• Keine Ergebnisse gefunden

ON THE INTERPRETATION OF SEA LEVEL RISE

N/A
N/A
Protected

Academic year: 2022

Aktie "ON THE INTERPRETATION OF SEA LEVEL RISE"

Copied!
2
0
0

Wird geladen.... (Jetzt Volltext ansehen)

Volltext

(1)

Alfred Wegener Institute for Polar and Marine Research

INFLUENCE OF DEEP OCEAN WARMING

ON THE INTERPRETATION OF SEA LEVEL RISE

M. Wenzel, J. Schr¨oter, H. Hellmer and M. Schodlok

Alfred Wegener Institute for Polar and Marine Research, Bremerhaven, Germany

Introduction

Two global data assimilation experiments, B0ntp and B2ntp, are performed with the goal of a better understanding of sea level rise. In both cases satellite altimetry referenced to a GRACE geoid is assimilated together with a set of oceanographic data. The experiments differ in the treatment of the Weddell Sea. In the first case, B0ntp, climatological hydrography is used for assimilation while in the second experiment, B2ntp, hydrographic lines (see Fig.1) derived from a detailed shelf-ice/sea-ice/ocean model are used in addition.

3000

3500

4000 2500

1500 500

200 100

2000 500

1500 3000

1000 3500

3500

4500 5000

2500 2500

4500

4500 2500

3500

4500

4000

2500

3000 5000

350

4000

25

-70 -65 -60 -55 -50 -45 -40 -35 -30 -25 -20 -15 -10 -5 0 -80

-75 -70 -65 -60 -55 -50 -45 -40 -35 -30

-25 ocean bottom topography

DOVETAIL section WOCE section SR4

Fig. 1: Weddell Sea sector of the ocean models bottom topography showing the additional data sections across the Wedddel Sea (WOCE section SR4) and along the South Scotia Ridge (DOVETAIL section).

assimilation

experiment Weddell Sea data

B0ntp NO

B2ntp YES

The OGCM that is used to study the impact of the different treatment of the Weddell Sea on the ocean state is based on the Hamburg Large Scale Geostrophic model LSG. The main improvement of the model is the ability to estimate the single contributions to sea level change, the steric (thermosteric, halosteric) and the non-steric effects (local freshwater balance, mass redistribution) seperately.

The model has a 2 × 2 horizontal resolution, 23 vertical layers and a ten day timestep. Nine years (1993-2001) of TOPEX/Poseidon sea surface height anomalies, provided by GfZ Potsdam, are assimilated into the model. In addition the SHOM98.2 mean sea surface relative to the GRACE geoid (GfZ) as well as sea surface temperatures and ice cover information from Reynolds (2002) are assimilated into the model. Furthermore background information from the Levitus WOA98 is used.

To adjust the model to the data the adjoint method is employed. The control parameters of this optimization are the models initial temperature and salinity state as well as the forcing fields (windstress, air temperature and surface freshwater flux). The forcing is optimized via an empiri- cal orthogonal function (EOF) decomposition, with the first guess taken from the NCEP reanaly- sis.

Both assimilation experiments, B0ntp and B2ntp, start from the same first guess. They differ only in the additional section data used!

Ocean Model Sea Surface Height vs. Data

Figure 2 shows that in both experiments, B0ntp as well as B2ntp, the model follows the altimetric anomalies and trend well. This is true especially for the interannual variability, while the amplitu- de of the annual cycle is underestimated by the models. The spatial distribution of the temporal RMS difference (Fig.3) is very simular for both experiments. Also their global mean RMS values, the measure of success in the assimilation, appear to be comparable (2.86cm and 2.81cm respective- ly). The same good correspondence between the two experiments one finds for the differences bet- ween the modeled temporal mean sea level and the SHOM98.2 sea level (Fig.4). These also have a comparable spatial RMS (12.24cm and 10.84cm respectively).

