• Keine Ergebnisse gefunden

Equivariant Yamabe problem and Hebey-Vaugon conjecture

N/A
N/A
Protected

Academic year: 2022

Aktie "Equivariant Yamabe problem and Hebey-Vaugon conjecture"

Copied!
12
0
0

Wird geladen.... (Jetzt Volltext ansehen)

Volltext

(1)

Universit¨ at Regensburg Mathematik

Equivariant Yamabe problem and Hebey-Vaugon conjecture

Farid Madani

Preprint Nr. 12/2011

(2)

FARIDMADANI

Abstrat. IntheirstudyoftheYamabeprobleminthepreseneofisometry

group,E.HebeyandM.Vaugonannounedaonjeture. Thisonjeturegen-

eralizesT.Aubin'sonjeture,whihhasalreadybeenprovenandissuient

to solvethe Yamabeproblem. Inthispaper,wegeneralizeAubin'stheorem

andweprovetheHebeyVaugononjetureinsomenewases.

1. Introdution

Let

(M, g)

be a ompat Riemannian manifold of dimension

n ≥ 3

. Denote by

I(M, g)

,

C(M, g)

and

R g

theisometrygroup,theonformaltransformationsgroup and thesalarurvature,respetively. Let

G

beasubgroupoftheisometrygroup

I(M, g)

. E.HebeyandM.Vaugon[5℄onsideredthefollowingproblem:

HebeyVaugonproblem.Istheresome

G −

invariantmetri

g 0

whih minimizes

the funtional

J (g ) = R

M R g dv(g ) ( R

M dv(g )) n− n 2

where

g

belongstothe

G −

invariant onformal lass ofmetris

g

denedby:

[g] G := { g ˜ = e f g/f ∈ C (M ), σ ˜ g = ˜ g ∀ σ ∈ G }

Thepositiveanswerwouldhavetwoonsequenes. Therstisthatthereexistsan

I(M, g) −

invariantmetri

g 0

onformalto

g

suh that thesalarurvature

R g 0

is

onstant. Theseondisthat theA.Lihnerowiz's onjeture[7℄, statedbelow,is

true. BytheworksofJ.Lelong-Ferrand[6℄andM.Obata[9℄,weknowthatif

(M, g)

is notonformalto

(S n , g can )

(the unit sphere endowed with its standardmetri

g can

), then

C(M, g)

is ompat and there exists a onformalmetri

g

to

g

suh

that

I(M, g ) = C(M, g)

. This impliesthat therst onsequeneis equivalentto

the

A.Lihnerowizonjeture. Foreveryompat Riemannianmanifold

(M, g)

whihisnotonformaltotheunitsphere

S n

endowedwithitsstandardmetri,there

exists ametri

˜ g

onformal to

g

for whih

I(M, ˜ g) = C(M, g)

,andthe salar ur-

vature

R ˜ g

isonstant.

TosuhmetrisorrespondfuntionswhihareneessarilysolutionsoftheYamabe

equation. Inotherwords,if

˜ g = ψ n−2 4 g

,

ψ

isa

G −

invariantsmoothpositivefuntion

then

ψ

satises

4(n − 1)

n − 2 ∆ g ψ + R g ψ = R g ˜ ψ n− n+2 2 .

1991MathematisSubjetClassiation. 53A30,53C21,35J20.

Key words and phrases. Conformal metri; Isometry group; Salar urvature; Yamabe

problem.

(3)

The lassial Yamabe problem, whih onsists to nd a onformal metri with

onstant salar urvature on a ompat Riemannian manifold, is the partiular

aseof theproblemabovewhen

G = { id }

. Denote by

O G (P )

theorbitof

P ∈ M

under

G

,

W g

theWeyltensorassoiatedtothemanifold

(M, g)

and

ω n

thevolume

oftheunit sphere

S n

. Wedenetheinteger

ω(P )

atthepoint

P

as

ω(P ) = inf { i ∈ N / k∇ i W g (P ) k 6 = 0 } (ω(P ) = + ∞

if

∀ i ∈ N , k∇ i W g (P ) k = 0)

HebeyVaugon onjeture. Let

(M, g)

bea ompat Riemannian manifold of

dimension

n ≥ 3

and

G

be a subgroup of

I(M, g)

. If

(M, g)

is not onformal to

(S n , g can )

or if the ation of

G

has no xed point, then the following inequality

holds

(1)

inf

g ∈[g] G J (g ) < n(n − 1)ω 2/n n ( inf

Q∈M cardO G (Q)) 2/n

Remarks1.1. (1) ThisonjetureisthegeneralizationoftheformerT.Aubin's

onjeture[1℄fortheYamabeproblemorrespondingto

G = { id }

,wherethe

onstant in the right side of the inequality isequal to

inf g ∈[g can ] J(g )

for

S n

. In thisase, the onjetureisompletely proved.

