• Keine Ergebnisse gefunden

Image Quality – Quantifying Quality?

N/A
N/A
Protected

Academic year: 2021

Aktie "Image Quality – Quantifying Quality?"

Copied!
35
0
0

Wird geladen.... (Jetzt Volltext ansehen)

Volltext

(1)

Image Quality – Quantifying Quality?

Stephan Scheidegger, 2015

Image Quality – Quantifying Quality?

Contents

Motivation

Mathematical representation of image and imaging process

From quality to quantity?

Low contrast detectability: 

Contrast, SNR, CNR, 

Noise characteristics: NPS

High contrast detectability: 

MTF

CDC, DDC

Model observers – observer models

Phantoms

ROENTGENTECHNIK

STRAHLENBIOLOGIE

GRUNDLAGENRADIOLOGIE

STRAHLENPHYSIK

(2)

Why are we trying to measure Image Quality?

Different reasons – different tasks:

Performance: system suitable for clinical rasks?

Clinical relevant quality (Model Observer)

Optimisation: system working at optimal point (ALARA)?

Comparison of quality with applied dose (e.g. DDC with CTDI)

Quality control: Change in systems performance?

Comparison of a measure representig systems performance with the base line (e.g. DQE, NPS, MTF etc.)

Mathematical Image Representation

Different concepts (models):

2Dim.‐Functions (continuous models)

Matrices (discrete representation – pixel‐model)

Vector‐representation (Dim.=k x l x 1 resp. kx lx 3 for RGB)

   

( , ) ( , , )

...

( , ) ( , )

( , )

I x y t O x y z t

I x y F P x y S u v FFT F FFT P

 

 

A ( , , )

...

( , ) ( , )

H

kl

kl k l

A

I O x y z

I P x y W x x y y dx dy



I S N

M

(3)

From Quality to Quantity?

technical clinical

Observer impression

numbers

MTF, NNPS DQE, SNR CNR CDC / DDC

Alternative Force Choice  AFC

Visual Grading Analysis VGA

Receiver Operating Characteristics ROC

Line pair TO

Image Quality – Image Characteristics

Qualities to quantities

Scharpness (spatial resolution,  esp. High‐contrast resolution)

Gray level (distribution),  dynamic range

Contrast

Noise

… others like uniformity, lag & 

ghosting

(4)

Image Signal – Gray Levels, Blackening & Co.

Image signal representation

Blackening in film‐screen  systems: optical density

Gray level displayed on a  monitor (8 or 10 bit resolution,  256 – 1024 levels)

Gray level stored in a image file (12 bit – 4096 levels)

CT numbers, HU (12 bit,  extended 12 bit)

Image Signal – Gray Levels, Blackening & Co.

Gray level – optical density

By definition adapted to visual process (and range!)





I Dopt log Iref 0.5

1.0 2.0 3.0

(5)

Image Signal – Visual Contrast Detection

Visual range & «contrast resolution»

Visual range approx. 10 bit (env. 900 gray scales)

Thresholds!

(1) (2)

max min

max min

(Michelson)

opt opt

nm kl

m

C D D

C I I

I I

C I I

Image Signal – Visual Contrast Detection

LC detectability Contrast C

(6)

Contrast & Dose: Gradation Curve

1 1000

Dopt

D S Gy

Contrast & Dose: Gradation Curve

usable range

(7)

Gradation Curve

flat

steep

Contrast & Dose: Gradation Curve

Image range

= usable range?

(8)

Gray Scale to Dose: CR System

0 0.0002 0.0004 0.0006 0.0008 0.001 0.0012 0.0014 0.0016 0.0018 0.002

2000 2500 3000 3500 4000

x (12bit)

c / mGy/x(12bit)

cf (meas) cf (calc)

Good contrast?

(9)

Image Quality and Optimisation

1 1

, ,...

( ; ,...)

( ; )

PMMA PVC

HU HU

SNR HU kV CNR HU kV

1 1

( ), ( )

c kV w kV

Parameter Set 1

kV1 Parameter Set 2

kV2

2 2

, ,...

( ; ,...)

( ; )

PMMA PVC

HU HU

SNR HU kV CNR HU kV

1 1

( ; ,...)

( ; )

SNR I kV CNR I kV

2 2

( ; ,...)

( ; )

SNR I kV CNR I kV

2 2

( ),

( )

c kV w kV

(10)

Low‐Contrast‐Detectability: Signal – to – Noise Ratio  SNR

Sources of noise:

Quantum noise

Detector noise

More clinical: «decision noise!»

Often used: additive noise model: IN(x,y) = I(x,y) + N(x,y)

1 1

1 ( , )

( ) ( )

N M

n m

n m

nm nm

HU x y N M HU

SNR s HU s HU



Noise level 20%, r= 2 pixel Noise level 5%, r= 2 pixel

Noise level 10%, r= 2 pixel

(11)

Dose-dependence of noise (CR-system)

1 1

1 ( , )

N M

N M n m

n m

R I x y

s N M

  

0 20 40 60 80 100 120

0 0.5 1 1.5 2 2.5

Dose / mGy

R(101x101) 73 kV

90 / 125 kV (125 kV)

(12)

CT: Tube current and noise

Low‐Contrast‐Detectability: Contrast – to – Noise Ratio  CNR

Simple approach: Difference of  SNR in two compared ROI’s

Usefull for relative signal detection with threshold?

