '=@?( A B

) Æ

7 8

(80)

53

!

"#

Æ

$% &!

' $ ( )*)

+& ,- (

( ( .

/ 0Æ(

1 ,

1 (

( 2

3

(

0' $ (

, ( (

' %* 13

(0

3(%4-(

)* ) ( ' $

+% %! /

%4-5 %

4- ' 6 7(

( 5 8 '

%4-9!

(81)

! "#$$"

(82)

55

! Ë

ÀÌ

Ë

ÄÌ

"

# Æ $ #

#

%

% & '' (%

)

(83)

Ë

ÀÌ

!

ÄÌ

! "

#

Æ

!

(84)

57

!

¼

" # $% &

'() *+ , -

./ '-) * ! &

'$) +#01 ! 23

'34 34 $2) 5 !

"67#% 8

9 # $ 67#

: . 9 +#0167#;

<

: =2 ><

3 , .

¼

¼

-

¼

¼

? 8 3- @

3- @

¼

! & A

¼

B !

&

¼

!

" 8 C ')%

" # $%

(85)

¼

¼

! "

# $

¼

%

¼

& '

&

( )#

(86)

59

!" # " "" # !$""

%& '( ! ) &

# * &

#+

% # ,

& , %

%

- #+ ,

&

%

%

¼

'( .

¼

) %

* ,

/ ' .""")

. 0 & 1

+

2 23

4 & % ,

Æ

¼

(87)

!

"

#

$

% & & $

$

$ $

'()**)**+

Æ

',-**,**+

Æ

.

/ Æ

0 $

1 ,)

**/

Æ

0 # $ #

2 3

4 5 & $

/ Æ

0

$

5 $

6. &

7891 /:; < ,9'5+,* &

=** $2 =** >2

(88)

61

1000 2000 3000 4000 5000

10 2 10 3 10 4 10 5 10 6 10 7 10 8 10 9 10 10 10 11 10 12

Hysteresis

Cl o si n g R e peat ed o p en in g

Stretching

R e si st a n ce [ W ]

Pushing rod distance [º]

V = 5 mV Dq = 5 º

In it ia l b re a k in g

0 1 2 3 4 5 6 7 8

G[ G 0 ]

5 opening th

Repeated closing-opening for electrode conditioning A

B C 10 opening th D 20 opening th E 30 opening th

50 o 50 o 50 o 50 o

¼

Æ

Æ

Æ

Æ

Æ

Æ

! Æ

(89)

½¼

½¾

! "#$%&$'& (

))

*

+ ! , Æ

- Æ

./ / , $! "#$%&& "

$! "#$'&& (

0

( ! "#$ & !

" $1

2 3 Æ

"4 Æ

", Æ

& 5

$1 2 4 Æ

", Æ

3/

Æ

& ( )

3 Æ

" 6 4 Æ

6(

0

+

7 (

) 0

8

(

"

Æ

( )

+ 8

5

* 9

%

8 :

(90)

63

!"

# $

$

(91)

! "

# " $

%& # "

# '"

( "

$ )

* "

"

(92)

!

" "

# "

$ % &

' &"

(

#

) * +

"

, #

*

$ -.%

(93)

!

"

#

!$

"

%

& #

!

'

()* "

+, "

-

' ./ 0

()*

(94)

67

!

"

" # $

% &!

% &'

() ! *+#

, !

#,

- !

% .

/ 0 12

*

! 1#.2 +!

3 41 5

6 !

# .4'.

Æ

3 41" (

1 6 ) &22# 722 Æ

!

8 !

! ) 4. 9 3 41:

# .49.

Æ

!

; 1

; 1.7 <6 3 41% "

) !

! ! 3 41: ) 4. 9 = !

(95)

¼

¼

!

