• Keine Ergebnisse gefunden

Infralittoral ostracoda and benthic foraminifera of the Gulf of Pozzuoli (Tyrrhenian Sea, Italy)

N/A
N/A
Protected

Academic year: 2022

Aktie "Infralittoral ostracoda and benthic foraminifera of the Gulf of Pozzuoli (Tyrrhenian Sea, Italy)"

Copied!
44
0
0

Wird geladen.... (Jetzt Volltext ansehen)

Volltext

(1)

Infralittoral ostracoda and benthic foraminifera of the Gulf of Pozzuoli (Tyrrhenian Sea, Italy)

Giuseppe Aiello .Diana Barra.Roberta Parisi.Michele Arienzo. Carlo Donadio.Luciano Ferrara.Maria Toscanesi.Marco Trifuoggi

Received: 17 January 2021 / Accepted: 17 May 2021 / Published online: 15 June 2021 ÓThe Author(s) 2021

Abstract The shallow water benthic foraminiferal and ostracod assemblages of the Gulf of Pozzuoli, located in the central Tyrrhenian Sea, were studied to investigate the relationship between calcareous meio- faunas and contaminant concentrations in bottom sediments exposed to prolonged industrial pollution.

Both benthic foraminifers and ostracods displayed high-diversity and low-dominance, unusual features in highly contaminated environments. High-diversity values were possibly linked to the oligotrophic, well- oxygenated, and CaCO3-supersaturated coastal Mediterranean waters. The comparison with historical data suggested that assemblage composition changed in the last decades, with an increase in the relative abundance of benthic foraminiferal (Quinqueloculina

seminulum, Bulimina elongata) and ostracod (Xestole- beris, Loxoconcha, Semicytherura rarecostata) taxa.

They probably represent organisms tolerant to the environmental variations in the last decades. The relationships between granulometry and diversity indices, high correlation values between Quinquelo- culina lata and heavy metal pollution, and the preference of the ostracod genera Urocythereis and Paracytheridea for very shallow marine waters were highlighted.

Keywords MeiobenthosGranulometry Mediterranean SeaIndustrial pollutionHigh- diversity assemblages

Introduction

Benthic foraminifers (Rhizaria) and ostracods (Crus- tacea) are meiofaunal groups generally provided with calcareous tests and valves, commonly preserved in sea bottom sediments. The composition of their assemblages reflects environmental conditions due to both natural and human causes. Anthropogenic activ- ities produce various effects on shallow marine waters, including organic pollution, changes in sedimentation rates, increase in hydrocarbon and heavy metal concentrations, and eutrophication-induced hypoxia (Gooday et al.,2009; Yasuhara et al.,2012; Wilkinson et al., 2014) that, in turn, lead to an increase in the Handling Editor: Te´lesphore Sime-Ngando.

G. Aiello (&)D. BarraR. Parisi M. ArienzoC. Donadio

Dipartimento di Scienze della Terra, dell’Ambiente e delle Risorse, Universita` di Napoli Federico II, via Cintia 21, 80126 Naples, Italy

e-mail: giuseppe.aiello@unina.it; aie64llo@hotmail.com D. Barra

Istituto Nazionale di Geofisica e Vulcanologia, Sezione di Napoli Osservatorio Vesuviano, Via Diocleziano 328, 80124 Naples, Italy

L. FerraraM. ToscanesiM. Trifuoggi

Dipartimento di Scienze Chimiche, Universita` degli Studi di Napoli Federico II, via Cintia 21, 80126 Naples, Italy

(2)

relative abundance of stress-tolerant foraminiferal species (Hayward et al., 2004; Alve et al., 2009;

Frontalini and Coccioni,2011; Ruiz et al.,2012) and frequently to ostracod diversity decrease (Alve,1991;

Mazzola et al., 1999; Cronin & Vann, 2003; Irizuki et al., 2018). The studies combining the analyses of benthic foraminifers and ostracods in areas where human-induced ecological variations occurred showed the high potential of calcareous meiofaunal assemblages as water quality indicators (Samir,2000;

Triantaphyllou et al.,2003, 2005; Vilela et al.,2003;

Bergin et al.,2006; Pascual et al.,2008, Salvi et al., 2015).

In the present study, benthic foraminiferal and ostracod assemblages were studied from eleven sam- ples collected in the infralittoral zone of the Gulf of Pozzuoli, a bay located in the Campania region (Southern Italy) with a narrow continental shelf, a shelf break at about 40 m bsl, a maximum depth of 110 m, and an average depth of ca. 60 m (Fig. 1;

Somma et al., 2016). The gulf is mainly exposed to winds and sea waves approaching from the southeast–

southwest sector, with a maximum geographic fetch of 665 km for the 205° direction, 0.9–2.2 m average wave height, and a maximum wave height of 4.7 m in winter (De Pippo et al.,2008). The water circulation models (De Maio et al.,1985; Menna et al.,2008; de Ruggiero, 2016) of the gulf generally indicate two main flow patterns: (i) when the open sea currents flow toward the southeast, the inner waters of the bay are cut off in a slow cyclonic gyre; then, the coastal waters slow motion could favor turbidity and a high pollutant concentration; (ii) when the open sea currents flow toward the northwest, some branches enter into the bay; then, a fair renewal of sea waters occurs. Tides are negligible, with a syzygial tide amplitude of 0.35 m (Tammaro et al.,2021); therefore, the gulf is a wave- dominated environment. Salinity, turbidity, and phy- toplankton distribution are related to seasonal varia- tion in the sea surface and column temperature, autumn–winter freshwater supply by rainfalls and land runoff, marine currents cell circulation:

37.1–38.6%salinity, 27–30°C sea surface tempera- ture, and high phytoplankton biomass (Chl a

Fig. 1 Location of the sampling stations (black solid circle) in the Gulf of Pozzuoli. Legend: 1, pyroclastics of the Phlegrean Fields (Late Pleistocene–Holocene); 2, deposits of transitional environments (Quaternary); 3, isobath(-m); 4, edge of the

continental shelf break, from a depth of about 25 down to 40 m.