(2) Theinequalityisobviousif

inf g ∈[g] G J (g )

isnonpositive,itistheasewhen thereexistsaYamabemetri withnonpositive salar urvature.

(3) Iffor any

Q ∈ M

,

cardO G (Q) = + ∞

thenthis onjetureisalso obvious.

Theonlyresultsknownaboutthisonjeturearegivenin thefollowingtheorem:

Theorem 1.1 (E.Hebeyand M.Vaugon). Let

(M, g)

be a smooth ompat Rie-

mannian manifoldof dimension

n ≥ 3

and

G

beasubgroup of

I(M, g)

. Wealways

have :

g inf ∈[g] G J(g ) ≤ n(n − 1)ω n 2/n ( inf

Q∈M cardO G (Q)) 2/n

andinequality (1) holdsifone ofthe following itemsissatised.

(1) Theationof

G

on

M

isfree

(2)

3 ≤ dim M ≤ 11

(3) Thereexistsapoint

P

withminimalorbit(nite)under

G

suhthat

ω(P ) >

(n − 6)/2

or

ω(P ) ∈ { 0, 1, 2 }

.

Thease

ω = 3

wasstudiedbyA.Rauzy (privateommuniations).

Inthisproveweprovethefollowingresults:

Maintheorem.TheHebeyVaugononjetureholdsifthereexistsapoint

P ∈ M

with minimal orbit(nite)for whih

ω(P ) ≤ 15

orif the degreeof theleading part

of

R g

isgreateror equalto

ω(P ) + 1

,in theneighborhoodof thispoint

P

.

Corollary 1.1. HebeyVaugon onjeture holds for every smooth ompat Rie-

mannian manifold

(M, g)

of dimension

n ∈ [3, 37]

.

To provethe main theorem, we need to onstrut a

G −

invariant test funtion

φ

suhthat

I g (φ) < n(n − 1)ω 2/n n ( inf

Q∈M cardO G (Q)) 2/n

Thus,allthediultiesareintheonstrutionofasuhfuntion. Forsomeases,

we anuse the test funtions onstruted by T. Aubin [1℄ and R. Shoen [10℄ in

(4)

M. Vaugon[5℄. Butthe item3,presentedin Theorem 1.1,usestest funtions dif-

ferentthanT.AubinandR.Shoenones.

WemultiplyT.Aubin'stestfuntion

u ε,P

byafuntionasfollows:

(2)

ϕ ε (Q) = (1 − r ω+2 f (ξ))u ε,P (Q)

(3)

u ε,P (Q) =

 

  ε

r 2 + ε 2 n− 2 2

− ε

δ 2 + ε 2 n− 2 2

if

Q ∈ B P (δ)

0

if

Q ∈ M − B P (δ)

for all

Q ∈ M

, where

r = d(Q, P )

is thedistane between

P

and

Q

.

(r, ξ j )

is a

geodesioordinatessystemintheneighborhoodof

P

and

B P (δ)

isthegeodesiball

ofenter

P

withradius

δ

xedsuientlysmall.

f

isafuntiondependingonlyon

ξ

,

hosensuhthat

R

S n− 1 f dσ = 0

. Withoutlossofgenerality,wesupposethatinthe oordinatessystem

(r, ξ j )

wehave

det g = 1 + o(r m )

for

m ≫ 1

. Infat,E.Hebey

and M.Vaugonprovedthat thereexists

g ˜ ∈ [g] G

for whih

det ˜ g = 1 + o(r m )

and

inf g ∈[g] G J (g )

doesnotdependontheonformal

G −

invariantmetri.

2. Computationof

R

M R g ϕ 2 ε dv

Letbe

I a b (ε) = Z δ/ε

0

t b

(1 + t 2 ) a dt

and

I a b = lim

ε→0 I a b (ε)

then

I a 2a−1 (ε) = log ε −1 + O(1)

. If

2a − b > 1

then

I a b (ε) = I a b + O(ε 2a−b−1 )

andby

integrationbyparts,weestablishthefollowingrelationships:

(4)

I a b = b − 1

2a − b − 1 I a b−2 = b − 1

2a − 2 I a−1 b−2 = 2a − b − 3

2a − 2 I a−1 b , 4(n − 2)I n n+1 (I n n−2 ) (n−2)/n = n

Using the inequality

(a − b) β ≥ a β − βa β−1 b

for

0 < b < a

, wehave for

β ≥ 2

,

0 ≤ α < (n − 2)(β − 1) − n

(5)

Z

M

r α u β ε,P dv = ω n−1 I (n−2)β/2 α+n−1 ε α+n−β(n−2)/2 + O(ε n−2 )

This integralappearsfrequentlyinthefollowingomputations,anditallowsusto

neglet the onstant term in the expression of

u ε

, when we hoose

δ

suiently

small and

ε

smallerthan

δ

.