¾

"# $% &

' ( )

'

*

& &

' ( ( ( + ( ,-

( ( '

'

' &

. -

(

. &

( ' $& ' /01

2 -

-)

( 3

-

( 2

(96)

69

10 2 10 3 10 4 10 5 10 6 10 7 10 8 10 9 10 10 10 11

Closing

R esistance []

QPC (12.9 k )

Pushing rod distance [a.u.]

b c

M M

a

After application Before application

2465 2455 2455

ª

!"

Æ

# $%

& ' !

( #

!(

Æ

)

¼

¼

* +#,

-ª . # '

#

(97)

!

"#$%&#'%

(( )

*+ , )$ *"++

"#$%

-

"#'% .

!

.

/ .

- 0

-! ) $

(

"**1

(

234/ /

5

(98)

71

S S

A Ideal picture B Realistic picture

0.86 nm 0.29 nm E

S S

E

!

" # $ ! "

! !

! "

! !# $%&'

()* + ÁÎ

, - . ÁÎ

+ ÁÎ

- / /

+ &

Æ

+

ÁÎ

/ 0

+

,! 1 2 2

(99)

-1 0 1 -150

0 150

-1 0 1

-5 0 5

a Open junction

Voltage [V]

Current [pA]

b Metal-Molecule-Metal

Voltage [V]

Current [nA]

c Metal-Metal

-1 0 1

-5 0 5

Voltage [V]

Current [ A ] :

!

" ! #$ ! #

! ! #

!

(100)

73

!

"

#$ %

& ' " $

(

" " ) "

%(

(

" * "

+

,

- (

- - -

# - " " ./

% 0 . " %1

, *

2

. 3

¼

4%56

¼

4%78-/ %./%09

$

.

,

. $

(101)

Á!Î " #

Á!Î " " ! !

$

%

& & '

( )*** Á!Î " & &

&

&

+ ,,-(. & )/** Á!Î & !

)* 0 1 )* 0 2** 3 + ,,4- .556/654

))67,6)4 -%89%9: + ,,-(. &;

. &

&

% & ( %

& &

% & 5/

), ; & (

! &

+ ,,-(. & Á!Î < ( =)

&/ (1*,0& =5 =2 &

/ ( 1*,0 & !/( !*, 0 %

*, Î -+ ,,->.. $ Á!Î =) +

,,-;. & =)& & -?/ .

(102)

75

-0.9 -0.6 -0.3 0.0 0.3 0.6 0.9

-80 -60 -40 -20 0 20 40 60 80

-0.9 -0.6 -0.3 0.0 -70

-60 -50 -40 -30 -20 -10 0 1500 curves

raw data 25 cycles

+ 0.4 V

- 0.4 V

a b

- 0.4 V + 0.4 V

Current [nA]

Voltage [V] Counts

c d

Current [nA]

Voltage [V]

-0.9 -0.6 -0.3 0.0 0.3 0.6 0.9 -8

-6 -4 -2 0 2 4 6 8

Voltage [V]

S2

S1 S1

S1 S2 & S3

S2 S3 S3

S2 S3

S2 S3

S

CH 3

C H 3

CH 3

C H 3

S

Decreasing distance

ÁÎ

!" # $ %& '()')* &+

! !& %%, - & % ! . , / %&+

0 - &%&& .%&& &&+ &&&+ 1

2 & &+ &, ) '2 1 & 1 &&&+

2 2 2&+ 32& 2 & , ' 2 &%

&+ 4 & & 2&& 35+ & & + +,

(103)

!

"" # $%&&$'' (

Á"Î ) ) )

% &&$*'

) +, -

. +/&,

) Á"Î 0)

1 ) Æ

2 Á"Î ) !

3 #

#) 1

0 4567 3

# 0 ) ! !

) 7 4567

) ) ! 8

5 !9

0 )

)

# ) )

! ) ) 1

#

1

(104)

77

Á!Î "

# "

$ %

& '"

! (

) *

+

#

"

, !

" -

.

(105)

(106)

! "#

# $%!

& #

'#

# ( )"

&

" * + "

' " # "

# ' "

&, - " #

& & '

(107)

!