Depth is in meters b.s.l. (after Somma et al., 2016 and the morphobathymetric and sedimentological surveys carried out for this research). The geographic coordinate system is WGS84

(3)

due to urban and industrial wastes, at least since 1885, when an armaments factory was built by the British company Armstrong Mitchell & Co. The eastern part of the gulf was under the influence of the Bagnoli steel plant from 1910 to 1990, to which the high levels of polycyclic aromatic hydrocarbons (Arienzo et al., 2017; Ferrara et al., 2020), trace metals (Trifuoggi et al.,2017), and rare earth elements (Trifuoggi et al., 2018) in the sediment seem to be linked. Recently, some ecological and paleoecological investigations were performed on Recent (Balassone et al., 2016;

Mangoni et al., 2016; Arienzo et al., 2020) and late Quaternary (i.e., from*150 ka to historical times;

Aiello et al., 2012;2018; 2020;2021; Amato et al., 2019; Petrosino et al.,2021) sediments of the Cam- pania region coastal areas focused on benthic foraminiferal and ostracod assemblages. The present study aims to define the characteristics of the calcare- ous meiofaunal assemblages in the infralittoral zone (Peres & Picard, 1964; Peres, 1982) of an area showing high geoaccumulation values and to test a possible decrease in benthic faunal abundance and diversity in polluted bottom sediments. Our data, compared with the above-mentioned studies and previous investigations on Campanian infralittoral benthic foraminifers (Moncharmont Zei,1964; Sgar- rella & Barra,1985; Sgarrella et al.,1985; Sgarrella &

Moncharmont, 1993) and ostracods (Mu¨ller, 1894;

parameters.

Material and methods

Eleven samples of very fine to coarse sands, and very fine gravels, were collected by a Van Veen grab above the shelf break of the Gulf of Pozzuoli (*40 m bsl), in a water depth range between 7.5 m and 38 m, within the infralittoral zone. The grab collected superficial sediments, including the first ca. 5 cm of the seabed, related to texture and consistency of silt or sand deposits. Sharp & Nardi (1987) calculated, in this area, a sedimentation rate of about 4 mm/year and consequently the sampled sediments deposited, at most, in the last 15 years. The surface of the sampler is about 150 square cm (10 915 cm), while the volume of the sampled sea bottom surface sediment generally is about 750–1000 cubic cm. Samples were taken along one campaign in the spring of 2017 along transects and aboard a motor vessel. Bathymetry, grain size, number, and location of samples are reported in Fig.1 and Table 1. For meiofaunal analyses, all the samples were oven-dried, and 100 g of dry sediment was taken. They were washed through 230-mesh (63lm) and 120-mesh (125 lm) sieves, and the residues were oven-dried and examined with a reflected light microscope. A microsplitter was used

Table 1 Coordinates of sampling stations, grain size, and water depth

Sampling stations Latitude (N) Longitude (E) Depth (m) Gravel % Sand % Silt % Clay % Class

TP1—1 40°49027.55‘‘ 14°05002.94’’ 8.0 4.68 94.9 0.33 0.05 Fine sand

TP1—2 40°49016.89‘‘ 14°05008.74’’ 24.8 1.59 97.3 0.96 0.16 Fine sand

TP2—1 40°49041.34‘‘ 14°06019.46’’ 8.0 0.69 99.3 Coarse sand

TP2—2 40°49023.95‘‘ 14°06021.93’’ 25.8 1.50 97.0 1.40 0.10 Very fine sand

TP2—3 40°48042.91‘‘ 14°06029.06’’ 34.0 6.72 91.8 1.32 0.15 Fine sand

TP3—1 40°49005.98‘‘ 14°07050.41’’ 7.5 0.67 99.3 Medium sand

TP3—2 40°48053.02‘‘ 14°07046.26’’ 23.8 5.10 94.9 Fine sand

TP3—3 40°48033.38‘‘ 14°07038.47’’ 38.0 2.89 96.1 0.88 0.12 Fine sand

TP4—1 40°48046.43‘‘ 14°09030.87’’ 7.7 0.06 99.9 Fine sand

TP4—2 40°48032.74‘‘ 14°09017.63’’ 21.5 0.57 98.9 0.47 0.07 Fine sand

TP5—1 40°47033.96‘‘ 14°09028.91’’ 22.7 49.1 50.8 Very fine gravel

(4)

to obtain subsamples when necessary. About 300 benthic foraminiferal tests and 300 ostracod valves were picked from the coarsest fraction ([125 lm), classified, and counted. Abundance and diversity indices were calculated using the number of forami- niferal specimens, the ostracod Minimum Number of Individuals (MNI), and the Total Number of Valves (TNV). MNI is the greater number between right and left adult valves plus the number of adult carapace;