2 1

12

, 2( ) , 1( )

Pos Pos

nm Pos nm Pos

HU HU

CNR SNR

s HU s HU

 

(13)

Low‐Contrast‐Detectability: Contrast – to – Noise Ratio  CNR

CNR =  ‐0.007

CNR =  0.03

Is CNR a usefull quantity?

upper threshold

lower threshold signal

upper threshold

lower threshold signal

Increasing noise

(14)

+ Noise Stochastik Resonance!

Nosie Characteristics?

(15)

Noise Characteristics CT

Miéville et al (2012): Effects of computing parameters and measurement locations…Phys Med

(16)

Marshall N: The diagnostic Xray perspective, UZ Leuven

Noise Characteristics: NPS

High‐Contrast‐Resolution

Observer‐based vs. 

calculated:

Line pairs (lp / mm)

Modulation transfer function MTF HC resolution

(lp / mm)

a) 73kV 32mAs b) 90kV 8mAs

(17)

FT

(18)

Modulation Transfer Function MTF

Modulation Transfer Function MTF

(19)

Results without Noise

ROI with high contrast edge: 

no filter (1); r= 0.5 p (2); r= 1  p (3); r= 2 p (4); r= 4 p (6); r 12 p (8)

MTF high C

-0.2 0 0.2 0.4 0.6 0.8 1 1.2

0 0.2 0.4 0.6 0.8 1

lp / pixel

MTF

Reihe1 Reihe2 Reihe3 Reihe4 Reihe5 Reihe6 Reihe7 Reihe8

initial

Gaussian filter r= 4 pixels

-50 0 50 100 150 200 250 300

-8 2 12 22 32

Position / pixel

Grey Value

Reihe1 Reihe2 Reihe3 Reihe4 Reihe5 Reihe6 Reihe7 Reihe8

MTF high C

-0.2 0 0.2 0.4 0.6 0.8 1 1.2

0 0.2 0.4 0.6 0.8 1

MTF

Reihe1 Reihe2 Reihe3 Reihe4 Reihe5 Reihe6 Reihe7 Reihe8

(20)

Gaussian filter r= 12 pixel initial

Gaussian filter r= 4 pixels

-50 0 50 100 150 200 250 300

-8 2 12 22 32

Position / pixel

Grey Value

Reihe1 Reihe2 Reihe3 Reihe4 Reihe5 Reihe6 Reihe7 Reihe8

MTF high C

-0.2 0 0.2 0.4 0.6 0.8 1 1.2

0 0.2 0.4 0.6 0.8 1

lp / pixel

MTF

Reihe1 Reihe2 Reihe3 Reihe4 Reihe5 Reihe6 Reihe7 Reihe8

MTF high C

-0.2 0 0.2 0.4 0.6 0.8 1 1.2

0 0.2 0.4 0.6 0.8 1

lp / pixel

MTF

Reihe1 Reihe2 Reihe3 Reihe4 Reihe5 Reihe6 Reihe7 Reihe8

MTF(50)

(21)

MTF high C

-0.2 0 0.2 0.4 0.6 0.8 1 1.2

0 0.2 0.4 0.6 0.8 1

lp / pixel

MTF

Reihe1 Reihe2 Reihe3 Reihe4 Reihe5 Reihe6 Reihe7 Reihe8

MTF(50)

Modulation Transfer Function MTF

(22)

Results with Noise

Gaussian filter with r= 0.5 pixel, no  noise (blue), 10% Gaussian noise  (yellow), 20% Gaussian noise (pink)

0 0.2 0.4 0.6 0.8 1 1.2

0 0.2 0.4 0.6 0.8 1

Results with Noise

ImageJ: MTF with no noise vs. 

MTF with noise, at high 

contrast level: (a) Gaussian filter with r 

= 4 pixels, noise level 5%; (b) Gaussian filter  with r = 0.5 pixel, noise level 20%; (c)  Gaussian filter with r = 0.5 pixel, noise level  10%

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0 0.2 0.4 0.6 0.8 1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0 0.5 1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0 0.5 1

(23)

Optimisation of CR-Systems

b) 73kV 2mAs

a) 73kV 32mAs c) 90kV 8mAs d) 125kV 4mAs

Optimisation of CR Systems

(24)

Modulations-Transfer- Funktion

0 0.5 1 1.5 2 2.5 3 3.5 4

0 0.5 1 1.5 2 2.5

Dose / mGy

MTF / lp/mm

MTF50 MTF80 1.0

0.5

0.3 0.8

5 10 15 20

0 0.0

Bildfrequenz / (lp/mm)

MTF

( ) ( ) 2 ix

MTF L x e   dx



Modulation Transfer Function MTF: 

Iterative Reconstruction MTFtotal  k MTFk

MTF 50 Abdomen (Siemens Force Abdomen 2.0 Br36 3) 0.227 Abdomen (Siemens Force Abdomen 2.0 Br36 4) 0.239 Abdomen (Siemens Force Abdomen 2.0 Br36 5) 0.2435

