• Keine Ergebnisse gefunden

Importance of Soil Moisture

N/A
N/A
Protected

Academic year: 2022

Aktie "Importance of Soil Moisture"

Copied!
16
0
0

Wird geladen.... (Jetzt Volltext ansehen)

Volltext

(1)

Real Thermal Inertia for Soil Moisture Estimation in Agricultural  Areas using Airborne Remote Sensing

Daniel  Spengler1, Andreas  Steinberg1, Christian Hohmann1, Friedhelm Schwonke2& Sibylle Itzerott1

1Helmholtz‐Centre Potsdam ‐GFZ German Research Centre for Geosciences

2Federal Institute for Geosciences and Natural Resources ‐BGR

(2)

Water – Essential for Life on Earth

70.9% of earth surface is covered by water

Earth‘s water distribution (after Gleick, 1996)

(3)

Importance of Soil Moisture

Soil Moisture controls distribution of:

Infiltration and surface run‐off Incident solar radiation in soil  sensible and latent heat fluxes

Soil moisture is one of the most  important geophysical parameter e.g. 

for climate or hydrological modelling,  agriculture

Links between soil moisture and atmospheric (after Entekhabi et al. 1996)

(4)

Quantification Methods of Soil Moisture

methods for quantification of surface soil moisture

direct indirect

electric  properties

point area

radiation  methods

acoustically  methods

thermal  inertia

chemical  methods gravimetric/ volumetric

microwaves optical properties

e.g. TDR,  FDR

e.g. 

Cosmic Ray passive active

thermal  inertia thermal 

inertia methods for quantification of surface soil moisture

indirect

area

(5)

Thermal inertia [P]

Response of a material to temperature changes

Thermal inertia of soil cannot be measured by remote sensing techniques directly 

models needed

k thermal conductivity p density

c specific heat capacity

(6)

Diurnal Temperature Variation versus Soil Moisture

Simple Approach of Apparent Thermal Inertia – ATI

(Price 1977)

1

=   Albedo

=   Temperature change during the  caption of two thermal data sets

Limitation:

- No consideration of solar declination

- Overestimation of the influence of albedo - Further effects not considered:

eg. wind, roughness, evapotranspiration of vegetation etc.

ATI model does not meet the requirements of precise soil moisture retrieval

Real Thermal Inertia

(7)

Outline

Experimental Design Data Acquisition

Real Thermal Inertia 2 Times Model  Results

Outlook

(8)

Multitemporal Experiment 08.07.2013 – 5 PM

08.07.2013 – 8 PM 09.07.2013 – 5 AM 09.07.2013 – 9 AM 09.07.2013 – 1 PM

in situ measurements of surface

temperature, soil temperature and soil moisture close to acquisition time

162 target points at different landuses

2013 Thermal Campaign

TERENO‐Northeastern German Lowland  Observatory / DEMMIN® Testsite

(Detailed Information – Poster Session on Tuesday)

Installed by DLR Neustrelitz in 1999 Since 2009 cooperation in TERENO‐NE  (coordinated by GFZ Potsdam)

‐ strong expansion of instruments 40 agro‐meteorologic stations (20 DLR, 20 GFZ)

62  soil moisture stations

Site I

Site II

(9)

Marcin Wozny (BGR)

Trägerplattformen Data

Thermal (BGR Hannover)

Infratec VarioCam hr head 600

Spatial Resolution: 

640 x 480 Pixel

Spectral coverage :  7 – 14 μm

Hyperspectral (UFZ Leipzig)

AISA Dual        df

Spatial Resolution: 

300 Pixel across track

Spectral coverage :  0.4 – 2.5 μm

AISA Eagle (VNIR) | AISA Hawk (SWIR)

(10)

Diurnal variation of surface Temperature

5°C 26°C

3 UTC 7 UTC 11 UTC 15 UTC 18 UTC

water 16,2 16,5 17,9 17,5 17,3

winter barley 10,4 17 22,5 20,4 17,3

sugar beet 11,3 16,5 20,4 18 14,3

forest 11,5 15,7 19,5 19 16,9

10 12 14 16 18 20 22 24

Temperature [°C]

water winter barley sugar beet forest

(11)

Diurnal variation of surface temperature

Multitemporal mosaic (3 UTC / 11 UTC / 18 UTC) 

Differences of thermal inertia

- between crop types - within fields

Potential reasons

Variations of internal factors - plant density

- plant vitality

( plant water content) - soil type

- soil moisture

(12)

Real Thermal Inertia 2 Times Model

INPUT

Variable Input Parameter

Albedo Hyperspectral Image Data

Constant Input Parameter

solar Radiation

solar declination

latitude of observation

longitude of observation

Calculation Result

Real Thermal Inertia Image

Diffusion Equation with linearized boundary

conditions

solved with Fourier analysis assuming two coefficients of the series development are

nearly equal

(after Carslaw and Jaeger, 1959) 2 1 1 1

1 1 1

2 ²

low high

• compensation of albedo effects

• compensation of solar effects

0 10 20 30 40 50

2 Thermal Images

Hyperspectral Image

Temperature [°C]

(13)

PLSR results for winter barley (08./09.07.2013)

Winter barley

(14)

PLSR Results for sugar beet (08./09.07.2013)

Sugar beet

(15)

Discussion and Outlook

Good results for areas with low vegetation cover (< 50%) Actual no consideration of evapotranspiration

Integration of evapotranspiration needed for vegetation covered areas Refine algorithm for combination with hyperspectral data

Combination with data of TERENO DEMMIN agro‐meteorological and soil moisture  network

Outlook

source:

Sobrino et al. / Remote Sensing of Environment 117 (2012) 415-428

(16)

Thank you for your attention

Contact:  Dr. Daniel Spengler

daniel.spengler@gfz‐potsdam.de

Referenzen

ÄHNLICHE DOKUMENTE

Supplementary Figure S2: Soil moisture at 10 cm below surface [ % (percentage of volumetric water content)] and soil temperature at 10 cm below surface (°C) over the Experiment

Results, the concept and elements of GROW Having used the model described above, the following major elements and tools have been developed to support the public en-

Establishment of a dense network of in situ measurement can bridge the gap in spatial resolution of in situ and satellite ‐ based soil moisture measurements enabling validation

ASCAT SSM product is the result of an im- proved SSM retrieval algorithm developed at the Institute for Photo- grammetry and Remote Sensing (IPF) of the Vienna University of

 We explore the issue as to whether soil moisture initialization is relevant for decadal predictions with focus on extreme periods which has not been attempted in this time scale up

Neutrons are measured at the the horizontal scale of a few hectometers and vertical scale of a few decimeters with the use of cosmic-ray probes (stationary or mobile)...

• Groundwater model e.g., ParFlow can simulate vertical flux of soil moisture, combined with integrated surface and sub-surface drainage.. • Aggregation of slope with

Sensing Global Surface Soil Moisture Using NASA’s SMAP Mission and its Applications to Terrestrial Water, Energy and Carbon Cycles.. Dara Entekhabi (MIT) SMAP Science