when only juvenile shells (j) were recorded, the MNI equals one. TNV includes all the adult and young instar valves. Assemblage composition as well as diversity indices was considered for environmental discussion. The following indices were calculated: S (taxa richness), I (individuals per 100 g of sediment), D (dominance), H’ (Shannon’s diversity index, using natural logarithm), and J (equitability). The species were identified according to classic and modern literature both for benthic foraminifers and ostracods (Aiello & Barra, 2010; Aiello et al., 2018, and references therein). The studied specimens are housed in the Aiello Barra Micropaleontological Collection (A.B.M.C.), Dipartimento di Scienze della Terra, dell’Ambiente e delle Risorse, Universita` degli Studi di Napoli Federico II. Statistical analyses were performed using abundance values of foraminiferal (I = number of individuals per 100 g) and ostracod (both MNI = minimum number of individuals per 100 g, and TNV = total number of valves per 100 g) assemblages. Q-mode cluster analysis (paired group as an algorithm, Rho as similarity measure) was per- formed to determine groups of samples with similar

meiofaunal composition, using abundance values of all foraminiferal and ostracod (both MNI and TNV) species. Pearson’s correlation coefficient was used to test for correlation between assemblage features, depth, major and trace elements, and polycyclic aromatic hydrocarbons of eight fine-grained samples;

benthic foraminiferal and ostracod species with rela- tive abundance greater than 5% in at least two samples were considered. The abiotic variables were subject to z-standardization. Analyses were carried out on the same set of samples used by Arienzo et al. (2017), Trifuoggi et al. (2017,2018), and Ferrara et al. (2020) in their investigations on the distribution of polycyclic aromatic hydrocarbons (PAHs), trace metals (HMs), and rare earth elements (REEs). All the analytical determinations were performed in triplicate for each sample taken at each site. The quality of the analytical results is assured by participation in ring tests for the determination of HMs, PAHs, and REEs from sedi- ments and similar matrices. Mean recoveries ranged from a minimum of 85% to a maximum of 97%. Grain size analyses were performed following the standard methodology of Folk and Ward (1957). Full method- ological details on sampling techniques, geochemical and grain size analyses were reported in Arienzo et al.

(2017), Trifuoggi et al. (2017,2018), and Ferrara et al.

(2020).

Computation of diversity indices and statistical analysis were performed with STATISTICA 5 (Stat- Soft Inc., Tulsa, OK, USA).

Table 2 Benthic foraminiferal absolute abundance (I = individuals per 100 g of sediment)

Sampling stations Latitude (N) Longitude (E) Depth (m) Gravel % Sand % Silt % Clay % Class

TP1—1 40°49027.55‘‘ 14°05002.94’’ 8.0 4.68 94.9 0.33 0.05 Fine sand

TP1—2 40°49016.89‘‘ 14°05008.74’’ 24.8 1.59 97.3 0.96 0.16 Fine sand

TP2—1 40°49041.34‘‘ 14°06019.46’’ 8.0 0.69 99.3 Coarse sand

TP2—2 40°49023.95‘‘ 14°06021.93’’ 25.8 1.50 97.0 1.40 0.10 Very fine sand

TP2—3 40°48042.91‘‘ 14°06029.06’’ 34.0 6.72 91.8 1.32 0.15 Fine sand

TP3—1 40°49005.98‘‘ 14°07050.41’’ 7.5 0.67 99.3 Medium sand

TP3—2 40°48053.02‘‘ 14°07046.26’’ 23.8 5.10 94.9 Fine sand

TP3—3 40°48033.38‘‘ 14°07038.47’’ 38.0 2.89 96.1 0.88 0.12 Fine sand

TP4—1 40°48046.43‘‘ 14°09030.87’’ 7.7 0.06 99.9 Fine sand

TP4—2 40°48032.74‘‘ 14°09017.63’’ 21.5 0.57 98.9 0.47 0.07 Fine sand

TP5—1 40°47033.96‘‘ 14°09028.91’’ 22.7 49.1 50.8 Very fine gravel

(5)

ostracod shells (no barren samples) (Tables 2–8). A total of 4262 foraminiferal individuals and 3607 ostracod valves were collected. The good state of preservation, the distribution data, and the presence of all developmental stages (in ostracods: different young instars and adults) suggested that the calcareous meiofaunal assemblages could be considered entirely autochthonous. The benthic foraminiferal assem- blages included 142 species assigned to 74 genera;

127 ostracod species in 49 genera were recorded (Appendix 1; Figs. 2–3). Five benthic foraminiferal species and eight ostracod species were tentatively identified or left in open nomenclature and nine with affinitive status due to the absence of adult specimens, or because of poorly preserved shells. The good state of preservation, the distribution data, and the presence of all developmental stages (in ostracods: different young instars and adults) suggested that the calcareous meiofaunal assemblages could be considered entirely autochthonous.

Benthic foraminifers.

Six benthic foraminiferal species were present in all the samples, that is, Ammonia aberdoveyensis, Buc- cella granulata,Cibicides lobatulus,Elphidium cris- pum, Quinqueloculina seminulum and Triloculina schreiberiana. Assemblages were characterized by the generaQuinqueloculina(19 species) andElphid- ium (10 species). Cibicides lobatulus was the most abundant species, with a Medium Relative Abundance (MRA) of 12.8%, followed byTretomphalus concin- nus (MRA = 5.54%), Siphonaperta aspera (MRA = 4.30%), Elphidium crispum (MRA = 3.97%), As- terigerinata mamilla(MRA = 3.75%) andQ. seminu- lum(MRA = 3.53%).

