• Keine Ergebnisse gefunden

Generation of Single Picosecond and Subpicosecond Light Pulses

N/A
N/A
Protected

Academic year: 2022

Aktie "Generation of Single Picosecond and Subpicosecond Light Pulses "

Copied!
4
0
0

Wird geladen.... (Jetzt Volltext ansehen)

Volltext

(1)

Generation of Single Picosecond and Subpicosecond Light Pulses

A . P e n z k o f e r , D . v o n d e r L i n d e , A . L a u b e r e a u , and W . K a i s e r Physik-Department der Technischen Universität München, Germany

(Received 31 January 1972)

Picosecond light pulses passing through a saturable absorber show considerable pulse shortening. F o r instance, under special favorable conditions the pulse duration was found to be reduced from 8 to 2. 6 psec in a single transit. Using a multiple-absorber-amplifier system, light pulses were shortened from 8 to 0. 7 psec in five transits. The shortest pulse seen in our experiments had a duration of less than 0. 5 psec. Calculations based on a two- level approximation of the absorbing medium agreed well with the experimental results.

T h e c o m m o n technique f o r g e n e r a t i n g p u l s e s of p s e c d u r a t i o n c o n s i s t s of mode l o c k i n g a N d : g l a s s l a s e r .1 S e r i o u s d i f f i c u l t i e s w e r e encountered when p u l s e s of a d u r a t i o n of 1 p s e c o r l e s s w e r e attempted by t h i s m e t h - o d . It w a s found that the p u l s e d u r a t i o n changes d r a s t i - c a l l y d u r i n g the c o u r s e of the p u l s e t r a i n2: A t the b e - ginning of the t r a i n , p u l s e s of s e v e r a l p s e c d u r a t i o n (~5 p s e c ) a r e g e n e r a l l y o b s e r v e d , w h i l e at the end of the t r a i n the p u l s e s d i s i n t e g r a t e w i t h s u b p i c o s e c o n d s u b - s t r u c t u r e .3,4 T w o techniques have been r e p o r t e d to g e n - e r a t e p u l s e s of s u b p i c o s e c o n d d u r a t i o n : (i) the o p t i c a l c o m p r e s s i o n of f r e q u e n c y - m o d u l a t e d p u l s e s .5 O n a c - count of the d i f f i c u l t y of a c c u r a t e l y adjusting the c o m - p r e s s i o n to the c h i r p , the shape and peak p o w e r of the generated p u l s e s a r e quite u n c e r t a i n : ( i i ) the p u l s e s h o r t e n i n g through the t r a n s i e n t s t i m u l a t e d R a m a n ef- fect. 6 T h i s s y s t e m w o r k s w i t h the whole t r a i n of p u l s e s ; i t h a s to a w a i t f u r t h e r i n v e s t i g a t i o n s .

In t h i s l e t t e r w e w i s h t o p r e s e n t t h e o r e t i c a l and e x p e r i - m e n t a l i n v e s t i g a t i o n s of the s h o r t e n i n g of s i n g l e p s e c l i g h t p u l s e s u s i n g s a t u r a b l e a b s o r b e r s of l o w t r a n s m i s - s i o n i n conjunction w i t h s t a n d a r d l a s e r a m p l i f i e r s . F i r s t , the p u l s e s h o r t e n i n g i n a s i n g l e p a s s through a s a t u r a b l e a b s o r b e r i s i n v e s t i g a t e d . T h e n , the r e d u c t i o n i n p u l s e d u r a t i o n i s s t u d i e d f o r s e v e r a l p a s s e s through a b s o r b e r s and a m p l i f i e r s .

