• Keine Ergebnisse gefunden

Elliptic grid generation by B-spline collocation

N/A
N/A
Protected

Academic year: 2022

Aktie "Elliptic grid generation by B-spline collocation"

Copied!
10
0
0

Wird geladen.... (Jetzt Volltext ansehen)

Volltext

(1)

Elliptic Grid Generation with B-Spline Collocation

PhilippLamby

Karl-HeinzBrakhage

InstituteforGeometryand AppliedMathematis

RWTH AahenUniversity

Templergraben55,52078Aahen, Germany

flamby,brakhagegigpm.rwth-a ahe n.de

Abstract

Werevisitthelassialtehniqueofelliptigridgenerationwithharmoni

mappings. Forthedeterminationoftheontrolfuntionsweusetheframe-

work developedbySpekreijse [1℄. However,insteadwithnite dierenes

we disretize the underlying partial dierential equation with a B-spline

olloationmethodinordertoworkdiretlywiththenativedatarepresen-

tations of ourCAGD system. This way weanmake useof the sparsity

and aurayof theB-spline boundaryrepresentationsand guaranteethe

geometrionsistenyofourCADmodels. Inthispaperwewillsummarize

theunderlyingalgorithmsandpresentsomerstappliationexamples.

Introduction

Inthe ontextof thedevelopment ofanewadaptiveNavier-Stokessolver

quadflow whih aims at the simulation of uid-struture interation at

airplanewings,f. [3℄,anewgridgenerationmodulehasbeenimplemented

whihisbasedontherepresentationofthegeometrywithparametrimap-

pings. AsinmanyommonCADsystemsfreeformurvesandsurfaesare

represented by B-splines. From this parametri representations adaptive

gridsareomputedbyfuntion evaluation. Conretely,withinthissystem

urvesarerepresentedbyB-splinesoftheform

x(u)= N

X

i=0 p

i N

i;p;U

(u); (1)

planargridsandsurfaesaremodeledbybivariateB-splinetensorproduts

x(u;v)= N

X M

X

p

i;j N

i;p;U (u)N

j;q;V

(v) (2)

(2)

x(u;v;w)= N;M;L

X

i;j;k =0 p

i;j;k N

i;p;U (u)N

j;q;V (v)N

k ;r;W

(w): (3)

HereU;V;W arenon-dereasingandnon-stationaryknotsequenes,i.e.,

U =(u

i )

N+p 2

i=0

: u

0 u

1

:::u

N+p 2

; u

i+p

<u

i

; (4)

andN

i;p;U

denotesthei-thnormalizedB-spline-funtionoforderpdened

bythereursion

N

i;1;U (u)=

(

1 ifu

i

u<u

i+1

0 otherwise

; (5)

N

i;p;U (u)=

u u

i

u

i+p 1 u

i N

i;p 1 (u)+

u

i+p u

u

i+p u

i+1 N

i+1;p 1

(u): (6)

B-splineurvesarepieewisepolynomialsofdegreep 1. Usuallywehoose

p = 4, i.e. ubi splines, and knot sequenes with p-fold knots at the

interval ends. This has the advantage, that the knot sequene interval

oinides with theparameterintervalof the urve, that therst and last

ontrol pointoinide withthestartandend pointof theurve,and that

therstandlastspanoftheontrolpolygonaretangentialtotheurveat

thestartandendpointoftheurve. Inmanypratialasesnon-uniform

knotsequenes are onstruted, for instane in the ourse of anadaptive

approximationor interpolationproedure. Multiple interiorknots an be

usedtomodelnon-smoothfeaturesofanobjet.

Grid Generation Equations

Inordertogeneratesmoothgrids,alltheommontehniquesofstrutured

gridgeneration,namelytransniteinterpolationandmethodsbasedonthe

solutionofpartialdierentialequationsareapplied. Inthispaperwewant

to integrate anellipti grid generation tehniqueinto our CAGD system.

OurhoiewasforSpekreijse'sapproahwhihanbeverybrieysumma-

rizedas follows: letx(s) be aharmoni mappingfrom the d-dimensional

parameterspaeP ontothephysialdomainCands()beaso-alledon-

trolmappingfromtheomputationaldomainContotheparameterdomain

P. Thentheompositemapping

x(s()): C !D (7)

fulllsadierentialequationoftheform

L(x)= d

X

g

ij

2

x

i

j +

d

X

P

k x

k

=0

(8)

(3)

P

k

= d

X

i;j=1 J

2

g ij

P k

ij

; (9)

J =detx 0

() is the Jaobianof the omposite mapping, the g

ij and g

ij

aretheovariantandontravariantmetritensorsdenedby

g

ij

= x

i

x

j

; d

X

k =1 g

ik g

k j

ij

; (10)

theP k

ij

aretheomponentsofthevetor

P

ij

= T

1

2

s

i

j

; (11)

and T =s 0

() istheJaobianmatrixoftheontrol mapping. The aimof

thispaperistosolvethisPDEwithaB-splineolloationmethod.