The number of species (S) was between 17 and 82, with discrimination between the three coarse-grained samples (TP2-1 = coarse sand; TP3-1 = medium sand; TP5-1 = very fine gravel) and the remaining eight samples, all made of fine or very fine sands. The former displayed a S range from 17 to 48, with the mean value of 34.33; the eight fine-grained samples had S between 52 and 82 (mean value = 61.25).

The number of specimens (I) showed a wide range, from 69 to 105,984. The three coarse-grained samples displayed a mean value of 484, whereas a I mean value of 51,540 was recorded for the remaining samples.

ones.

TP2-1 and TP5-1 assemblages showed a Shannon diversity index (H ’) less than 3; in the other assemblages H’[3. Mean H’ is 3.28. Mean H’ is 3.28. A similar trend was observed for equitability (J), low in the samples TP2-1 and TP5-1 (J\0.8) and high (J[0.8) in the other samples.

Ostracods.

The most diversified genera were Semicytherura (18 species) andXestoleberis(12 species). Character- istic species were Urocythereis margaritifera [MRA(MNI) = 8.10%; MRA(TNV) = 9.94%], Pon- tocythere turbida [MRA(MNI) = 6.00%;

MRA(TNV) = 5.64%], Semicytherura rarecostata [MRA(MNI) = 5.56%; MRA(TNV) = 3.87%],Loxo- concha rhomboidea [MRA(MNI) = 5.08%;

MRA(TNV) = 4.83%] and Loxoconcha ovulata [MRA(MNI) = 3.68%; MRA(TNV) = 5.55%].Loxo- concha affinis [MRA(MNI) = 3.45%; MRA(TNV) = 3.64%], Xestoleberis dispar [MRA(MNI) = 2.93%;

MRA(TNV) = 5.26%], Xestoleberis communis [MRA(MNI) = 2.25%; MRA(TNV) = 5.22%] and Aurila convexa[MRA(MNI) = 1.93%; MRA(TNV) =

4.95%] were considered accessory species.

The three samples with coarser granulometry (TP2- 1, TP3-1, TP5-1) yielded relatively poor ostracod assemblages, showing low diversity and high domi- nance. Conversely, in the fine-grained samples, diver- sity and abundance were high and the dominance low.

Taxa richness (S) ranged from 4 to 12 in the coarse- grained samples and from 31 to 57 in the remaining ones. In the former samples, abundance (I) was between 9 and 27 (MNI) and between 18 and 40 (TNV); in the latter samples, the mean value of I was 2065.5 (MNI) and 7781 (TNV). Shannon index H’

followed a similar trend: in TP2-1, TP3-1, TP5-1 mean H’ (MNI) was 1.68 and medium H’ (TNV) was 1.56;

in the assemblages occurring in the fine-grained sediments, medium H’ (MNI) was 3.35 and medium H’ (TNV) was 3.10.

Dominance (D) values were high in the assem- blages of samples TP2-1, TP3-1, TP5-1 [D (MNI) range = 0.09–0.48; D(TNV) range = 0.14–0.70]; in the fine-grained samples the average D was 0.05 (MNI) and 0.07 (TNV).

(6)

Table3Benthicforaminiferalrelativeabundance(RA,%)samples SamplesTP1—1TP1—2TP2—1TP2—2TP2—3TP3—1TP3—2TP3—3TP4—1TP4—2TP5—1 Adelosinaelegans(Williamson,1858)0.490.87 Adelosinalongirostra(d’Orbigny,1826)0.672.541.191.181.391.560.250.61 Adelosinamediterranensis(LeCalvez&LeCalvez,1958)2.37 Adelosinapulchellad’Orbigny,18260.52 Affinetrinaplanciana(d’Orbigny,1839)0.120.43 AmmodiscusplanorbisHo¨glund,19470.30 AmmoniaaberdoveyensisHaynes,1973lobateform1.660.81 AmmoniaaberdoveyensisHaynes,1973roundedform3.202.902.905.703.253.130.814.680.740.300.87 Ammoniabeccarii(Linnaeus,1758)0.367.252.070.690.521.22 Amphicorynascalaris(Batsch,1791)0.26 Angulogerinaangulosa(Williamson,1858)0.27 AsterigerinataadriaticaHaake,19770.890.26 Asterigerinatamamilla(Williamsom,1858)1.353.860.956.801.048.098.831.473.655.19 AsterigernatamariaeSgarrella,19900.67 Astrononionstelligerum(d’Orbigny,1839)1.680.850.300.350.740.912.16 BolivinacatanensisSeguenza,18620.34 BolivinalowmaniPhleger&Parker,19510.510.240.300.350.27 BolivinapseudoplicataHeron–Allen&Earland,19300.240.26 Bolivinavariabilis(Williamson,1858)0.27 Bolivinasp.0.12 Brizalinaspathulata(Williamson,1858)0.240.24 Brizalinastriatula(Cushman,1922)0.510.12 Buccellagranulata(DiNapoliAlliata,1952)1.521.452.900.482.664.171.896.230.492.432.60 Buliminaaculeatad’Orbigny,18260.170.361.900.590.350.540.260.91 Buliminaelongatad’Orbigny,18460.675.079.983.856.200.780.742.43 CassidulinacarinataSilvestri,18960.600.891.391.04 Cibicideslobatulus(Walker&Jacob,1798)8.5910.514.355.4612.137.6416.9811.4312.9913.9836.80 CibicidesrefulgensMontfort,18080.91 Cibicidoidespachyderma(Rzehak,1886)0.24 Cibicidoidesvariabilis(d’Orbigny,1826)0.510.851.192.450.610.87 Conorbellaimperatoria(d’Orbigny,1846)0.24 Cornuspirainvolvens(Reuss,1850)2.380.49 Cycloforinacontorta(d’Orbigny,1846)1.681.810.242.073.471.353.380.984.260.87 Cycloforinarugosa(d’Orbigny,1826)0.341.230.30 Cycloforinatenuicollis(Wiesner,1923)0.25