In o u r c a l c u l a t i o n s the s a t u r a b l e a b s o r b e r7 i s d e s c r i b e d by a t w o - l e v e l s y s t e m , and the t r a n s i e n t t r a n s m i s s i o n i s d e t e r m i n e d f o l l o w i n g R e f s . 8 and 9. R e c e n t l y , i t h a s been shown that t h i s m o d e l accounts q u a n t i t a t i v e l y f o r a m e a s u r i n g s y s t e m of peak i n t e n s i t i e s of p s e c l i g h t p u l s e s . 9 T h e i n t e n s i t y t r a n s m i s s i o n T of the s a t u r a b l e a b s o r b e r depends on s e v e r a l f a c t o r s : the i n i t i a l t r a n s - m i s s i o n T0 of the dye at l o w - i n t e n s i t y l e v e l , the peak i n - t e n s i t y I0 of the i n c i d e n t p u l s e , the shape of the input p u l s e s(t', r')=zs(t/Atini r / A ri n) , w h e r e A £l n and A rl n a r e the p u l s e d u r a t i o n ( F W H M ) and the b e a m r a d i u s

( H W H M ) of the input p u l s e , r e s p e c t i v e l y , and the r a t i o r / A £i n of the l i f e t i m e r of the e x c i t e d state of the dye to the p u l s e d u r a t i o n A £i n. W e have studied the i n t e n s i t y t r a n s m i s s i o n T n u m e r i c a l l y f o r a wide r a n g e of p a r a m - e t e r s . In t h i s l e t t e r we a r e i n t e r e s t e d i n the t r a n s m i t t e d i n t e n s i t y 7t r:

ItT=T[T0f I0s(t', r ' ) , T/A*l n]/0sU', r ' ) .

In F i g . 1 w e p r e s e n t c a l c u l a t i o n s of the n o r m a l i z e d t r a n s m i t t e d i n t e n s i t y Iir/I0 a s a function of the n o r m a l - i z e d t i m e t/Min f o r s e v e r a l v a l u e s of the input peak i n t e n s i t y 70; the p a r a m e t e r s T0, r/Atin, and s(t',r') w e r e kept constant: T0— 10~7, r = 9 . 1 p s e c (see R e f . 7), A £i n= 8 p s e c and G a u s s i a n input p u l s e shape. F o r r e a d y c o m p a r i s o n the i n c i d e n t G a u s s i a n p u l s e i s i n c l u d e d i n F i g . 1 ( b r o k e n l i n e ) . It i s c l e a r l y seen f r o m F i g . 1 that f o r h i g h input i n t e n s i t i e s (e. g . , 5 x 109 W / c m2) the peak i n t e n s i t y and p u l s e d u r a t i o n a r e l i t t l e affected by the s a t u r a b l e a b s o r b e r ; only the l e a d i n g p a r t of the p u l s e e x p e r i e n c e s the s t r o n g a b s o r p t i o n of the d y e . O n the o t h e r hand, at l o w e r input i n t e n s i t y (e. g . , 1. 2 x i o9 W / c m2) the t r a n s m i t t e d p u l s e i s d r a s t i c a l l y r e d u c e d i n i n t e n s i t y (factor of 300) w i t h s m a l l e r r e d u c t i o n i n p u l s e d u r a t i o n (see, a l s o , F i g . 2). T h e r e i s a definite o p t i - m u m f o r the s h o r t e n i n g of the input p u l s e : A t I0= 1. 8 x 1 09 W / c m2 the t r a n s m i t t e d p u l s e i s r e d u c e d to a d u r a - t i o n of A £t r = 0 . 3 5 A £i n (see F i g . 1). U n d e r these c o n d i - t i o n s the output peak i n t e n s i t y i s down by a f a c t o r of 5, and the t o t a l e n e r g y i s r e d u c e d by a f a c t o r of 400 f o r a G a u s s i a n c r o s s s e c t i o n of the input b e a m .

In F i g . 2, the p u l s e - s h o r t e n i n g r a t i o Attr/Atin i s d e p i c t - ed a s a function of the peak i n t e n s i t y of the input p u l s e I0 f o r v a r i o u s i n i t i a l t r a n s m i s s i o n s T0. The c u r v e s a r e c a l c u l a t e d f o r a n input p u l s e d u r a t i o n of A /i n= 8 p s e c , f o r a G a u s s i a n input p u l s e shape, and f o r p a r a m e t e r s of the s a t u r a b l e a b s o r b e r g i v e n i n R e f . 7. F i g u r e 2 shows quite c o n v i n c i n g l y that the p u l s e s h o r t e n i n g obtainable i n

(2)

CO

z

Q M _ l

<

or o

1.0

<

Ol

o z

O

io 0.2

3 Q_

r 1 1 1 T T T J r n

rl

-

i 1 1 M l l i l 1 i 1 1 M i l l

10° 10"

NORMALIZED TIME t/A t-

,10

in

INPUT PEAK INTENSITY IQ [W/cm*]

FIG. 1. Changes of the pulse shape after a single pass through a saturable absorber. Broken curve: normalized intensity of the input pulse ( A £i n= 8 psec, Gaussian pulse shape). Solid curves: normalized intensity of the transmitted pulse for several values of the input peak intensity 70. Dye parameters:

10- r = 9.1 psec.