! "

" #

$ %&

' &("" )*+, &("" )*+, ((-".) ,"

" ).*+, ((-"" ).*+,

&("" )*+,

$ %&)/, ) &0%

1 2&,

)"3, ((-".) ,"" ).*+, $ %&).,

(108)

81

N

N C

C

S S

Au Au

Thiol coupling Cy ano coupling

Two phenyl rings One phenyl ring

S

S Au

A

E

N T

Au

N N C

C Au

Au C

E

N C

B

E

N T

Au

Au D

E

N C

!" # $ #

# !" % !& ! $ # !&

!"#!$ %!&##

!'&# & (

( )

* !"#!$ %!##

" +

(109)

!

!

" "

"

#$% #$%& $% $%&

$%

" '

() *

" "

$% $%

++, - ./01 23#4

5' ) "

" $% ( 56 7

" 8 " 9

' :0

" 3 :) 5'#) $%( 67

# 56 6 7 " ( 56 7

( ; 6 < = 6: < 5

>

cond

6+ < 67 5 >

cond

6/ <&

66 56 7

(110)

83

! " #$%& '

() *'+,( - .

/ % 0 1. .* 2

* . * % '

* .* 2 / * %/(00

+, / *%/300

4 * / 5

*0 * * . * '

* * " . - *

* %/(0 * 67 *

- . * *

" 8$ 67

+, * %/30

" * . +, '

* 9

cond

.* * *'

* .* *

:;6< 1<6< *

* * * / = >40 *

.. * "

5 9

cond

* ?

* . * #@& ( 9

cond

4 2 * 8/ . * 80

- - . * *

*

* " * (

(111)

-15 -10 -5 0 5 10 15 20

0 5 10 15 20 25 30 35

-1.2 -0.9 -0.6 -0.3 0.0 0.3 0.6 0.9 1.2 -40

-20 0 20 40

0 20 40 60 80 100

Voltage [V]

Current [nA] Diff . Conductance [nS]

Current [nA] Diff . Conductance [nS]

a

b 50 K S S

2

S S

) cond

250 K

2 ) cond

2

!"# $ % "# $&

!

cond

#&' ( !"# $ #&) ( "# $& "# $ *

#&) (& *

* &

(112)

85

S S

100 200 300 400 500 600 700 800

Co u n ts

Resistance [M W ] B

A

Resistance [M ] S

Counts

V = 5mV

0 100 200 300 400 500 600 700 800 Resistance [M ] S

Counts

10 6 10 7 10 8 10 9 10 10 10 11

Pushing rod position approx.

6 pm V = 5mV

! " # $ %& '

( )# $ " " $

* + #

Referenzen

ÄHNLICHE DOKUMENTE

whole range of Δn they cover. This agreement is important as it means that the high level of the lifetime is less likely caused by measurement-speci fi c artifacts. Especially due to

The combined organic phases were washed with brine, and dried over Na 2 SO 4 , and the solvents removed under reduced pressure.. The mixture was cooled to 0 °C

A crossing of the HOMO (highest occupied molecular orbital) with the Fermi level E F of the electrode leads then to an increase in the current, due to resonant tunneling [18].

This behaviour can be nicely explained as in the mesoscopic regime the space charge layer (in which the charge carriers are redistributed due to the positive charge of the grain

In this section, we briefly present our methods for com- puting the electronic structures, geometries, and vibrational modes, as well as the charge transport characteristics of

With the aim of clarifying the transport properties of single AzoTM molecules, the I-V characteristics were mea- sured at the lowest conductance regime for cis and trans isomers

Our results suggest that the conductance and thermopower of C 60 -terminated molecules are still quite sensitive to the binding geometry and we expect a large spread of values

To shed new light on the influence of adsorbed NG atoms in the transport through metallic atomic contacts, we present in this Brief Report a systematic ab initio study of