(7)

Table3continued SamplesTP1—1TP1—2TP2—1TP2—2TP2—3TP3—1TP3—2TP3—3TP4—1TP4—2 Cycloforinavillafranca(LeCalvez&LeCalvez,1958)0.590.540.74 Discorbinellabertheloti(d’Orbigny,1839)0.245.920.350.816.490.61 DiscorbistorreiBermu´dez,19351.52 Eggerelloidesscaber(Williamson,1858)2.380.35 Eilohedravitrea(Parker,1953)0.35 Elphidiumarticulatum(d’Orbigny,1839)1.180.711.180.91 Elphidiumcomplanatum(d’Orbigny,1839)4.555.430.303.770.522.700.61 Elphidiumcrispum(Linnaeus,1758)1.526.041.456.414.142.083.234.681.231.22 Elphidiumgranosum(d’Orbigny,1846)0.170.240.484.440.271.56 Elphidiumincertum(Williamson,1858)0.510.48 Elphidiummacellum(Fichtel&Moll,1798)1.521.697.251.433.254.862.431.560.98 ElphidiummaioricenseColom,19420.340.360.711.391.080.981.22 Elphidiumpoeyanum(d’Orbigny,1839)DSform0.601.89 Elphidiumpoeyanum(d’Orbigny,1839)FSform0.480.713.250.811.30 ElphidiumpulvereumTodd,19580.840.241.660.353.191.22 Elphidiumpunctatum(Terquem,1878)7.740.481.187.291.620.783.687.29 Favulinahexagona(Williamson,1848)0.30 Flintinoideslabiosa(d’Orbigny,1839)1.851.690.350.541.23 Fursenkoinaacuta(d’Orbigny,1846)0.480.240.26 Gavelinopsispraegeri(Heron-Allen&Earland,1913)0.340.480.952.371.621.300.490.30 Glabratellaerecta(Sidebottom,1908)0.240.490.61 GlabratellahexacamerataSeiglie&Bermu´dez,19651.010.240.480.98 Globobuliminasp.10.48 Globocassidulinasubglobosa(Brady,1881)0.17 Globulinagibba(d’Orbigny,1826)0.12 Guttulinasp.12.78 GyroidinaneosoldaniiBrotzen,19360.12 Gyroidinaumbonata(Silvestri,1898)0.12 Haynesinadepressula(Walker&Jacob,1798)2.020.974.282.073.820.260.981.22 Haynesinagermanica(Ehrenberg,1840)0.590.270.740.30 Lachlanellaundulata(d’Orbigny,1852)0.30 LagenasemistriataWiliamson,18480.120.48 Lenticulinacultrata(Montfort,1808)0.12 Lenticulinagibba(d’Orbigny,1839)0.30 Lenticulinarotulata(Lamarck,1804)0.170.890.81

(8)

Table3continued SamplesTP1—1TP1—2TP2—1TP2—2TP2—3TP3—1TP3—2TP3—3TP4—1TP4—2TP5—1 Massilinasecans(d’Orbigny,1826)0.670.120.350.540.741.220.87 Melonisaffinis(Reuss,1851)0.720.891.622.60 Miliolidae0.360.810.52 MiliolinellaelongataKruit,19551.52 Miliolinellacf.M.hybrida(Terquem,1878)1.01 Miliolinellasemicostata(Wiesner,1923)0.670.240.301.040.270.260.250.43 Miliolinellasubrotunda(Montagu,1803)0.511.934.354.753.472.164.663.042.60 Miliolinellawebbiana(d’Orbigny,1839)0.240.270.43 Miniacinaminiacea(Pallas,1766)0.43 Neoconorbinaterquemi(Rzehak,1888)0.840.971.663.853.5010.390.910.43 Nonionellaturgida(Williamson,1858)0.120.710.300.261.23 NubecularialucifugaDefrance,18251.520.601.660.300.351.350.520.742.430.87 Palliolatellafasciata(Egger,1857)0.30 Parrinabradyi(Millett,1898)0.240.30 Peneroplispertusus(Forska˚l,1775)2.021.092.902.780.270.49 Peneroplisplanatus(Fichtel&Moll,1798)0.840.12 Planoglabratellaopercularis(d’Orbigny,1846)0.690.49 Planorbulinamediterranensisd’Orbigny,18262.692.050.242.070.691.892.348.091.525.19 Quinqueloculinaagglutinansd’Orbigny,18390.170.24 Quinqueloculinaannectens(Schlumberger,1893)0.12 Quinqueloculinaberthelotianad’Orbigny,18393.374.352.902.850.300.351.353.380.610.87 Quinqueloculinaboscianad’Orbigny,18392.020.361.660.307.290.271.230.30 QuinqueloculinabradyanaCushman,19170.340.850.240.301.041.47 Quinqueloculinadisparilisd’Orbigny,18260.26 Quinqueloculinairregularisd’Orbigny,18260.340.260.30 QuinqueloculinajugosaCushman,19440.340.241.04 Quinqueloculinalaevigatad’Orbigny,18390.170.240.350.74 QuinqueloculinalataTerquem,18762.860.972.901.900.305.560.279.804.861.73 Quinqueloculinalimbatad’Orbigny,18260.170.36 QuinqueloculinaparvulaSchlumberger,18940.840.601.190.300.740.61 Quinqueloculinapoeyanad’Orbigny,18391.450.241.22 QuinqueloculinapygmaeaReuss,18501.680.480.241.481.740.783.191.22 Quinqueloculinaseminulum(Linnaeus,1758)1.521.2110.145.940.896.601.621.304.172.433.03 QuinqueloculinastalkeriLoeblich&Tappan,19530.170.480.350.61 QuinqueloculinastelligeraSchlumberger,18931.850.851.190.810.490.914.33