1993 1994 1995 1996 1997 1998 1999 2000 2001

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0 cm

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0

cm

T/P(GfZ) B0ntp B2ntp

global mean sea level

Fig. 2: Global mean sea level anomaly from the two assimila- tion experiments, B0ntp and B2ntp, as compared to the TO- PEX/Poseidon data

3

2

2 2 3 5

4 3

4

4 4

7 3 2 5 2

3

3 5

2 3

2 3

2 3

4 3 2

5

4 3

2

3 2

2 2

4 3

2

2

30 60 90 120 150 180 210 240 270 300 330 360 -90

-60 -30 0 30 60 90

-90 -60 -30 0 30 60 90

2.859 area RMS:

B0ntp vs. T/P(GfZ)

cm

1993-2001

c.i. 1 cm

sea surface height anomaly

temporal RMS difference

2 2

3

2 3 3

5

2 3

3 4

2 4

4 4

6 5

2 2 2

3

2 3

2

2 3

2 4 3

2

5

2 3

4

3 4

2

3 2

3 2

3

3 2 2

3

30 60 90 120 150 180 210 240 270 300 330 360 -90

-60 -30 0 30 60 90

-90 -60 -30 0 30 60 90

2.806 area RMS:

B2ntp vs. T/P(GfZ)

cm

1993-2001

c.i. 1 cm

sea surface height anomaly

temporal RMS difference

Fig. 3: Local temporal RMS of the modeled SSHA diffe- rence between model and TOPEX/Poseidon data, for experiment B0ntp (top) and B2ntp (bottom).

10

0 0

-20 -10

0 0

0 0

20 10

10

-10 0

30 -10

-10 0

20 10

0 0

10

-10 30 0

10

-10

0

30 20 10 0

40 -20 0

-10 0

0 10

0

30 60 90 120 150 180 210 240 270 300 330 360 -90

-60 -30 0 30 60 90

-90 -60 -30 0 30 60 90

12.241 area RMS:

B0ntp vs. SHOM98

cm

1993-2001

c.i. 10 cm

mean sea level difference

0

-10 0

0 0

20 0

-10 0

0

20 -20

20

0

-10

0

30 10

0

0 10

0

0

-10 30 10

10

0

10 0

10 -40

-20 -10 0

0 0

0

20

30 60 90 120 150 180 210 240 270 300 330 360 -90

-60 -30 0 30 60 90

-90 -60 -30 0 30 60 90

10.836 area RMS:

B2ntp vs. SHOM98

cm

1993-2001

c.i. 10 cm

mean sea level difference

Fig. 4: Temporal mean sea level for the assimilation experiments B0ntp (top) and B2ntp (bottom) compared to the SHOM98.2 mean sea surface height referenced to the GRACE geoid

Ocean Model Heat Content

1.0

1.5

0.5 2.0

2.5 3.0

4.0

5.0 6.0

8.0

-80 -60 -40 -20 0 20 40 60 80

-6000 -5000 -4000 -3000 -2000 -1000

c.i. variable

-1.5

0.5

1.0 1.5

2.0

2.53.0

4.0 5.0

6.0

6.0

8.0

10.0

10.0

10.0 12.0

12.0 16.0

18.0 24.0 20.0

26.0

6.0

-800 -600 -400 -200

0 B0ntp pot. temperature 30oW

0.0 0.5

1.5 2.0

2.5 4.0

5.0 6.

6.0

8.

-80 -60 -40 -20 0 20 40 60 80

-6000 -5000 -4000 -3000 -2000 -1000

c.i. variable

-1.0

0.0 0.51.0 1.5 2.

3.0 4.0

5.0 6.0

8.0 10.0

10.0

10.0 12.0

12.0 14.0

16.0 18.0

20.0 .

24.0

6.0 5.0

-800 -600 -400 -200

0 B2ntp pot. temperature 30oW

Fig. 5: Mean potential temperature on the N-S section through the Atlantic Ocean at 30W, for experiment B0ntp (top) and B2ntp (bottom).