Richard et al. (2012): Towards task‐based assessment of CT performance. Med Phys

(25)

Alternative Approach

Images:[1]

Contrast‐detail curve[1, 2, 3]

Alternative Approach

(26)

Alternative Approach

Thorax Protocol 

@ 120 kV B70s

92.5mA/7.62CTDI

69mA/5.83CTDI

58.75mA/4.93CTDI

No Window Window C40  W300

Window C300  W1500

(27)

Images using different windows

Pelvis Protocol

@

80 kV

100 kV

No Window Window C40 W300 Window C300  W1500

Aproach for obtaining CDC and DDC

Registration

CT Image

Template Image

(28)

Approach for CDC and DDC

Paired point matching using ICP

Affine Transformation T

(29)

Model Observers – Observer Models

Aims

Standardized observer

To mimic psychophysiological aspects of recognition

To cover image quality close to the clinical need

1 0

0 1

0 1

2 2

: H

: H( )

;

1 1

2 2

b

b s

H H

t

t

H H

H H

t t

t SNR

I I N

I I I N

T I

Choosing the «Right Phantom» … ?

(30)

Dental Volume Tomography DVT

ZHAW Head Phantom

High contrast resolution: 

Bony structures (skull and spine / vertebral body)

10 cm and 30 cm DLP  accessible

SNR and MTF

(31)

EMI‐Scanner 1972

(32)

CT ‐Definitionen

1 ( )

CTDI D z dz h



 

Computed Tomography Dose Index CTDI:

• Gesamte Dosis (inkl.

Streustrahlung) auf Schicht aufgerechnet, entlang einer Linie parallel zur Rotations- achse

• Dosismass pro Schicht

z D(z)

CTDI

CT - Definitionen

100, 100,

1 2

3 3

w c p

CTDI CTDI CTDI

Gewichteter CTDI:

• Mittelung zwischen peripheren und zentralen CTDI

• getrennt für Kopf- und Rumpfphantom gebildet (PMMA, Durchmesser 16 cm bzw. 32 cm)

(33)

Standard CTDI Phantom

too short (15 cm)

does not correspond to patients anatomy

does not allow testing AEC

no image quality measured simultaneously

Clinical Protocolls: AEC, Overranging, Dose Profiles

(34)

Optimisation: Impact toDLP, CTDI, MSADandE

z D(z)

CTDI

Risk (E)

( ,...)

Luft Mittel

EDLP f kV

1 ( , , ,...)

Organ z Luft

z

H

CTDI f Organ z kV p

T T T

Ew H

CT - Dosis-Ermitlung

Abschätzung der effektiven Dosis:

• aus Dosis-Längen-Produkt DLP

• und aus Mittelwert der Dosiskonversionsfaktoren

Luft Mittel

E DLP f

(35)

Körper- Abschnitt

Frauen (mSv/

(mGy*cm)

Männer (mSv/

(mGy*cm)

Kind (7J) weibl.

(mSv/

(mGy*cm)

Kind (7J) männl.

(mSv/

(mGy*cm)

Säugling weibl.

(mSv/

(mGy*cm)

Säugling männl.

(mSv/

(mGy*cm)

Schädel 0.0022 0.0020 0.0028 0.0028 0.0075 0.0074

Hals 0.0051 0.0047 0.0056 0.0055 0.018 0.017

Thorax 0.0090 0.0068 0.018 0.015 0.032 0.027

Ober-

bauch 0.010 0.0091 0.020 0.016 0.036 0.034

Becken

(Frau) 0.011 0.0062 0.018 0.011 0.045 0.025

Abdomen 0.010 0.0072 0.019 0.014 0.041 0.031

Mittelwerte fmittel

Frage: Welche effektive Dosis ist zu erwarten?

Referenzen

ÄHNLICHE DOKUMENTE

As a result of this offset frequency, the time delay between pairs of pulses from the lasers is repetitively ramped between zero and the inverse laser repetition rate

The procedure for developing a spatial GHG inventory for the residential sector consists of the following steps (Fig. 2): (1) preparation of input data; (2) assessment of energy

Prism-map of specific GHG emissions from all anthropogenic sectors without LULUCF in the Silesia region (CO 2 -equivalent, Gg/km 2 , square root scale, 2 x 2 km, 2010). Rybnik

Modelled nitrate and ammonium (µg m −3 ) concentrations fields calculated for the summer (left) and the winter (right) season.... Annual and seasonal scores calculated using the

We propose a novel rendering approach based on smooth trivariate splines defined w.r.t.. uniform

We have identified at least five main factors which negatively influence the answer finding pro- cess, both in social Q&A sites and QA systems: mis- spellings, Internet

Figure 5: Normal probability plot (left) and the differences in structure factors against resolution (right). For charge density studies a difference of about 5 % is still accepted

Figure 6.15: Solid-angle Q-Ball reconstructions of HCP data for the region highlighted in Figure 6.11 for 90 gradient directions, obtained by writing the Q-Ball operator as