B-Spline Collocation

Thegeneralideaofolloationistodetermineafuntion,sothatitexatly

satisesthedierentialequationatertainpoints,theolloationpoints. In

awayolloationissimilartointerpolation,butinontrasttointerpolation

we donotmath funtion valuesbut ertain ombinationof funtion and

derivative values. In order to simplify the notation we onentrate onto

the bivariate ase from now on and denote the Cartesian oordinates of

the omputational domain, the unit square, with = (u;v) and of the

parameterdomainwiths=(s;t). Hene,wesearhafuntionoftheform

(2)whihfullls

Lx(^u

i

;v^

j

)=0; i=1;:::;N 1; j=1;:::;M 1 (12)

atertainolloationpointsu^

i ,^v

j

andDirihletboundaryonditionsforthe

ontrol pointsp

0;j , p

N;j

,j =0;:::;M andp

i;0 ,p

i;M

, i=0;:::;N. The

task is nowto hoose appropriateolloation pointsfor theonguration

athand.

The most popular B-spline olloation sheme is Gauÿ olloation with

ubiHermite-splines. Itsappliationtoelliptigridgenerationhasalready

beeninvestigatedbyManke[2℄. Herein eahknotintervaltheolloation

points arethe absissaeof Gaussian quadraturerules. An obviousaveat

isthat in apreproessing steponehastomakeallinteriorknots two-fold

by knot-insertion, and that therefore the resulting grid will be only C 1

.

(4)

u

i

= i+p

X

k =i+1 u

k

; (13)

asolloationpoints. ThishoieismotivatedbytheShoenberg-Whitney

theorem,seereferene[4℄,whihsaysthattheinterpolationproblemx(^u

i )=

f

i

is well posed if, and only if, everyu^

i

lies in the support of the i th

B-splinefuntion,i.e., ifN

i (^u

i

)>0. Asoneaneasilyverify,theGreville

absissae always give a set of as many distint points, as the spline has

ontrol points and they fulll the onditions of the Shoenberg-Whitney

theorem. Thisolloationshemefreesusfrom theneessitytoinsertad-

ditionalknotsinourtensorprodutrepresentations. Adisadvantage,how-

ever,isthatolloationattheGrevilleabsissaedoesnothavetheoptimal

onsistenyorder.

The Shoenberg-Whitney theorem is also the reason why we do not use

astandardnite diereneodefollowedbyaninterpolationalgorithm in

order to generateellipti B-spline grids: a typialnite dierene ode is

basedon the assumption that thegrid points x

i;j

are numerialapproxi-

mationsof regular spaed valuesx(ih

u

;jh

v

). However,depending onthe

strutureof theunderlying splineit ouldbeomeneessaryto work with

unevenlyspaedgridsinordertofulllthestipulationsoftheShoenberg-

Whitneytheorem duringtheinterpolationproess.

Application Example

Theafore-mentionedolloationshemeshavebeenimplementedandtested

forplanargrids,surfaesandvolumegrids. Inordertosolvethesystemswe

just followthestandardapproah anduseaxedpoint iteration,freezing

themetrioeientsinEquation(8)inordertogetalinearsysteminevery

single iteration. Then we apply the olloation sheme to the linearized

equations. Thearisingsparselinearsystemsaresolvedwithadiretsolver.

This kind of implementation is not well suited to solvebig systems with

maximumeieny, buttheaimofthe urrentstudywasnottoompare

theeieny of theimplementation (thishasalreadybedonein [2℄),but

tostudytheprinipalvalidityofthemethod.

Asarstappliationwepresentthegridinablokthatistakenfromagrid

foradual-bellonguration,seeFigure1. Theboundariesareapproxima-

tivelyparameterizedbyarlength,sothat weanusetheidentimapping

asontrolmapping. Hene,allontrolfuntionsP k

ij

arezeroandtheresult-

inggridmappingisharmoni. However,thespaingof theontrolpoints,

(5)

resolvethedierent featuresof thenozzle ontourandfrom the neessity

tomutuallyinserttheknotswhiharenotpresentintherepresentationof

the opposite boundary in order to build a tensor produt. However, the

resultingnumerialgrid, whih is omputedby evaluation of theB-spline

funtion hasthedesiredsmoothnessproperties.