FIG. 2. Pulse-shortening ratio Attr/Atin as a function of the input peak intensity 70 for several values of initial dye trans- mission T0 (single pass). Input pulse: A £i n = 8psec, Gaussian shape. Experimental points are indicated for T0=10~3 and TQ= 10"7 by open and closed c i r c l e s , respectively.

a s i n g l e p a s s depends c r i t i c a l l y on the i n c i d e n t peak i n - t e n s i t y I0 and on the i n i t i a l dye t r a n s m i s s i o n T0. T h e m i n i m a of the v a r i o u s c u r v e s i n d i c a t e o p t i m u m input peak i n t e n s i t i e s 70 —10 (opt) f o r g i v e n t r a n s m i s s i o n s T0. T h e s e m i n i m a a r e r a t h e r b r o a d at l a r g e r t r a n s m i s s i o n v a l u e s w i t h s m a l l e r p u l s e r e d u c t i o n s . F o r s m a l l v a l u e s of T0 the s h a r p m i n i m a r e q u i r e a v e r y c a r e f u l c o n t r o l of the input peak i n t e n s i t y I0; i f I0 < I0 (opt) the whole p u l s e i s s t r o n g l y attenuated, i f 70> /0 (opt) the effect of p u l s e s h o r t e n i n g d e c r e a s e s r a p i d l y , and t r a n s m i t t e d p u l s e s s t r o n g l y a s y m m e t r i c i n t i m e a r e generated (see

F i g . 1). It should be e m p h a s i z e d that at IQ (opt) the peak i n t e n s i t y I0 t r and the e n e r g y of the t r a n s m i t t e d p u l s e a r e only m o d e r a t e l y r e d u c e d , e. g . , f o r T0 = 10"1 o r 10~4 0 we c a l c u l a t e I0> t r = 0. 6 /0 o r 0. 1J0 and an energy l o s s by a f a c t o r of 3 o r 4 x 103, r e s p e c t i v e l y ( G a u s s i a n b e a m p r o - f i l e ) .

We have made a s e r i e s of e x p e r i m e n t s w i t h s a t u r a b l e a b s o r b e r s of i n i t i a l t r a n s m i s s i o n s T0 = 10~3 (open c i r c l e i n F i g . 2) and T0= 1 0 "7 (full c i r c l e s i n F i g . 2). T h e p u l s e d u r a t i o n s of the i n c i d e n t p u l s e Atin and the t r a n s - m i t t e d p u l s e Attr w e r e d e t e r m i n e d by the two-photon f l u o r e s c e n c e t e c h n i q u e .1 0 T h e peak i n t e n s i t y of the i n c i - dent p u l s e w a s m e a s u r e d by the method of e n e r g y t r a n s - m i s s i o n through s a t u r a b l e a b s o r b e r s .9 F i g u r e 2 shows v e r y good a g r e e m e n t between the e x p e r i m e n t a l p o i n t s and the c a l c u l a t e d c u r v e s . T h e p r e d i c t e d i n t e n s i t y d e - pendence of the p u l s e s h o r t e n i n g i s c o n f i r m e d e x p e r i - m e n t a l l y (see c u r v e w i t h T0= 1 0 "7) . T h e o p t i m u m p u l s e s h o r t e n i n g i n a s i n g l e p a s s w a s found to be c l o s e to a f a c t o r of 3 ( To= 1 0 "7) .