0.4

0.2

0.0 0.2 -0.2

0.0 0.4

0.4

0.0

0.0 0.0

0.0

0.0

-80 -60 -40 -20 0 20 40 60 80

-6000 -5000 -4000 -3000 -2000 -1000

c.i. 0.2 oC/decade

0.2

0.0 -0.2

0.2

0.2

0.2 0.2 0.4 0.8

1.4

0.0

-0.2 0.0

-0.4 -0.2

-0.2

0.0 0.4

0.2

0.4

-0.2 0.4 -0.2

-0.4 -0.6

0.6 1.0 .

0.0

-800 -600 -400 -200

0 B0ntp pot. temperature 30oW

linear trend

0.2 0.0

0.0 -0.4

0.2 0.0

0.2

0.0

0.2

0.0 0.0

0.0 0.0

-80 -60 -40 -20 0 20 40 60 80

-6000 -5000 -4000 -3000 -2000 -1000

c.i. 0.2 oC/decade

0.0

0.2 0.0 -0.

-0.2

0.0

0.2 0.4 0.8

0.0 0.0

0.0

0.2 -0.2

0.2

0.4

0.0 0.0

-0.2

-0.4 -0.6

0.8 .

-0.2 .

0.0 -0.2

-800 -600 -400 -200

0 B2ntp pot. temperature 30oW

linear trend

Fig. 6: Corresponding linear temperature trends on the N-S section through the Atlantic Ocean at 30W, for experiment B0ntp (top) and B2ntp (bottom).

1993 1994 1995 1996 1997 1998 1999 2000 2001

-2.5 -2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0 2.5 1023 J

total top middle bottom

dashed: B0ntp straight: B2ntp

global ocean heat content anomaly

Fig. 7: Global ocean heat content anomaly for the depth ranges: total=[ζ-bottom], top=[ζ- 512m], middle=[512m-2250m] and bottom=[2250m-bottom] , for experiment B0ntp (das- hed lines) and B2ntp (straight lines).

Using better information for the Weddell Sea leads to an impro- vement of the circulation in the South Atlantic. But the assimi- lation experiments, B0ntp and B2ntp respectively, do not only end up with a different mean state (e.g. for temperature, Fig.5) but exhibit also different trends (Fig.6) which are most notable in the convective as well as in the subduction regions. Here the downward transport of relatively warm and saline water is signi- ficantly reduced in B2ntp. Associated with this is a reduction in the global warming of the ocean (Fig.7) especially in the deep layers. This consequently leads to a reduced sea level rise due to steric effects in B2ntp.

(2)

Comparing Model Sea Level Trends

1993 1994 1995 1996 1997 1998 1999 2000 2001

-2.5 -2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0 2.5 cm

-2.5 -2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0 2.5

cm

total steric non-steric

B0ntp

global mean sea level

1993 1994 1995 1996 1997 1998 1999 2000 2001

-2.5 -2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0 2.5 cm

-2.5 -2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0 2.5

cm

total steric non-steric

B2ntp

global mean sea level

Fig. 8: Temporal evolution of the global mean sea level decomposed into its steric and non-steric part for the model solutions B0ntp (left) and B2ntp (right).

Figure 8 shows that in both experiments, B0ntp and B2ntp respectively, nearly all the ’short term’ tempo- ral variability of the global mean sea level is resampled by the non-steric part, while the steric contribution ap- pears more or less as a straight line. The global sea level rise due to thermal expansion is about twice as large for the model solution without the additional hy- drographic section data (B0ntp) compared to the case utilizing this data (B2ntp). Consequently a strong eva- poration surplus is needed in B0ntp to fit the measured global mean sea level curve (Fig.2).