Denote by

I g

theYamabefuntional denedforall

ψ ∈ H 1 (M )

by

(6)

I g (ψ) = Z

M |∇ g ψ | 2 dv + (n − 2) 4(n − 1)

Z

M

R g ψ 2 dv

k ψ k −2 N

where

N = 2n/(n − 2)

and

∇ g

isthegradientofthemetri

g

.

The seond integral of the funtional

I g

with the salar urvature term needs a

speial onsideration. Let

µ(P)

beanintegerdened asfollows:

|∇ β R g (P ) | = 0

forall

| β | < µ(P )

andthereexists

γ ∈ N µ(P)

suhthat

|∇ γ R g (P ) | 6 = 0

then

R g (Q) = ¯ R + O(r µ(P)+1 )

where

R ¯ = r µ(P) P

|β|=µ ∇ β R g (P )ξ β

isahomogeneouspolynomialofdegree

µ(P)

,

the

β

aremulti-indies.

Forsimpliity,wedroptheletter

P

in

ω(P)

and

µ(P )

.

(5)

Lemma 2.1.

µ ≥ ω

,

g ij = δ ij + O(r ω+2 )

and

R ¯

S(r) R g = O(r 2ω+2 )

whih implies

that

R

S(r) Rdσ ¯ = 0

when

µ < 2ω + 2

¯ R

denotestheaverage. Then

Z

M

R g ϕ 2 ε dv = Z

M

R g u 2 ε,P dv − 2 Z

M

f u 2 ε,P R g r ω+2 dv + Z

M

f 2 u 2 ε,P R g r 2ω+4 dv

= ε 2ω+4 ω n−1

¯ Z

S(r)

r −2ω−2 R g dσI n−2 n+2ω+1 (ε) − 2ε ω+µ+4 I n−2 ω+µ+n+1 (ε)ω n−1

¯ Z

S(r)

r −µ f (ξ) ¯ Rdσ(ξ) + O(ε n−2 )

(7)

MoreoverT.Aubin[2℄provedthat:

Theorem2.1. If

µ ≥ ω + 1

thenthere exists

C(n, ω) > 0

suhthat

¯ Z

S n− 1 (r)

Rdσ = C(n, ω)( − ∆ g ) ω+1 R(P )r 2ω+2 + o(r 2ω+2 ) ( − ∆ g ) ω+1 R(P )

isnegative. Then

I g (u ε,P ) < n(n−2) 4 ω 2/n n−1

.

Fromnowuntiltheendofthissetion,wemaketheassumptionthat

µ = ω

. Now,

wereallsomeresultsobtainedbyT.Aubin inhispapers[3,4℄:

R ¯

ishomogeneouspolynomialofdegree

ω

then

∆ E R ¯

ishomogeneousofdegree

ω − 2

and

∆ E R ¯ = r −2 (∆ s R ¯ − ω(n + ω − 2) ¯ R)

where

∆ E

istheEulideanLaplaianand

∆ s

istheLaplaianonthesphere

S n−1

.

k−1 E R ¯

ishomogeneousofdegree

ω − 2k + 2

and

k E R ¯ = r −2 (∆ s − ν k id)∆ k−1 E R ¯ = r −2k

k

Y

p=1

(∆ S − ν p id) ¯ R

with

(8)

ν k = (ω − 2k + 2)(n + ω − 2k)

The sequeneof integers

(ν k ) {1≤k≤[ω/2]}

is dereasing. It willplaytherole of the

eigenvaluesoftheLaplaianonthesphere

S n−1

. It isknownthat theeigenvalues of the geometri Laplaian are non-negative and inreasing. Our

ν k

are in the

oppositeorder.

WeknowbyT.Aubin'spaper[2℄that

[ω/2] E R ¯ = 0

and

R

S(r) Rdσ ¯ = 0

,then

q = min { k ∈ N /∆ k E R ¯ = 0 }

is well dened and

r −ω R ¯ ∈ L q

k=1 E k

, with

E k

the eigenspae assoiated to the

positiveeigenvalues

ν k

oftheLaplaian

∆ s

onthesphere

S n−1

. If

j 6 = k

,then

E k

isorthogonalto

E j

,forthestandardsalarprodutin

H 1 2 (S n−1 )

. Moreover,sine

R Rdσ ¯ = 0

thereexist

ϕ k ∈ E k

(eigenfuntionsof

∆ s

)suhthat

(9)

R ¯ = r ω ∆ s

q

X

k=1

ϕ k = r ω

q

X

k=1

ν k ϕ k

AordingtoLemma 2.1,weansplit themetri

g

inthefollowingway:

(10)

g = E + h

(6)

where

E

is the Eulidean metri and

h

is a symmetri 2-tensor dened in our

geodesioordinatessystemby

(11)

h ij = r ω+2 ¯ g ij + r 2(ω+2) g ˆ ij + ˜ h ij

and

h ir = h rr = 0

where

¯ g

,

g ˆ

and

h ˜

are symmetri2-tensorsdened onthesphere

S n−1

. Wedenote

by

s

the standard metri on the sphere,

,

are the assoiated gradient and

Laplaianon

S n−1

. Bystraightforwardomputations, Aubin[3℄provedthat:

Lemma2.2.

R ¯ = ∇ ij ¯ g ij r ω

and

¯ Z

S n− 1 (r)

Rdσ = [B/2 − C/4 − (1 + ω/2) 2 Q]r 2(ω+1) + o(r 2(ω+1) )

where

B = ¯ R

S n− ∇ i 1 g ¯ jk ∇ j ¯ g ik dσ

,

C = ¯ R

S n− ∇ i 1 g ¯ jk ∇ i g ¯ jk dσ

and

Q = ¯ R

S n− 1 g ¯ ij ¯ g ij

Forfurther detailsreferto [8℄.

Theintegrals

Q

,

B

and

C

aregivenintermsofthetensor

g ¯

. Ourgoalistoompute

them usingtheeigenfuntions

ϕ k

above. Letusdene

b ij =

q

X

k=1

1

(n − 2)(ν k + 1 − n) [(n − 1) ∇ ij ϕ k + ν k ϕ k s ij ]

and

a ij

suh that

¯ g ij = a ij + b ij

then,aordingto(9),wehekthat

(12)

R ¯ = ¯ R b = ∇ ij b ij r ω

and

R ¯ a = ∇ ij a ij r ω = 0

If

g ¯ ij = a ij

then

R ¯ = ¯ R a = 0

and

µ ≥ ω + 1

. ByTheorem2.1

¯ Z

S n−1 (r)

Rdσ = Z ¯

S n−1 (r)

R a dσ < 0

If

g ¯ ij = b ij

then

¯ Z

S n− 1 (r)

Rdσ = Z ¯

S n− 1 (r)

R b dσ = [B b /2 − C b /4 − (1 + ω/2) 2 Q b ]r 2(ω+1) + o(r 2(ω+1) )

where

B b

,

C b

and

Q b

are thesameintegralsdened in Lemma 2.2when theon-

sideredtensor

g ¯ ij = b ij

. Weomputethemintermsof

ϕ k

Q b = Z ¯

S n− 1

¯ b ij ¯ b ij dσ = n − 1 n − 2

q

X

k=1

ν k

ν k − n + 1

¯ Z

S n− 1

ϕ 2 k

B b = − (n − 1)Q b +

q

X

k=1

ν k

¯ Z

S n− 1

ϕ 2 k

C b = − (n − 1)Q b + n − 1 n − 2

q

X

k=1

ν k

¯ Z

S n− 1

ϕ 2 k

Tondtheseexpressions,weusedseveraltimestheidentity

i b ij = − P q

k=1 ∇ j ϕ k

and Stokesformula (more detailsare given in [3,4℄ and [8℄). Inthe generalase,

wededuethat

Lemma2.3. If

µ = ω

and

g ¯ ij = a ij + b ij

,where

b ij

isdenedabove,

(13)

¯ Z

S n − 1 (r)

Rdσ = Z ¯

S n − 1 (r)

R a + R b dσ ≤ [B b /2 − C b /4 − (1 + ω/2) 2 Q b ]r 2(ω+1) + o(r 2(ω+1) )

and

(14)

B b /2 − C b /4 − (1 + ω/2) 2 Q b =

q

X

k=1

u k

¯ Z

S n − 1

ϕ 2 k

(7)

with

(15)

u k =

n − 3

4(n − 2) − (n − 1) 2 + (n − 1)(ω + 2) 2 4(n − 2)(ν k − n + 1)

ν k

u k

isobtainedusingtheexpressionsof

Q b

,

B b

and

C b

above.

3. Generalization of T.Aubin's theorem

Theorem3.1. Ifthereexists

P ∈ M

suhthat

ω(P) ≤ (n − 6)/2

thenthereexists

f ∈ C (S n−1 )

withvanishingmeanintegral suhthat

I g (ϕ ε ) < n(n − 2) 4 ω n−1 2/n

The ase

ω = 0

of thethistheorem hasalreadybeenprovenby T.Aubin [1℄. He

alsoprovedthetheoremwhen

µ ≥ ω + 1

(seeTheorem2.1).