We have extended o u r c a l c u l a t i o n s to c o n s i d e r the effect of different shapes and d u r a t i o n s of the input p u l s e s . O u r r e s u l t s a r e b r i e f l y s u m m a r i z e d as f o l l o w s : (1) T h e p u l s e - s h o r t e n i n g r a t i o A £t r/ A £i n c o m e s out to be s i m i l a r

for G a u s s i a n , L o r e n t z i a n , and h y p e r b o l i c secant p u l s e s o v e r a w i d e range of v a l u e s f o r A /i n/ r and T0 ( f r o m steady state to A£I N/ T = 0 . 1 , and f r o m T0 = 1 to T0

— 10"1 0). (2) T h e p u l s e - s h o r t e n i n g r a t i o i n c r e a s e s s l i g h t l y f o r s h o r t e r input p u l s e s ( f r o m A £t r/ A £i n- 0 . 3 at the steady state to A ^t r/ A ^i n ^ 0 . 4 5 at &tin/r = 0.1 f o r T0 — 10"7). (3) F o r d e c r e a s i n g d u r a t i o n s of the input p u l s e s , h i g h e r v a l u e s f o r IQ (opt) a r e r e q u i r e d . (4) S h o r t e r input p u l s e s give m o r e f a v o r a b l e r a t i o s of

70 t r/ /0, i . e . , h i g h e r output i n t e n s i t i e s at I0 (opt). W h i l e

i n the s t e a d y - s t a t e case ( A £i n» r ) , the p u l s e s h o r t e n i n g o c c u r s only on account of the i n t e n s i t y dependence of

NORMALIZED TIME t/At,

FIG. 3. Pulses generated in five transits through an absorber- amplifier system. Broken curve: input pulse of 8-psec duration and Gaussian shape. Solid curves: pulses after 1—5 passes through absorbers (and 0—4 transits through amplifiers). Dye transmission per pass: T0 = 2 x 10"4. Amplifier gain per pass:

r= 4 . i .

(3)

P I C O S E C O N D A N D S U B P I C O S E C O N D L I G H T P U L S E S 353

M.-LLASER 1 B S B S

SWITCHl \ V i T P F l M E

JFIER1 L J nO SCOPE AMPLIFIER 1

-0-

DC3 j AMPLIFIER 2]—

TPF2 TO SCOPE

F I G . 4. Experimental setup for multiple transits through the absorber-amplifier system. Beam splitter BS; saturable absorber cells DC1 (T0= 1. 4 xlO"2), DC2 (T0= 1. 4 xlO"2), DC3 (T0=7X10"3); photodetectors P I , P2; two-photon- fluorescence systems T P F 1 , T P F 2 ; spectrometer S P .

the dye t r a n s m i s s i o n , i n the t r a n s i e n t c a s e the r e d u c - t i o n of p u l s e d u r a t i o n i s m a i n l y an e n e r g y effect; the l e a d i n g p a r t of the p u l s e i s s t r o n g l y a b s o r b e d u n t i l the dye i s s u f f i c i e n t l y e x c i t e d .

T h e r e s u l t s p r e s e n t e d so f a r suggest the i n v e s t i g a t i o n of a s y s t e m w h e r e a p u l s e i s r e p e a t e d l y s h o r t e n e d i n a s a t u r a b l e a b s o r b e r and subsequently a m p l i f i e d i n a l a - s e r a m p l i f i e r . W e have made e x t e n s i v e c a l c u l a t i o n s of m u l t i p l e - a b s o r b e r - a m p l i f i e r s y s t e m s1 1 i n the p s e c d o - m a i n w i t h w i d e l y v a r y i n g p a r a m e t e r s . In F i g . 3 a t y p - i c a l e x a m p l e i s p r e s e n t e d w h i c h i n d i c a t e s a s i t u a t i o n of p r a c t i c a l i n t e r e s t ; the t i m e dependence of the i n c i - dent p u l s e ( b r o k e n l i n e ) and of five subsequent p u l s e s ( s o l i d l i n e s ) i s shown f o r a s y s t e m c o n s i s t i n g of f i v e a b s o r b e r s w i t h T0 = 2 x 10"4 each, and four a m p l i f i e r s e a c h of o p t i c a l gain y = 4 . 1 . A n i n i t i a l p u l s e d u r a t i o n of A £i n= 8 p s e c and a peak i n t e n s i t y of the i n c i d e n t p u l s e of 70 = 1. i x 1 09 W / c m2 w e r e a s s u m e d . In o u r c a l c u l a - t i o n s the i n d i v i d u a l p u l s e shape, after p a s s i n g one a b - s o r b e r c e l l , w a s u s e d as the i n i t i a l c o n d i t i o n f o r the p a s s a g e t h r o u g h the f o l l o w i n g a b s o r b e r . A m p l i f i c a t i o n w a s c o n s i d e r e d to be i n t e n s i t y independent. F i g u r e 3 g i v e s a v i v i d p i c t u r e of the d r a s t i c change i n p u l s e shape after e a c h a b s o r b e r . S t a r t i n g w i t h A £ ,n = 8 p s e c , one c a l c u l a t e s a f i n a l p u l s e of A£ = 0. 65 p s e c , i . e . , a r e d u c t i o n f a c t o r of 12. In t h i s c a s e the t o t a l t r a n s m i s - s i o n of the s y s t e m i s 3. 2 x 10~1 9. O n the other hand, i f a p u l s e of the s a m e i n i t i a l d u r a t i o n t r a v e r s e s j u s t once a s a t u r a b l e a b s o r b e r of the s a m e t r a n s m i s s i o n of T0