(9)

Table3continued SamplesTP1—1TP1—2TP2—1TP2—2TP2—3TP3—1TP3—2TP3—3TP4—1TP4—2 Quinqueloculinaungerianad’Orbigny,18460.170.24 Quinqueloculinavulgarisd’Orbigny,18261.451.041.230.61 Quinqueloculinasp.0.17 RectuvigerinaphlegeriLeCalvez,19590.170.852.383.852.432.60 Reophaxfusiformis(Williamson,1858)0.24 Reussellaspinulosa(Reuss,1850)1.480.270.78 Rosalinafloridana(Cushman,1922)1.351.570.301.044.040.520.492.13 Rosalinamacropora(Hofker,1951)2.362.780.486.512.433.232.341.230.91 Rosalinaobtusad’Orbigny,18461.853.020.712.070.694.043.901.234.56 Rotorbisauberii(d’Orbigny,1839)0.170.12 Sahuliaconica(d’Orbigny,1839)0.240.52 SigmoilinacostataSchlumberger,18930.340.600.480.300.540.520.740.30 Sigmoilinagrata(Terquem,1878)0.240.240.270.740.61 Sigmoilinitadistorta(Phleger&Parker,1951)0.25 Siphonapertaaspera(d’Orbigny,1826)0.2440.580.484.510.271.22 Siphoninareticulata(Czˇjzˇek,1884)0.120.54 Soritesorbicularis(Forska˚l,1775)0.171.450.74 SpirillinaviviparaEhrenberg,18430.480.24 Spiroloculinadepressad’Orbigny,18260.30 Spiroloculinaexcavatad’Orbigny,18460.26 Spiroloculinaornatad’Orbigny,18390.170.24 Spiroloculinatricarinatad’Orbigny,18520.340.36 Spiroplectinellawrighti(Silvestri,1903)0.270.52 Stainforthiacomplanata(Egger,1893)0.24 Stomatorbinaconcentrica(Parker&Jones,1864) Textulariaaciculatad’Orbigny,18260.590.26 Textulariaagglutinansd’Orbigny,18390.12 TextulariacalvaLalicker,19400.810.26 TextulariapalaCzˇjzˇek,18481.08 Tretomphalusconcinnus(Brady,1884)11.788.097.131.485.563.231.3010.298.21 Triloculinaeburnead’Orbigny,18390.174.351.04 TriloculinaplicataTerquem,18780.340.600.690.810.490.91 Triloculinaschreiberianad’Orbigny,18390.340.120.241.040.260.740.30 Triloculinatrigonula(Lamarck,1804)4.045.801.455.941.480.693.772.600.983.95 Trochamminainflata(Montagu,1808)0.27

(10)

Equitability (J) ranged from 0.72 to 0.99 (MNI) and from 0.46 to 0.94 (TNV). The mean J values were 0.86 (MNI) and 0.79 (TNV).

Statistics.

The cluster analysis (Fig.4) revealed two clusters of samples, obtained at a similarity cut-off level of 0.45. Cluster B consists of the coarse-grained samples TP2-1, TP3-1, and TP5-1, with low diversity–low abundance assemblages; cluster A includes the remaining eight fine-grained (fine and very fine sands) samples, characterized by high-diversity—high abun- dance assemblages. The three sediment samples grouped in Cluster B, consisting of medium sand, coarse sand, and very fine gravel, showed low geochemical accumulation. Since both low meiofau- nal abundance/diversity values and low pollutant concentrations are highly associated with grain size (v. Discussion section), a correlation analysis includ- ing all the samples would provide results strongly influenced by granulometry. Consequently, we opted for performing the Pearson’s correlation coefficient analysis on the eight fine-grained samples included in Cluster A. Results of Pearson’s correlation coefficient analysis using meiofaunal assemblages, depth, major and trace elements, total organic carbon, and poly- cyclic aromatic hydrocarbons (Table9) are reported in Table 10. The foraminiferal species Cibicides lobat- ulus and Elphidium crispum are common in all the samples. The assemblages included in Cluster A are characterized by the foraminifers Tretomphalus concinnus,Asterigerinata mamilla,Triloculina trigo- nula, andElphidium punctatumand by the ostracods Semicytherura rarecostata, Loxoconcha ovulata, L.