Fromnowuntiltheendofthispaper,wedroptheletter

P

in

ω(P)

and

µ(P)

.

Proof. If

µ ≥ ω + 1

thentheinequalityholdsbyTheorem2.1. Sowesupposethat

µ = ω

until theend of theproof. Westartby omputingthe rstintegralof the

Yamabefuntional(6)with

ψ = ϕ ε

. Usingformula

|∇ g ϕ ε | 2 = (∂ r ϕ ε ) 2 +r −2 |∇ s ϕ ε | 2

,

weobtain:

Z

M |∇ g ϕ ε | 2 dv = Z

M |∇ g u ε,P | 2 dv + Z δ

0

[∂ r (r (ω+2) u ε,P )] 2 r n−1 dr Z

S n− 1

f 2 dσ+

Z δ 0

u 2 ε,P r n+2ω+1 dr Z

S n− 1

|∇ f | 2

Thesubstitution

t = r/ε

gives

(16)

Z

M |∇ g ϕ ε | 2 dv = (n − 2) 2 ω n−1 I n n+1 (ε) + ε 2ω+4 Z

S n−1

|∇ f | 2 dσI n−2 2ω+n+1 (ε)+

Z

S n− 1

f 2 dσ[(ω − n+4) 2 I n 2ω+n+5 (ε)+2(ω+2)(ω − n+4)I n 2ω+n+3 (ε)+(ω+2) 2 I n 2ω+n+1 (ε)]

For

k ϕ ε k −2 N

, weneedto omputetheTaylorexpansionof:

ϕ N ε (Q) = [1 − N r ω+2 f (ξ) + N (N − 1)

2 r 2ω+4 f 2 (ξ) + o(r 2ω+4 )]u N ε,P

Usingthefat that

R

S n− 1 f dσ(ξ) = 0

andformula(5),weonludethat

k ϕ ε k N N =

Z δ 0

Z

S n−1

[1 + N(N − 1)

2 r 2(ω+2) f 2 (ξ) + o(r 2ω+4 )]r n−1 u N ε,P drdσ(ξ)

= ω n−1 I n n−1 + N (N − 1) 2 ε 2(ω+2)

Z

S n− 1

f 2 dσI n 2ω+n+3 + o(ε 2ω+4 )

then

(17)

k ϕ ε k −2 N = (ω n−1 I n n−1 ) −2/N 1

− (N − 1)ε 2(ω+2) Z

S n−1

f 2 dσI n 2ω+n+3 /(ω n−1 I n n−1 ) + o(ε 2ω+4 )

ByEqs(16),(17) ,(7)andtherelationship(4),if

n > 2ω + 6

then:

(8)

I g (ϕ ε ) = n(n − 2)

4 ω 2/n n−1 + (ω n−1 I n n−1 ) −2/N I n−2 n+2ω+1 ε 2ω+4 × (n − 2)ω n−1

4(n − 1)

¯ Z

S(r)

r −2ω−2 R g dσ − n − 2 2(n − 1)

Z

S n− 1

f (ξ) ¯ Rdσ + Z

S n− 1

|∇ f | 2 dσ+

− n(n − 2) 2 − (ω + 2) 2 (n 2 + n + 2) (n − 1)(n − 2)

Z

S n− 1

f 2

+ o(ε 2ω+4 )

If

n = 2ω + 6

then

I g (ϕ ε ) = n(n − 2)

4 ω 2/n n−1 + (ω n−1 I n n−1 ) −2/N ε 2ω+4 log ε −1 × (n − 2)ω n−1

4(n − 1)

¯ Z

S(r)

r −2ω−2 R g dσ − n − 2 2(n − 1)

Z

S n− 1

f (ξ) ¯ Rdσ+

Z

S n− 1

|∇ f | 2 dσ + (ω + 2) 2 Z

S n− 1

f 2

+ O(ε 2ω+4 )

Forfurther detailsreferto [8℄.

Let

I S

be the funtional dened for a funtion

f

on the sphere

S n−1

, with zero

meanintegral,by

I S (f ) = Z ¯

S n − 1

4(n − 1)(n − 2) |∇ f | 2 − [4n(n − 2) 2 − 4(ω + 2) 2 (n 2 + n + 2)]f 2 +

− 2(n − 2) 2 f Rdσ ¯

This impliesthat if

n > 2ω + 6

(18)

I g (ϕ ε ) = n(n − 2)

4 ω n−1 2/n + ω n−1 2/n I n−2 n+2ω+1 ε 2ω+4 4(n − 1)(n − 2)(I n n−1 ) 2/N × { (n − 2) 2 Z ¯

S(r)

r −2ω−2 R g dσ + I S (f ) } + o(ε 2ω+4 )

andif

n = 2ω + 6

(19)

I g (ϕ ε ) = n(n − 2)

4 ω n−1 2/n + ω n−1 2/n I n−2 n+2ω+1 ε 2ω+4 log ε −1 4(n − 1)(n − 2)(I n n−1 ) 2/N × { (n − 2) 2 Z ¯

S(r)

r −2ω−2 R g dσ + I S (f ) } + O(ε 2ω+4 )

Notie that if

k 6 = j

then

I S (ϕ k + ϕ j ) = I S (ϕ k ) + I S (ϕ j )

. Indeed,

ϕ k

and

ϕ j

are

orthogonalforthestandardsalarprodutin

H 1 2 (S n−1 )

.