= 3. 2 x 1 0 "1 9, a m o s t f a v o r a b l e r e d u c t i o n of the p u l s e d u r a t i o n i s c a l c u l a t e d to be a f a c t o r of 4. 5 only (see F i g . 2). T h e a b s o r b e r - a m p l i f i e r s y s t e m i s m o r e e f f e c - t i v e i n p u l s e s h o r t e n i n g because the d i s t r i b u t e d a m p l i f i - e r s b r i n g the p u l s e i n t e n s i t y back to the o p t i m u m v a l u e s f o r p u l s e s h o r t e n i n g i n the f o l l o w i n g a b s o r b e r s . O u r c a l c u l a t i o n s show that the peak p o w e r of the f i n a l output p u l s e depends s t r o n g l y on the o p t i c a l gain y . F o r v a l - ues of y < 4 . 1 (input p u l s e and dye p a r a m e t e r s as i n F i g . 3), the s u c c e e d i n g p u l s e s d e c r e a s e quite s t r o n g l y i n peak i n t e n s i t y ; they a r e of no p r a c t i c a l i n t e r e s t . F o r gain v a l u e s y > 4 . 1 , the peak i n t e n s i t i e s of the p u l s e s i n - c r e a s e c o n t i n u a l l y . F o r e x a m p l e , w i t h the same p a r a m - e t e r s u s e d i n F i g . 3 but w i t h y = 4. 3, one c a l c u l a t e s a

f i n a l peak i n t e n s i t y of 30 t i m e s the i n c i d e n t peak i n t e n - s i t y J0; at the s a m e t i m e the p u l s e d u r a t i o n i s r e d u c e d f r o m A £i n= 8 p s e c to A£ = 0 . 9 6 p s e c .