rhomboidea,Aurila convexa, andXestoleberis com- munis. In Cluster B, the foraminiferal species Siphonaperta aspera, Quinqueloculina seminulum, Elphidium macellum,and the ostracodsUrocythereis margaritiferaandPontocythere turbidacharacterized the assemblages.Our results show that the anthro- pogenic impact in the infralittoral zone of the Gulf of Pozzuoli, recorded in the geochemical accumulation (v. Table9), was not reflected by diversity indices of the calcareous meiofaunal assemblages. The present findings were compared with the results of a previous study by Moncharmont (1964), based on a sampling carried out in 1961 by Harbans S. Puri and the Stazione Zoologica Anton Dohrn, where the charac- teristic species of the infralittoral zone wereAmmonia beccarii,A. mamilla,C. lobatulus and T. concinnus Table3continued SamplesTP1—1TP1—2TP2—1TP2—2TP2—3TP3—1TP3—2TP3—3TP4—1TP4—2TP5—1 UvigerinamediterraneaHofker,19320.24 Valvulineriacomplanata(d’Orbigny,1846)0.300.520.43 Vertebralinastriatad’Orbigny,18262.862.051.190.260.741.52 Wiesnerellaauriculata(Egger,1895)0.340.600.240.690.43

(11)

Table4Ostracodabsoluteabundance[I(MNI)=minimalnumberofindividualsper100gofsediment];jindicatesjuvenilespecimens SamplesTP1— 1TP1— 2TP2— 1TP2— 2TP2— 3TP3— 1TP3— 2TP3— 3TP4— 1TP4— 2 Aglaiocypriscomplanata(Brady&Robertson,1869)1664jj ArgilloeciaminorMu¨ller,1894832 Aurilaconvexa(Baird,1850)16j32j32j32j48j48j32j8j AurilaprasinaBarbeito-Gonzalez,197148j Aurilaspeyeri(Brady,1858)48j Callistocytherecrispata(Brady,1868)8j32jj64j16j48j8j8 Callistocythereflavidofusca(Ruggieri,1950)848j4848j Callistocytherelobiancoi(Mu¨ller,1894)64j32j Callistocythereaff.C.protractaRuggieri&D’Arpa,19938 Carinocythereiscarinata(Roemer,1838)jj64j Carinocythereiswhitei(Baird,1850)24j128j192j128j32j32j816j Cistacythereisturbida(Mu¨ller,1894)32j64j128j32j112jj8j Costabatei(Brady,1866)32j1648j8 Costaedwardsii(Roemer,1838)83216j Cyprideistorosa(Jones,1850)j32jj CytherettaadriaticaRuggieri,1952j4j8j40j Cytherettasubradiosa(Roemer,1838)16132j48j64j1632j CytherideaneapolitanaKollmann,1960j CytheroisfrequensMu¨ller,18948224j96jj8 CytheroisjoachinoiBarra,199232 Cytheroisaff.C.nigerSchornikov,196516 Cytheroisaff.C.ponticaMarinov,19668j CytheroistriangularisBonaduce,Masoli,Minichelli&Pugliese, 197932j32j16jjj CytheroisuffenordeiRuggieri,197480j544j64j16j64j16 Cytheroissp.1328 CytheromavariabilisMu¨ller,189432 CytheropteronlatumMu¨ller,18948 ‘‘Elofsonia’minima(Bonaduce,CiampoandMasoli,1976)32j32j1624jj EucytheruragibberaMu¨ller,1894488 HemicytheruradefioreiRuggieri,19531632j64j80488 Hemicytheruravidens(Mu¨ller,1894)8j32j3216168

(12)

Table4continued SamplesTP1— 1TP1— 2TP2— 1TP2— 2TP2— 3TP3— 1TP3— 2TP3— 3TP4— 1TP4— 2TP5— 1 HeterocythereisvoraginosaAthersuch,1979j Leptocytherelevis(Mu¨ller,1894)8 LeptocytheremacellaRuggieri,19753216j16j Leptocythereramosa(Rome,1942)16 Loxocaudadecipiens(Mu¨ller,1894)16 Loxoconchaaffinis(Brady,1866)136j608j96j56j40j LoxoconchaconcentricaBonaduce,Ciampo&Masoli,197632 Loxoconchaovulata(Costa,1853)160j256j208j112j208j16j Loxoconcharhomboidea(Fischer,1855)64j64j51296j144j112j16j2j LoxoconchastelliferaMu¨ller,18948j32j116j8 Macrocyprinasuccinea(Mu¨ller,1894)3216 MicrocytheredepressaMu¨ller,1894832j MicrocytherehiansMu¨ller,18948j Microcythere?raraMu¨ller,189432 MicrocytherevitreaBonaduce,Ciampo&Masoli,1976j Microcytherurafulva(Brady&Robertson,1874)16j16j MicrocytheruranigrescensMu¨ller,189432j32j64j16j32j24j ‘‘Microcytherura’sp.18j MicroxestoleberisnanaMu¨ller,1894161681j Microxestoleberissp.32 Neocytherideissubulata(Brady,1868)8j64166416j Neonesideamediterranea(Mu¨ller,1894)j32j16jj161j Palmoconchasubrugosa(Ruggieri,1977)32j32jj16j Palmoconchaturbida(Mu¨ller,1894)64 ParacytherideapauliiDubowsky,1939128j32j64j16j104j48j Paracytherideatriquetra(Reuss,1850)64j384j32j48j8j40j1 ParacytheroisagigensisCaraion,196332 Paracytheroisflexuosa(Brady,1867)16 ParadoxostomaatrumMu¨ller,1894328 ParadoxostomaacuminatumMu¨ller,18946464 ParadoxostomaangustumMu¨ller,18948 ParadoxostomacaecumMu¨ller,18943216