Figure1. Control pointsand harmoni meshfor thedual bell.

Boundary Orthogonality

InSpekreijse'sapproahthere remains theproblem to determinesuitable

ontrol funtions in order to inorporate desired features into the grids.

In order to nd a ontrol mapping that ensures boundary orthogonality

Spekreijseproposestoproeedasfollows. Letusassumethatafolding-free

gridx()isalreadyavailable. Thisgridmaybe,forinstane,atransnite

interpolantorthesolutionofthepurelyharmonigridgenerationsystem.

Thenin therststepwesolvethetransformedLaplae equation

div(Agrads)=0 (14)

where

A=J

g 11

g 12

g 12

g 22

= 1

J

g

22 g

12

g g

: (15)

(6)

ditions, in partiularwerequires=n=0at theboundariesx(u;0) and

x(u;1) and t=n=0at the boundariesx(0;v) andx(1;v) ofthe physi-

al domain. Thesolution ofthis problem givesus aone-to-one boundary

mappingC !P. Intheseondstepweomplete thisboundarymap-

pingtoasuitableontrolmappingthatfulllstheorthogonalityonditions

t=u= 0along the boundaries u= 0and u= 1 and s=v = 0along

theboundariesv=0andv=1usinganalgebraigridgenerationmethod.

Forthedetailsofthismethod wehavetoreferto[1℄.

Whereasthedisretization ofEquation8byolloationisstraightforward

itismoreonvenienttodisretizeequation14withanitevolumemethod.

For this we observe that for any ontrol volume in the omputation

domaintheequation

Z

(grads;An)d=0 (16)

holds. Of ourse, asontrol volumes we will hoose intervalsof the form

[u

i

;u

i+1

℄[v

j

;v

j+1

℄. Againwe wanttorepresent theontrol mappingas

tensor produtB-spline. Therefore, theintegralovertheboundaryofthe

ontrolvolumeisomposedofsegmentsoftheform

Z

ui+1

u

i

(grads;An)d= Z

ui+1

u

i

s

u

s

v

;A

0

1

d

= X

i;j p

ij

N

j (v)

Z

ui+1

ui N

0

i (u)

g

12

J

du+N 0

j (v)

Z

u2

u1 N

i (u)

g

11

J du

and

Z

vj+1

vj

(grads;An)d= Z

vj+1

vj

s

u

s

v

;A

1

0

d

= X

i;j p

ij

N

i (u)

Z

vj+1

v

j N

0

j (v)

g

12

J

dv+N 0

i (u)

Z

vj+1

v

j N

j (v)

g

22

J du

:

The integralsin the brakets enter the matrixof the disretized problem

and anheaplybe evaluated by quadratureformulas. Inorder to get as

many equations as ontrol points weenter the ontrol volumina around

theGrevilleabsissaebyhoosing

u

i

= 1

2 (u

i 1 +u

i

); i=1;:::;N 1; u

0

=0; u

N

=1

v

i

= 1

2 (v

j 1 +v

j

); i=1;:::;N 1; v

0

=0; v

M

=1

(17)

Theboundaryonditions=ntransformsto(grads;An)=0attheorre-

(7)

evaluationoftheresultingorthogonalgrid,Figure3showstheorrespond-

ingontrolmappingandadetailviewatthenozzlethroat.

Figure2. Control points andorthogonal meshfor thedualbell.

Figure3. Control Mapand DetailView

(8)

Convergence and Stability Matters

Theaboveexampleshowsthatinprinipletheolloationmethodpresents

aviablemethodto integrateelliptigrid generationstrategyinto aspline

basedCAGDsystem. However,itturnsoutthattherearealsosomeom-

pliations. Firstsignsfor these problemsalreadyreveal themselvesin the

followingonvergenestudy.

Figure 4. Cosine Testase

Weonsider asimpleretanglewherethelowersidehasbeenreplaedby

a osine-like ar, see Figure 4, and ompare the L

2

-residual of the fully

onvergedsolutions,i.e.,thesolutionwegetwhenthexedpointiteration

doesnotimprovethesolutionanymore.

Gauÿ Greville

N r

N

:=kL(x)k

2 r

N =2

=r

N r

N

:=kL(x)k

2 r

N =2

=r

N

10 4.832e+2 4.757e+2

20 3.138e+2 1.54 2.916e+2 1.63

40 1.233e+1 2.55 1.480e+1 1.97

80 6.146 2.01 5.939 2.49

160 2.570 2.39 1.988 2.99

Figure 5. Convergenebehavior ofthe osinetestase.