I S (c k ν k ϕ k ) =

d k c 2 k − 2(n − 2) 2 c k ν k 2 Z ¯

S n−1

ϕ 2 k

= − (n − 2) 4 d k

ν k 2 Z ¯

S n− 1

ϕ 2 k

where

d k = 4[(n − 1)(n − 2)ν k − n(n − 2) 2 + (ω + 2) 2 (n 2 + n + 2)]

and

c k = (n − 2) 2

d k

(9)

Using (8) , weanhekeasily that

d k

is positiveforany

1 ≤ k ≤ [ω/2]

. Now,let

us onsider

f = P q

1 c k ν k ϕ k

. Then

I S (f ) = −

q

X

1

(n − 2) 4 d k

ν 2 k Z ¯

S n− 1

ϕ 2 k

andbyLemma 2.3

(n − 2) 2 Z ¯

S(r)

r −2ω−2 R g dσ + I S (f ) ≤

q

X

1

(u k (n − 2) 2 − (n − 2) 4 d k

ν k 2 ) Z ¯

S n−1

ϕ 2 k dσ + o(1)

Thefollowinglemmaimpliesthat

I g (ϕ ε ) < n(n−2) 4 ω n−1 2/n

Lemma3.1. Forany

k ≤ q ≤ [ω/2]

the following inequality holds

u k − (n − 2) 2

d k

ν k 2 < 0

Proof. Realltheexpressionof

ν k

givenin(8). Thesequene

(U k )

denedby

U k := (ν k − n + 1)d k { (n − 2) u k

ν k − (n − 2) 3 d k

ν k }

is polynomial dereasing in

ν k

when

ν k ≥ 0

. In fat,

U k = P (ν k )

with

P

the

dereasingpolynomialin

R +

,dened by

P (x) = [(n − 1)(n − 2)x − n(n − 2) 2 + (ω + 2) 2 (n 2 + n + 2)] ×

[(n − 3)(x − n + 1) − (n − 1) 2 − (n − 1)(ω + 2) 2 ] − (n − 2) 3 (x 2 − (n − 1)x)

Thederivativeof

P

is

P (x) = − 2(n − 2)x − 2n(n − 2) 3 + 2(n 2 − 3n − 2)(ω + 2) 2

Byassumption

ω + 2 ≤ (n − 2)/2

then

P

isdereasingin

R +

. Hene

U k = P (ν k ) ≤ P (ν ω/2 ) = U ω/2

forall

k ≤ ω/2

. Iteasytohekthat

u ω/2

isnegativeso

U k ≤ U ω/2 < 0

.

4. Proof of the maintheorem

ByRemarks 1.1, we onsideronly thepositivease(i.e.,

inf g ′ ∈[g] G J(g ) > 0

)and

theasewhenthereexists

P ∈ M

suhthat

O G (P) = { P i } 1≤i≤m , m = cardO G (P ) = inf

Q∈M cardO G (Q), ω ≤ n − 6

2

and

P 1 = P

Let

ϕ ˜ ε,i

beafuntion denedasfollows:

(20)

ϕ ˜ ε,i (Q) = (1 − r ω+2 i f i (ξ))u ε,P i (Q)

where

r i = d(Q, P i )

,thefuntion

u ε,P i

isdenedasin(3)and

f i

isdenedby:

(21)

f i (Q) = cr i −ωω g R (P i ) (exp −1 P i Q, · · · , exp −1 P i Q)

exp P i

istheexponentialmap. Inageodesioordinatessystem

{ r, ξ j }

withorigin

P

,induedbytheexponentialmap

f 1 = cr −ω R ¯ = c

q

X

k=1

ν k ϕ k

where

R ¯

,

ϕ k

and

ν k

are denedin Setion2. Thus thefuntions

f i

aredened on

thesphere

S n−1

. Thehoieoftheonstant

c

isimportant.