(13)

Table4continued SamplesTP1— 1TP1— 2TP2— 1TP2— 2TP2— 3TP3— 1TP3— 2TP3— 3TP4— 1TP4— 2 ParadoxostomaparallelumMu¨ller,18948 Paradoxostomaaff.P.rotundatumMu¨ller,189432 ParadoxostomasimileMu¨ller,189432 ParadoxostomatristeMu¨ller,189432j321616 Phlyctocytherepellucida(Mu¨ller,1894)1616 PolycopereticulataMu¨ller,189416 Pontocyprisacuminata(Mu¨ller,1894)32j Pontocyprisfrequens(Mu¨ller,1894)16j Pontocyprisobtusa(Mu¨ller,1894)j PontocyprispellucidaMu¨ller,189416 Pontocyprisaff.P.pellucidaMu¨ller,189432j Pontocythereturbida(Mu¨ller,1894)16j164j16j1216j176j24j32j ProcytherideisretiferaRuggieri,197864j3211104 Procytherideissubspiralis(Brady,Crosskey&Robertson,1874)8j16 Propontocyprisintermedia(Brady,1868)1664j160jjj8j Propontocyprisrara(Mu¨ller,1894)j Propontocyprissubfusca(Mu¨ller,1894)48j Propontocyprissuccinea(Mu¨ller,1894)jj1 Propontocyprissp.11j PseudocytherurastrangulataRuggieri,19918 Pseudopsammocytherereniformis(Brady,1868)160j32jj Pterygocythereisjonesii(Baird,1850)16j80 Sagmatocytherenapoliana(Puri,1963)16j32jj16j32j16j Sagmatocythereversicolor(Mu¨ller,1894)48j32j Sahnicythereretroflexa(Klie,1936)1672j Sclerochilus?aequusMu¨ller,1894832 SclerochilusgewemuelleriDubowsky,19398 SclerochiluslevisMu¨ller,189432jj Semicytheruraacuta(Mu¨ller,1912)328j32j Semicytheruraacuticostata(Sars,1866)64j3264j112j1616 SemicytheruraaliferaRuggieri,195916128j32j164816 Semicytheruracostata(Mu¨ller,1894)8

(14)

Table4continued SamplesTP1— 1TP1— 2TP2— 1TP2— 2TP2— 3TP3— 1TP3— 2TP3— 3TP4— 1TP4— 2TP5— 1 Semicytheruradispar(Mu¨ller,1894)1632321624 Semicytheruraincongruens(Mu¨ller,1894)8160j352j48j112j48j Semicytherurainversa(Seguenza,1880)40jjj128j8j8j1 Semicytheruraparadoxa(Mu¨ller,1894)8j32j32j16j8 Semicytherurapunctata(Mu¨ller,1894)162416 Semicytheruraquadridentata(Hartmann,1953)1632j32jj168 SemicytherurararecostataBonaduce,Ciampo&Masoli,197664320j64j304j4176j192j168j Semicytherurareticulata(Mu¨ller,1894)8 SemicytherurarobustaBonaduce,Ciampo&Masoli,197664j80j Semicytheruraruggierii(Pucci,1955)48j32j324816 Semicytherurasimplex(Brady&Norman,1889)16 Semicytheruraaff.S.slavonicaKrstic

´,

19838 Semicytherurasulcata(Mu¨ller,1894)1624j SemicytheruratergestinaMasoli,19683248j Tenedocythereprava(Baird,1850)32jj32432j16 Triebelinararipila(Mu¨ller,1894)8j1 Tuberoloxococnchatuberosa(Hartmann,1954)8 UrocythereisilariaeAiello,Barra&Parisi,201664j Urocythereismargaritifera(Mu¨ller,1894)56j32j6jj16j64j161 Urocythereisschulzi(Hartmann,1958)8j XestoleberiscommunisMu¨ller,189416j192j64j48j64j16j16j16jj XestoleberisdecipiensMu¨ller,18948j XestoleberisdisparMu¨ller,189424j192j224j64jj80j16j16j1j Xestoleberisaff.X.labiataBrady&Robertson,1874j XestoleberismargaritopsisRome,194216 XestoleberispellucidaMu¨ller,18948 Xestoleberisaff.X.pellucidaMu¨ller,189488 Xestoleberiscf.X.perminimaNeviani,19288

Referenzen

ÄHNLICHE DOKUMENTE

As those groups have declined in the face of the rise of the Islamic State and the power of the Syrian regime, Qatari and Saudi influence in Syria has decreased, leaving both

The rise of the Gulf States as regional powers with international reach poses new challenges for policy-making in the Middle East and North Africa as the region emerges

Recent months have witnessed key developments: after Hezbollah publically declared in April and May that its members were fighting in Syria with Assad’s forces,

At the second dichotomy the stations south of the 70-m depth contour were divided along the 30-m depth contour into those with coarser sediment mainly shallower than 30 m (group 1,

Hence, in this paper, we limit our analysis to the health of workers and we investigate the effect of a measure of social relations, meetings with friends, on three

In comparison to the analysis described before, on fine sand were further divided into stations on muddv the assemblages of the northern and central North Sea fine sand

In ogni caso, non può non essere rilevato come l’efficacia del- l’approccio LEADER nella programmazione 2007-2013, più che dalla dotazione delle risorse pubbliche (che come

In speciation driven by divergent ecological or sexual selection, extrinsic and prezygotic forms of isolation 1324. evolve first, and often interact, to