E x p e r i m e n t a l l y , we i n v e s t i g a t e d a folded a b s o r b e r - a m - p l i f i e r s y s t e m w i t h p a r a m e t e r s s i m i l a r to the e x a m p l e d i s c u s s e d i n F i g . 3. O u r e x p e r i m e n t a l setup i s d e p i c t - ed s c h e m a t i c a l l y i n F i g . 4. T h e o p t i c a l s w i t c h p r o v i d e s u s w i t h a s i n g l e p u l s e cut f r o m the l e a d i n g p a r t of the p u l s e t r a i n . T h i s p u l s e i s a n a l y z e d by T P F 1 to be of A £i n~ 8 p s e c . T h e p u l s e p a s s e s e f f e c t i v e l y five t i m e s t h r o u g h a b s o r b e r s and four t i m e s through an a m p l i f y i n g N d : g l a s s r o d ( a m p l i f i e r 1). A f i n a l l a s e r a m p l i f i e r ( a m p l i f i e r 2) i s u s e d to i n c r e a s e the p u l s e f o r ready d e - t e r m i n a t i o n of the energy ( P 2 ) , the p u l s e d u r a t i o n ( T P F 2 ) , and the frequency bandwidth ( s p e c t r o m e t e r S P ) . T h e t o t a l t r a n s m i s s i o n of the s y s t e m w a s T0= 10"1 7, and the t o t a l g a i n ( a m p l i f i e r 1) was a p p r o x i m a t e l y 300. O u r e x p e r i m e n t a l r e s u l t s gave c l e a r e v i d e n c e of the d r a s t i c p u l s e s h o r t e n i n g . T h e t w o - p h o t o n - f l u o r e s c e n c e t r a c k ( T P F 2 ) showed a s i n g l e s h a r p peak. W e e s t i m a t e a d u r a - t i o n of the output p u l s e of A£ = 0. 7 p s e c . W i t h somewhat s h o r t e r input p u l s e s we o c c a s i o n a l l y obtained output p u l s e s of At < 0 . 5 p s e c . T h e m e a s u r e d s p e c t r u m of the output p u l s e gave a frequency w i d t h of A i / = 9 x 1 01 1 H z ( A ? = 30 c m "1) . W i t h these n u m b e r s we obtain a p r o d u c t AtAv^ 0. 6, i n d i c a t i n g that o u r p u l s e s a r e n e a r l y b a n d - w i d t h l i m i t e d . W e have n o t i c e d i n our i n v e s t i g a t i o n s that the output p u l s e r e a c t s s t r o n g l y to changes of the input peak i n t e n s i t y IQ and of the gain y .1 2 T h i s o b s e r v a t i o n w a s expected f r o m o u r c a l c u l a t i o n s as d i s c u s s e d above i n connection w i t h F i g . 3.

T h e q u e s t i o n now a r i s e s as to the s h o r t e s t p u l s e s w h i c h can be generated i n an a b s o r b e r - a m p l i f i e r s y s t e m of the type i n v e s t i g a t e d h e r e . W h i l e we f e e l that f u r t h e r p u l s e s h o r t e n i n g i s p o s s i b l e w i t h m o r e t r a n s i t s , t h e r e a r e s e v e r a l p r a c t i c a l and p r i n c i p a l l i m i t a t i o n s . W i t h an i n c r e a s i n g n u m b e r of a b s o r b e r s and a m p l i f i e r s , the s y s t e m b e c o m e s m o r e s e n s i t i v e to v a r i a t i o n s of I0 and y . A s a r e s u l t , the output p u l s e v a r i e s between s m a l l v a l u e s of peak i n t e n s i t y and v a l u e s of peak i n t e n s i t y high enough that other n o n l i n e a r effects o c c u r i n the dye s o - l u t i o n o r i n the a m p l i f i e r r o d ( e . g . , s t i m u l a t e d l i g h t s c a t t e r i n g , s e l f - p h a s e - m o d u l a t i o n ) . It s h o u l d be noted that peak i n t e n s i t i e s e x c e e d i n g 1 01 0 W / c m2 a r e r e a d i l y generated i n a b s o r b e r - a m p l i f i e r s y s t e m s . A p r i n c i p a l l i m i t to the p u l s e d u r a t i o n i s set by the s p e c t r a l w i d t h of the amplifying m e d i u m ; i n N d : g l a s s the l i m i t i n g p u l s e d u r a t i o n i s expected to be 10"1 3 s e c . In a d d i t i o n , f o r p u l s e d u r a t i o n s s h o r t e r than the t r a n s v e r s e r e l a x a t i o n t i m e of the a m p l i f e r m e d i u m [T2 ( A ) ^ 0. 6 p s e c1 3] , c o - h e r e n t effects d e t e r m i n e d by the a r e a u n d e r the e l e c t r i c f i e l d 0 = (ß/fi)f^Edt have to be c o n s i d e r e d . In o u r c a s e , w i t h I0 = 1 01 0 W / c m2, At = 0. 5 p s e c and a d i p o l e m a t r i x e l e m e n t 1 0 "1 9 e s u ,1 3'1 4 we e s t i m a t e 6^0. 5; under these c o n d i t i o n s the a m p l i f i e r g a i n i s expected to be constant without b r e a k u p of the l i g h t p u l s e .1 4 ) 1 5 The t r a n s v e r s e r e l a x a t i o n t i m e of the s a t u r a b l e a b s o r b e r T2 (dye) i s e s t i m a t e d to be T2 (dye)< 10"1 3 s e c .1 6'1 7

F o r At<T2 (dye), the r a t e equations u s e d i n o u r c a l c u - l a t i o n s a r e not a p p l i c a b l e any l o n g e r .