(10)

Lemma 4.1. Suppose that

ω ≤ (n − 6)/2

. If

ω ∈ [3, 15]

orif

deg ¯ R ≥ ω + 1

then

thereexists

c ∈ R

suhthat the orresponding funtions

ϕ ˜ ε,i

satisfy :

(22)

I g ( ˜ ϕ ε,i ) < 1

4 n(n − 2)ω n 2/n

Remarks4.1. (1) Weprovedinequalityof thislemmafor any

ω ≤ (n − 6)/2

,

using test funtion

ϕ ε

(see Theorem 3.1 ). We notie that the dierene

between

ϕ ε

and

ϕ ˜ ε,i

isontheonstrutionoftheorrespondingfuntions

f

and

f i

respetively. From

ϕ ˜ ε,i

wedene a

G −

invariantfuntion (seeproof

ofthe maintheorem below), this property is notpossible with the funtion

ϕ ε

.

(2) For

ω = 16

and

n

suientlybig,weanhekthatforany

c ∈ R

,inequality (22)isfalse.

Proof. 1. If

deg ¯ R ≥ ω + 1

,thenbyTheorem2.1

I g (u ε,P i ) < n(n − 2)

4 ω n 2/n

It issuientto take

c = 0

,hene

ϕ ˜ ε,i = u ε,P i

.

2. If

deg ¯ R = ω

. UsingestimatesgivenintheproofofTheorem3.1(see(18),(19)),

itissuienttoshowthat thereexists

c ∈ R

suh that (23)

I S (f 1 ) + (n − 2) 2 Z ¯

S(r)

r −2ω−2 R g dσ r < 0

WekeepthenotationsusedintheproofofTheorem3.1. Thus

I S (f 1 ) =

q

X

k=1

I S (cν k ϕ k ) =

d k c 2 − 2(n − 2) 2 c ν k 2 Z ¯

S n− 1

ϕ 2 k

and

¯ Z

S(r)

r −2ω−2 R g dσ r =

q

X

k=1

u k

¯ Z

S n−1

ϕ 2 k

Toproveinequality(23) ,itissuienttoprovethat

(24)

∀ k ≤ q d k

2(n − 2) c 2 − (n − 2)c + (n − 2) u k

k 2 < 0

Theleftsideoftheinequalityaboveisaseonddegreepolynomialwithvariable

c

,

his disriminantis:

(25)

∆ k = (n − 2) 2 − d k u k

ν k 2

Using Lemma 3.1, wededuethat forany

k ≤ q

,

∆ k > 0

. Hene,thepolynomial

aboveadmitstwodierentrootsdenoted

x k < y k

andgivenby

x k = (n − 2) 2 − (n − 2) √

∆ k

d k

, y k = (n − 2) 2 + (n − 2) √

∆ k

d k

Inequality(24)holdsifandonlyif

(26)

q

\

k=1

(x k , y k ) 6 = ∅

Thesequene

(d k ) k≤[ω/2]

dereases. Itiseasytohekthat

(27)

∀ k < j ≤ [ ω

2 ] x k < y j

Hene intersetion(26)isnotemptyif

(28)

∀ k < j ≤ [ ω

2 ] x j < y k

(11)

Wealsohekthat if

ω

iseven,

u ω/2 < 0

,whihimplies

x ω/2 < 0

.

i.

If

ω = 3

then

q = 1

,intersetion aboveisnotempty. Itissuienttotake

c = (x 1 + y 2 )/2

.

ii.

If

ω = 4

then

k ∈ { 1, 2 }

,

x 2 < 0

(beause

u 2 < 0

)and

0 < x 1 < y 2

. Hene

intersetion

]x 1 , y 1 [ ∩ ]x 2 , y 2 [

isnotempty.

iii.

If

5 ≤ ω ≤ 15

,itissuienttoprove(28)whihisequivalenttoprovethat

(29)

∀ k < j ≤ [ ω

2 ] (n − 2)(d j − d k ) + d k p

∆ j + d j

p ∆ k > 0

Notiethat

∆ k

givenby(25)isarationalfrationin

n

. Bystraightforward omputations,wehekthat there existsreel numbers

a k , b k , e k , h k

and

s k

whih dependon

k

and

ω

suhthat

∆ k = a k n 2 + b k n + e k + h k

n − 2 + s k

ν k + 1 − n

(30)

p ∆ k > √ a k (n + b k

2a k

)

(31)

Inequality(29)holdsifweuse(31).

Theexpressions of thereel numbers aboveare known expliitly (weused

thesoftwareMaple to ompute them, see [8℄). Forsimpliity, we omitto

givetheseexpressions.