0.0 0.5

-0.5 0.0

0.5

1.0

0.5

2.0 0.5

0.5

1.0

1.0

0.0

0.0 1.0

-0.5 -1.0

-0.5

0.0 0.5

0.0

0.0 0.5

0.5 0.0 0.5

30 60 90 120 150 180 210 240 270 300 330 360 -90

-60 -30 0 30 60 90

-90 -60 -30 0 30 60 90

0.244 area mean:

GfZ

cm/year

1993-2001

c.i. 0.5 cm/year

sea surface height anomaly local linear trend

Fig. 9: Local linear trend of the TOPEX/Poseidon (GfZ) sea sur- face height

Both model solutions, B0ntp and B2ntp respectively, retrieve the measured local sea level trends to a good quality although the extrema are partly shifted in space (Figs. 9 and 10a). The main part of the spatial variab- lity is given by the steric contribution (Figs.10b), whi- le the non-steric part (Figs.10c) exhibits a much wea- ker signal. Nevertheless both components show strong differences among the experiments. But while these differences are more or less restricted to the southern hemisphere for the steric one, they are more global for the non-steric part giving a negative trend nearly ever- ywhere in experiment B0ntp.

A more detailed comparison of the local steric con- tribution to sea level rise from the two experiments is given in Figs. 11 and 12. In both experiments the main contribution results from the top 500m for the thermo- steric as well as for the halosteric part, but the diffe- rences appear mainly in the thermosteric in the deeper layers of the circumpolar belt, the South Atlantic and the Southwest Pacific.

0.5 -0.5

1.0

0.0 0.0

1.5 0.5

0.5

1.5

1.0 2.0

0.0

1.0

1.0 0.5

0.5 0.0

0.0 0.5

1.5

1.0 -0.5

-0.5

-1.0

-1.0

-0.5 -0.5

0.5

-0.5

0.5

2.0 1.5 0.5

0.0 0.5

0.5

0.0 0.0

1.5 0.0

0.0 0.5

0.0

1.0

30 60 90 120 150 180 210 240 270 300 330 360 -90

-60 -30 0 30 60 90

-90 -60 -30 0 30 60 90

0.225 area mean:

B0ntp

cm/year

1993-2001

c.i. 0.5 cm/year

sea surface height anomaly local linear trend

0.0 0.0

0.0

0.5

0.5 0.5

0.0 1.0

2.0 1.5

0.5

1.0 0.5

0.5 1.0

0.0

0.5 0.0

-0.5 0.0

-0.5 -0.5 0.0

-1.0 -1.0

-0.5

0.5 0.0

0.5 -0.5

0.0

0.5

0.0 0.0

0.5

0.5 1.0

0.0

0.0

-0.5

0.5 0.5

30 60 90 120 150 180 210 240 270 300 330 360 -90

-60 -30 0 30 60 90

-90 -60 -30 0 30 60 90

0.241 area mean:

B2ntp

cm/year

1993-2001

c.i. 0.5 cm/year

sea surface height anomaly local linear trend

Fig. 10a: Local sea level trend of the model solutions B0ntp (up- per row) and B2ntp (lower row).

1.0 0.0 0.0

1.5 0.0 0.0

1.5 0.5

1.0 1.5

1.0 1.0

1.0 1.5

1.5 2.0

1.0

0.5 1.5

0.0

0.5 1.0

1.0 0.0

-0.5 -0.5

-0.5

-0.5 0.5 0.0

0.0

0.0 0.5

0.0 1.5

0.5

1.0 0.5

1.0 0.5 0.5

0.0

2.0 0.0

0.0

0.5

30 60 90 120 150 180 210 240 270 300 330 360 -90

-60 -30 0 30 60 90

-90 -60 -30 0 30 60 90

0.523 area mean:

B0ntp

cm/year

1993-2001

c.i. 0.5 cm/year

sea surface height anomaly

total steric component local linear trend

0.0 0.0 0.0

-0.5

0.0 0.5 1.0

0.5 1.5

0.5

2.0 1.5 0.0

1.0

0.5

0.5

0.5 0.5

0.0 1.5

0.0 0.0

-0.5 -0.5 -0.5

0.0

-1.0

-0.5 -0.5

0.5 0.0

1.0

0.0

0.5 0.0

1.5 1.0

0.0 0.0

0.0 0.5

0.5 0.5 0.0

30 60 90 120 150 180 210 240 270 300 330 360 -90

-60 -30 0 30 60 90

-90 -60 -30 0 30 60 90

0.219 area mean:

B2ntp

cm/year

1993-2001

c.i. 0.5 cm/year

sea surface height anomaly

total steric component local linear trend

Fig. 10b: same as Fig.10a but for the total steric component

-0.3 -0.2 -0.3 -0.5

-0.4 0.0

-0.5

-0.5

0.0 -0.1 -0.6

-0.3

-0.3

0.0 -0.3

0.4 0.3 0.2

-0.5 -0.6

0.6 -0.4

-0.2

0.0 -0.3

0.1 -0.4 -0.3

-0.2 -0.3 -0.3

1.0 -0.4

-0.6 -0.4

-0.3

-0.2

-0.6

-0.4

30 60 90 120 150 180 210 240 270 300 330 360 -90

-60 -30 0 30 60 90

-90 -60 -30 0 30 60 90

-0.298 area mean:

B0ntp

cm/year

1993-2001

c.i. 0.1 cm/year

sea surface height anomaly

non-steric component local linear trend

0.0 0.0

0.1 0.2

0.4

0.2 0.1

0.1

0.0 -0.1

0.0

-0.2 0.1

0.0

0.0

0.1 0.0 0.0

-0.1 -0.2

-0.3

0.0 0.0

-0.2 0.1 0.1

-0.2

-0.4 -0.5 -0.6

0.1 0.1

0.1 0.1

0.1

0.1 0.2

-0.5

0.4 0.0

0.1 0.2

0.3 0.2

0.1 0.1

0.2

0.0

0.3 0.0

30 60 90 120 150 180 210 240 270 300 330 360 -90

-60 -30 0 30 60 90

-90 -60 -30 0 30 60 90

0.022 area mean:

B2ntp

cm/year

1993-2001

c.i. 0.1 cm/year

sea surface height anomaly

non-steric component local linear trend

Fig. 10c: same as Fig.10a but for the non-steric component

Thermosteric Sea Level Trends

1.0 0.0

0.5 0.0

0.5 1.0

0.0

1.0 1.5

0.5 1.0

0.0

1.0 1.5

0.5 0.0

0.0 0.0

1.0

-0.5 0.0

-0.5

-0.5 0.0

-0.5 0.0

0.0

0.0

0.0 0.5 0.5

0.0 0.0

0.0 0.0 0.0

0.5 0.5

1.0 0.0

30 60 90 120 150 180 210 240 270 300 330 360 -90

-60 -30 0 30 60 90

-90 -60 -30 0 30 60 90

0.303 area mean:

B0ntp

cm/year

1993-2001

c.i. 0.5 cm/year

sea surface height anomaly

thermosteric component

[ - 512m]

local linear trend

0.0

0.0

0.0

0.5 0.5

0.0 0.5

0.0

0.5 0.5

1.0 1.5 0.0 2.0

0.0

0.5 0.0

0.0 0.0 0.0

0.5 0.0

-0.5

0.0 0.0

0.0

0.0 0.0

0.0 0.0

0.0 0.5

0.0

0.5 0.0

0.0

30 60 90 120 150 180 210 240 270 300 330 360 -90

-60 -30 0 30 60 90

-90 -60 -30 0 30 60 90

0.163 area mean:

B2ntp

cm/year

1993-2001

c.i. 0.5 cm/year

sea surface height anomaly

thermosteric component

[ - 512m]

local linear trend

0.5 0.0

0.0

1.0

0.0 0.0

0.5

0.0

0.5 0.0

0.0

0.0

0.0 0.0

0.0 -1.0

0.5 1.0

0.5 0.0

0.0

0.5

0.5 0.0

30 60 90 120 150 180 210 240 270 300 330 360 -90

-60 -30 0 30 60 90

-90 -60 -30 0 30 60 90

0.130 area mean:

B0ntp

cm/year

1993-2001

c.i. 0.5 cm/year

sea surface height anomaly

thermosteric component

[512 - 2250m]

local linear trend

0.0 0.0 0.0

0.0

0.5

0.0 0.0

0.5

0.0

0.0 0.0

0.0 0.0

-0.5

0.5

-0.5

0.0

0.5 0.5

0.0 0.5 0.0

0.0

0.5 0.0

30 60 90 120 150 180 210 240 270 300 330 360 -90

-60 -30 0 30 60 90

-90 -60 -30 0 30 60 90

0.040 area mean:

B2ntp

cm/year

1993-2001

c.i. 0.5 cm/year

sea surface height anomaly

thermosteric component

[512 - 2250m]

local linear trend

0.5 0.0

0.0

0.0 0.5

0.5 0.0

0.0

0.0

0.0

0.0

0.0 0.0

0.0

0.5 0.0

0.5

0.0 0.0

0.5

1.0 0.5 0.0

1.0

1.0 0.0

1.5

0.5

30 60 90 120 150 180 210 240 270 300 330 360 -90

-60 -30 0 30 60 90

-90 -60 -30 0 30 60 90

0.098 area mean:

B0ntp

cm/year

1993-2001

c.i. 0.5 cm/year

sea surface height anomaly

thermosteric component

[2250m - bottom]

local linear trend

-0.5 0.0

0.0 0.0

0.0

0.0 0.0

0.5 0.0

0.0 0.5

0.5 0.0

0.0 0.0

0.0 0.5 0.0

0.0

0.5 0.0

0.0 0.0

-0.5 0.5

0.0

0.5 0.0 0.0

-0.5 -0.5

30 60 90 120 150 180 210 240 270 300 330 360 -90

-60 -30 0 30 60 90

-90 -60 -30 0 30 60 90

0.017 area mean:

B2ntp

cm/year

1993-2001

c.i. 0.5 cm/year

sea surface height anomaly

thermosteric component

[2250m - bottom]

local linear trend

Fig. 11: Thermosteric sea level trends from ocean model solutions B0ntp (left column) and B2ntp (right column), giving the contribu- tion from the depth ranges (topmost to undermost): [ζ-512m], [512m-2250m] and [2250m-bottom].

Halosteric Sea Level Trends

0.0

0.0

-0.5 0.0

0.0 0.0 0.5

0.5

0.5 1.0

0.5

0.0 0.5

0.0

0.0

-0.5

0.0 -1.0

0.0

0.5

0.0 0.0

0.5

0.0 0.5

0.5 0.0

0.0 -0.5

0.5 0.0

0.0

0.0 0.0

30 60 90 120 150 180 210 240 270 300 330 360 -90

-60 -30 0 30 60 90

-90 -60 -30 0 30 60 90

0.043 area mean:

B0ntp

cm/year

1993-2001

c.i. 0.5 cm/year

sea surface height anomaly

halosteric component

[ - 512m]

local linear trend

0.0 0.0

0.0 0.0

0.0

0.5

0.0 0.5

0.5

0.5

0.5

0.0 0.0

0.0

0.0 0.0

-0.5

0.5

0.5

0.0

0.0

-0.5

0.0 0.0

0.0

0.0

0.0 0.5

0.5

0.0 0.0

0.0 0.0

0.0

30 60 90 120 150 180 210 240 270 300 330 360 -90

-60 -30 0 30 60 90

-90 -60 -30 0 30 60 90

-0.007 area mean:

B2ntp

cm/year

1993-2001

c.i. 0.5 cm/year

sea surface height anomaly

halosteric component

[ - 512m]

local linear trend

0.0 0.0

0.0 0.0

0.0 0.0

0.0 0.0

0.0 0.0

0.0

0.0 0.0

0.0

0.0

0.0

0.0

0.0 0.0

0.0 0.5 0.0

-0.5 0.0

30 60 90 120 150 180 210 240 270 300 330 360 -90

-60 -30 0 30 60 90

-90 -60 -30 0 30 60 90

-0.014 area mean:

B0ntp

cm/year

1993-2001

c.i. 0.5 cm/year

sea surface height anomaly

halosteric component

[512 - 2250m]

local linear trend

0.0 0.0 0.0

0.0 0.0

0.5 0.0

0.0 0.0 0.0

0.0 0.5

0.0

0.0

0.5

0.0

0.5

0.5

0.0

0.0 -0.5 -0.5

0.0 0.5

0.0 0.0

0.0

-0.5

30 60 90 120 150 180 210 240 270 300 330 360 -90

-60 -30 0 30 60 90

-90 -60 -30 0 30 60 90

0.001 area mean:

B2ntp

cm/year

1993-2001

c.i. 0.5 cm/year

sea surface height anomaly

halosteric component

[512 - 2250m]

local linear trend

0.0 0.0 0.0

0.0

0.0

0.0 0.0

0.0 0.0

0.0

0.0

0.0 -0.5 0.0

0.0

0.0 0.0

0.0

0.0

0.0 0.0

0.0 -0.5

0.0 0.5

0.0

-0.5 0.0

0.0

30 60 90 120 150 180 210 240 270 300 330 360 -90

-60 -30 0 30 60 90

-90 -60 -30 0 30 60 90

-0.037 area mean:

B0ntp

cm/year

1993-2001

c.i. 0.5 cm/year

sea surface height anomaly

halosteric component

[2250m - bottom]

local linear trend

0.5 1.0

0.0 0.0

0.0

0.0

0.0 0.0

0.0 0.0

0.0 0.0

0.0

0.0

0.5

0.0 0.0

0.5

-0.5

0.0 0.0

0.5 0.0

0.0 0.0

0.0 0.5

30 60 90 120 150 180 210 240 270 300 330 360 -90

-60 -30 0 30 60 90

-90 -60 -30 0 30 60 90

0.005 area mean:

B2ntp

cm/year

1993-2001

c.i. 0.5 cm/year

sea surface height anomaly

halosteric component

[2250m - bottom]

local linear trend

Fig. 12: Halosteric sea level trends from ocean model solutions B0ntp (left column) and B2ntp (right column), giving the contribution from the depth ranges (topmost to undermost): [ζ-512m], [512m-2250m] and [2250m-bottom].

Summary

The ocean model fits the altimetric data with equal quality no matter if the additional hydrographic section data are used or not.

The use of the section data in the Weddell Sea results in a much less warming of the global ocean, approximately half the value, than without these data.

The resulting difference in the steric global sea level rise of the ocean model solutions is balanced by the non-steric contribution (net global surface freshwater flux).

On regional scale the differences in the steric part are mainly restricted to the southern hemispere, while the non-steric differences show a distinct global extent.

Not only the thermosteric sea level change is effected by the additional use of Weddell Sea data, but the halosteric part as well.

The steric differences are most evident in the deeper ocean layers.

Corresponding e-mail adresses:

mwenzel@awi-bremerhaven.de jschroeter@awi-bremerhaven.de hhellmer@awi-bremerhaven.de mschodlok@awi-bremerhaven.de

For the Consequences of using different altimeter products on the interpretati-

on of the sea level change 1993-2001 you are invited to visit the OS18 poster by

Wenzel and Schr¨oter on Friday, April 30, board number: P0207.

Referenzen

ÄHNLICHE DOKUMENTE

Figure 6: Sea level change (mm) with respect to the reference model simulation resulting from Greenland Ice Sheet melting of 161 Gt/yr after 5 years (2003-2008), (a) with con-

For the reconstruction of the global and regional sea level we use altimetry data provided on the CSIRO sea level web site. From the available versions the one with no IB

As a result, the water salinity in the Large Aral has grown by a factor of 7 reaching over 80 ppt in the Western basin and 100 ppt in the Eastern basin.... Summary

As a result, the water salinity in the Large Aral has grown by a factor of 7 reaching over 80 ppt in the Western basin and 100 ppt in the Eastern basin.. Summary

Compared to the global mean the regional sea levels within the single ocean

To distinguish between mass variations and steric effects in the measured volume changes of the ocean a global data assimilation experiment was performed.. For this satellite

For both experiments, BRIO2C and B2ntp respec- tively, the main contribution to global sea level rise is given by the linear trend of the (thermo-)steric com- ponent, which is

The analysis of the T/P sea level anomalies reveals large regional variability in the local trends which is well reproduced by the optimized model. The models global mean trend is