Firstofallweobservethat theGauÿolloationshemedoesnotprodue

better onvergene faster than the Greville olloation sheme, although

theorypreditsfourthorderonvergenefortheformerandonlyseondor-

derforthelatter. (WeanindeedobservetheseratesforthelinearLaplae

(9)

the Greville sheme. One reason for this might be the very bad ondi-

tion of the olloation matries whih typially goes with N o

where o is

the order of the sheme. However,from the geometri pointof viewthe

resultis notentirelysatisfatory either. Asis wellknown, harmonigrid

generation systems have the tendeny to push away the grid lines from

onaveboundaries. Espeiallyifonetriestoapplytheolloationsheme

withveryoarseontrolnetsthistendeny seemstobeevenaentuated.

Figure 4,for example,showsthe resulting1010 ontrol pointgrid and

theorrespondinggridevaluation. Thisdefetdisappearsin theourseof

extensivegridrenement, but only veryslowly. Forinstane, in theeven

moreextremeexampleofFigure6oneneedsmorethan160ontrolpoints

ineahoordinatediretionbeforethegridlinesstarttoonvergetowards

theboundary. TheFigureitselfshowstheresultofthedisretizationbased

on4040ontrolpoints.

Figure6. Disretization with4040ontrol points

Atthisplaeitis interestingto note,that thesolutionof thetransformed

Laplaeequation(14)analsobeusedtoomputeforanygivengridmap-

pingx(u;v)aorrespondingontrolmappings(u;v). Thisanbedoneby

replaing theNeumannboundaryonditionsby standardDirihletondi-

tions. Figure7showstheontrolmappingthatorrespondstothegridsin

Figure6. Theaberrationofthisgridfromtheidentimappingisobviously

ausedbythedisretizationerror.

Conclusion

The here proposed olloation sheme presents a useful method to real-

ize ellipti grid generation methods diretly on B-spline representations.

(10)

FollowingSpekreijsethiswouldaordtheomputationofappropriateon-

trolmappings viasolutionofthebiharmoniequation. This, however,has

notyetbeenimplementedforB-spline grids. Sinein [2℄Mankedoesnot

reportsimilarproblems,itmightwellbethatmethodswhihomputethe

ontrol funtions iteratively are a reasonable alternative in this ontext,

too.

Acknowledgments

ThisworkhasbeenandperformedwithfundingbytheDeutsheForshungs-

gemeinshaft in theCollaborativeResearh Center SFB401 "Flow Modu-

lation and Fluid-Struture Interation at Airplane Wings"of theRWTH

Aahen,UniversityofTehnology,Aahen,Germany.

References

[1℄ StefanSpekreijse.ElliptiGridGenerationBasedonLaplae-Equations

andAlgebraiTransformations.J. Comp. Phys.,118:3861,1995.

[2℄ J.W. Manke. A Tensor ProdutB-Spline Method forNumerialGrid

Generation. J. Comp. Phys.,108:1526,1993.

[3℄ FrankBramkamp, Philipp Lamby, and Siegfried Müller. An adaptive

multisalenitevolumesolverforunsteadyandsteadystateowom-

putations. J.Comp. Phys.,197:460490,2004.

Referenzen

ÄHNLICHE DOKUMENTE

Notice now that to complete phase 2, we need to progress the sequence of advance firefighters ‘upwards’ (by looking at Figure 4) so that it reaches the same ‘horizontal’ (again..

Tarang, Stability of the spline collocation method for second order Volterra integro-differential equations, Mathematical Modelling and Analysis, 9, 1, 2004, 79-90....

The Maximum Scatter Traveling Salesman Problem (Maximum Scatter TSP) asks for a closed tour in a graph visiting each node exactly once so that its shortest edge is as long as

‘Being moved’ and ‘moving’ constitute the back- ground of the cruise ship’s comprehensive atmo- spheric dimension of ‘movement’. This dimension of the atmospheric

Hier präferiert FROMM die Formulierung von Gegensätzen, obwohl es auch gute Gründe für das Unterschiedsverfahren gibt (etwa wenn ein Gegensatz entlang der genannten Elemente

Diese Entkoppelung der Konstrukte führt zwar zu einer komplexeren Matrix, da nicht mehr beide Konstruktpole in einer Zeile dargestellt werden können, sondern für jeden

application consists in composing a matrix (Grid) from elements in columns and constructs in lines in which each element (object, O) is set in relation with every

departmental environments; Sun ONE Grid Engine Enterprise Edition for Enterprise Grids; the HPC Cluster Tools for HPC and parallel applications; the Sun ONE Grid Access Portal for