Proof of themain theorem. Theorbitof

P

under theationof

G

issupposed

to beminimal(i.e.

cardO G (P) = inf Q∈M cardO G (Q)

). Without lossof generality, wesupposethat

3 ≤ ω ≤ (n − 6)/2

,beauseif

ω > (n − 6)/2

or

ω ≤ 2

,weonlude

using Theorem1.1. Fromfuntions

ϕ ˜ ε,i

dened by(20),wedenethefuntion

φ ε

asfollows:

φ ε =

m

X

k=1

˜ ϕ ε,i

φ ε

is

G −

invariant. Infat,forany

σ ∈ G

,suhthat

σ(P i ) = P j

u ε,P i = u ε,P j ◦ σ

and

f i = f j ◦ σ f i

aredenedby(21),wededuethat

˜

ϕ ε,i = ˜ ϕ ε,j ◦ σ

The support of

ϕ ˜ ε,i

is inludedin the ball

B P i (δ)

. Wehoose

δ

suientlysmall

suhthat forallintegers

i 6 = j

in

[1, m]

,intersetion

B P j (δ) ∩ B P i (δ) = ∅

. Thus

I g (φ ε ) = (cardO G (P)) 2/n I g (ϕ ε )

ByLemma4.1,weonludethat

I g (φ ε ) < n(n − 2)

4 ω 2/n n−1 (cardO G (P )) 2/n

It remainsto notiethatif

˜ g = φ 4/(n−2) ε g

then

J(˜ g) = 4 n − 1

n − 2 I g (φ ε ) < n(n − 1)ω n−1 2/n (cardO G (P )) 2/n

where

ε

issuientlysmallerthan

δ

.

Proof of theCorollary 1.1. Supposethat theorbitof

P

undertheationof

G

isminimal (otherwisetheonjetureis obvious).

If

ω = ω(P) > [(n − 6)/2]

,weonludeusingTheorem 1.1.

If

ω ≤ [(n − 6)/2] ≤ 15

,weonludeusingmain theorem.

(12)

Referenes

1. T.Aubin, Équationsdiérentiellesnon linéaires et problème deYamabe,J.Math. Pureset

appl55(1976),269296.

2. ,Surquelquesproblèmesdeourburesalaire,J.Funt.Anal240(2006),269289.

3. ,Solution omplète de la

C 0

ompaitéde l'ensemble dessolutions de l'équation de Yamabe,J.Funt.Anal.244(2007),579589.

4. ,Onthe

C 0

ompatness ofthesetofthesolutionsoftheYamabeequation,Bull.Si.

Math(2008).

5. E.Hebey andM.Vaugon,Le problèmede Yamabe équivariant,Bull.Si.Math117(1993),

241286.

6. J.Lelong-Ferrand,Mém.Aad.RoyaleBelgique,ClassedesSienes39(1971).

7. A.Lihnerowiz,Surlestransformationsonformesd'unevariétériemannienneompate,C.

R.Aad.Si.Paris259(1964).

8. F.Madani,LeproblèmedeYamabeavesingularitésetlaonjeturedeHebeyVaugon,Ph.D.

thesis,UniversitéPierreetMarieCurie,2009.ArXiv:0910.0562.

9. M.Obata, Theonjetures on onformal transformations of riemannian manifolds, J.Di.

Geom.6(1971),247258.

10. R.Shoen,Conformaldeformation ofa riemannianmetritoonstantsalarurvature,J.

Dier.Geom20(1984),479495.

Institut de Mathématiques de Jussieu, Université Pierre et Marie Curie, Équipe:

d'AnalyseComplexeetGéométrie,175,rue Chevaleret,75013Paris,Frane.

E-mail address: madanimath.jussieu.fr

Referenzen

ÄHNLICHE DOKUMENTE

We propose a new approach t o the regulator design problem wich is based on the weak asymptotic stability theory for differential inclusions developed by Smirnov [3]..

Moreover if the set K is weakly convex then there exists a unique solution to (w,K,N~(*)). The first claim follows directly from the case c) of section 3 and Lemma 4.1. We

In the recent preprint [10] isoparametric hypersurfaces are used in order to obtain new metrics of constant scalar curvature in the conformal class of products of riemannian

This leads directly to a uniform positive lower bound for the smooth Yamabe in- variant of 2-connected manifolds that are boundaries of compact spin manifolds, see Corollary

The equivariant Yamabe problem an be for- mulated as follows: in the onformal lass of g , there exists a G− invariant.. metri with onstant

Die neue Art betriebswirtschaftlich geprägter Geschäftsführung hätte einen tiefen Einschnitt auf intellektueller und organisatorischer Ebene bedeutet, vor allem aber auch

effect LeftUp causes Spill if OnTable before ¬RightUp (6) effect RightUp causes Spill if OnTable before ¬LeftUp (7) effect LeftUp causes ¬OnTable if &gt; before ¬RightUp (8)

After we obtain the local existence in general, we prove the contact Yamabe flow exists for all time and tends to a solution of the contact Yamabe problem when the Yamabe invariant