In c o n c l u s i o n , we w i s h to say that w i t h p r o p e r l y adjusted a b s o r b e r s and a m p l i f i e r s , p u l s e s of ~ 5 X 1 0 "1 3 sec have

(4)

been obtained w i t h the p o s s i b i l i t y of g e n e r a t i n g p u l s e s of a p p r o x i m a t e l y 1 0 "1 3 s e c . T h e technique d i s c u s s e d h e r e should be useful f o r p u l s e s h o r t e n i n g i n o t h e r l a s e r s y s - t e m s as w e l l .

* A . J . D e M a r i a , W. H. Glenn, J r . , M . J . B r i e n z a , a n d M . E . Mack, P r o c . I E E E 57, 2 (1969).

2D . von der Linde, I E E E J . Quantum Electron, (to be published).

3S . L . Shapiro and M . A . Duguay, Phys. Letters 28A, 698 (1969).

4D . J . Bradley, G . M . C . New, and S . J . Caughey, Phys.

Letters 30A, 78 (1969).

5E . B . T r e a c y , Phys. Letters 28A, 34 (1968).

6M . J . Colles, Appl. Phys. Letters 19, 23 (1971).

7The material parameters of the dye used are T= 9.1 psec and absorption cross section cr=l. 84 xiO"1 6 c m2; see Eastman Kodak dye No. A9860 data release.

8J . D . Macomber, J . Appl. Phys. 38, 3525 (1967).

9A . Penzkofer, D. von der Linde, and A . Laubereau, Opt.

Commun. (to be published).

1 0J . A . Giordmaine, P . M . Rentzepis, S. L . Shapiro, a n d K . W . Wecht, Appl. Phys. Letters 11, 216 (1967).

nW i t h an absorber-amplifier system, nsec light pulses have been shortened from 10 to 0.5 nsec by N . G . Basov, P . G . Kryukov, V. S. Letokhov, and Y u . A . Matveets [Sov. Phys.

J E T P 29, 830 (1969)]. The steady-state calculations of this reference are not applicable for psec pulses.

1 2We have observed a decreasing amplifier gain for high peak intensities of the traversing pulse. This result has a stabilizing effect on our system. See also N . G . Basov, I.

Kertes, P . G . Kryukov, Y u . V . Matveets, Y u . V . Senatskii, and S . V . Chekalin [Sov. Phys. J E T P 33, 289 (1971)].

1 3E . Snitzer, Appl. Opt. 5, 1487 (1966).

1 4F . A . Hopf and M . O . Scully, Phys. Rev. 179, 399 (1969).

1 5P . G . Kryukov and V . S. Letokhov, Sov. Phys. Usp. 12, 641 (1970).

1 6M . Kasha, Discussions Faraday Soc. 9, 14 (1950).

1 7M . Hercher, Appl. Opt. 6, 947 (1967).

Referenzen

ÄHNLICHE DOKUMENTE

In this work, I have provided evidence that the adult mouse cerebellar system is able to undergo extensive reshaping of its connectivity and synaptic organization in response

We showed that the distinction between agrotolerant and nature-value species based on simple observed frequency of species in fields or classification of species into high and

This paper addresses the uncertainties in global population forecasts of the timing of reaching certain important milestones such as a total population of 7 billion or peak

Dellacherie, Capacities e t Processus Sochastiques (Capacities and Sto- chastic Processes), Springer-Verlag, Berlin and New York

Indeed, the UK’s score dropped 8-10% in 2017 compared to 2016 in the Clinical Research Conditions &amp; Framework, Regulatory System and Market Access &amp; Financing categories

An axiomatization of the Public Good index for simple games was given in [Holler and Packel, 1983], so that some people also speak of the Holler–Packel index, and the generalization

a Laboratorium f¨ur Anorganische Chemie, Universit¨at Bayreuth, D-95440 Bayreuth, Germany. b Departamento de Quimica, Centro de Investigacion y de Estudios Avanzados del

Additionally, the relative inten- sity at which anaerobic energy is required to perform, as indi- cated by an increase in the blood lactate concentration (BLC), is highly