• Keine Ergebnisse gefunden

◼ Basic de fi ni � ons Definitions

N/A
N/A
Protected

Academic year: 2022

Aktie "◼ Basic de fi ni � ons Definitions"

Copied!
37
0
0

Wird geladen.... (Jetzt Volltext ansehen)

Volltext

(1)

if you only want to see the final result just scroll to the very end and only run the subchapter "Final analytic expression for QNEC"

and look at the three input expressions in red *)

Definitions

◼ Basic defini�ons

In[2]:= (*line element in 1805.08782*)

ds2= -(r^2+G1[r]^2)dt^2+dr^2(r^2+G2[r]^2) +r^2 dphi^2;

G1[r_]:=1-8 GN h;

G2[r_]:=1-8 GN h1-1(r^2+1)^2 h-1;

In[5]:= (* transformation to z=1/r *)

rTOz=r→1/z, dr→-1/z^2 dz;

In[6]:= (* h=0 gives global AdS *)

Collectds2/. h→0/. rTOz,dt, dz, dphi

Out[6]= dt2 -1- 1

z2 + dz2

1+z12z4

+dphi2 z2

In[7]:= (* transformation to z=1/r *)

aux1=ds2/. rTOz//Simplify ; f1[z_]:=1+z^21-8 GN h^2;

f2[z_]:=1+z^21-8 GN h1- (1+1/z^2)^1-2 h^2;

replF=ff1→f1, ff2→f2;

(* check if f1 and f2 are defined consistently*)

1/z^2-dt^2 f1[z] +dphi^2+dz^2f2[z] ⩵aux1//Simplify

Out[11]= True

In[12]:= (* standard assumptions to be used in Simplify routines below *)

assume =Assumptions

x>0, x<1, l>0, l<Pi, h>1/4, zcut>0, zast>0, Nast>0, Cosl>0, Cotl

22>0;

(2)

In[13]:= (* useful later for simplification *)

repldummy =dummy1 →Hypergeometric2F1 1 2, 1,3

2+2 h,-Tanl 2

2,

dummy2 →Hypergeometric2F1 3 2, 2,5

2+2 h,-Tanl 2

2

, dummy3 →Hypergeometric2F1 5

2, 3,7

2+2 h,-Tanl 22 ; subl=l-2+4 h→0, l4 h→0, l2+4 h→0, l4+4 h→0, l6+4 h→0, l8+4 h→0,

1 l

2-8 h

→0, 1 l

-8 h

→0, 1 l

-2-8 h

→0, 1 l

-8-4 h

→0, 1

l

-6-4 h

→0, 1 l

-4-4 h

→0, 1 l

-2-4 h

→0, 1 l

-4 h

→0, 1 l

2-4 h

→0;

◼ Lagrangian and Noether charges

In[15]:= (* the Lagrangian for the area functional *)

Lz_, dz_, dt_:=1/z Sqrt-dt^2 ff1[z] +dz^2ff2[z] +1;

In[16]:= (* Noether charge for spatial homogenity *)

Q1=Lz, dz, dt-dz*DLz, dz, dt, dz-dt*DLz, dz, dt, dt//Simplify

Out[16]= 1

z 1-dt2ff1[z] +ff2[z]dz2

In[17]:= (* Q1 being a Noether charge means that it is independent of z

and can be evaluated at z=zast, where dz z=zast=0 per definition*) Q1zast= Q1/. z->zast/. dz->0/. dt->dtzast

replNast=Nast→1/zast/Q1zast;

Out[17]= 1

zast 1-dtzast2ff1[zast]

In[19]:= (* Noether charge Q2 for spatial homogeneity ddydLddt=0 *)

Q2=DLz, dz, dt, dt

Out[19]= - dt ff1[z]

z 1-dt2ff1[z] + dz2

ff2[z]

In[20]:= (* after definingΛ:=-Q2/Q1 we can express dt in terms of Λ *)

replDt=SolveΛ== -Q2/Q1, dt[[1]]

repldtzast=dtzast→ dt/. replDt/. z→zast

Out[20]= dt→ Λ

ff1[z]

Out[21]= dtzast→ Λ

ff1[zast]

(3)

In[22]:= (* using Q2 and Λ in the expression for Q1 gives a differential equation for z;

we take the positive branch corresponding to the interval (y=0,z=0) to (y=y*,z=zast) *) replDz=Solve1/ (zast*Nast)⩵Q1/. replDt, dz[[2]]

Out[22]= dz→ z2Λ2-z2ff1[z] +Nast2zast2ff1[z] ff2[z] z ff1[z]

In[23]:= repleps=eps→h*GN;

replGN=GN→epsh;

Calculations

◼ Integral yielding lambda

In[25]:= (* integral for the shifted time : λ=

0λdt=∫0t*dt+∫tλ*dt⩵2∫0zastdz Λ z f1[z]

f1[z] f2[z] z2Λ2-z2f1[z]+Nast2zast2f1[z]

*)

replz=z→zast*x, dz→zast*dx;

dtInt=Simplify2 zast dtdz/. replDz/. replDt/. replF/. replNast/. repldtzast/. replz/. replF, assume ;

int0=SimplifyIntegrateSeriesdtInt/. replGN,{eps, 0, 1}/. eps→0, x, assume ; ExpandNormal SimplifySeries

DSeriesdtInt/. replGN,{eps, 0, 1}, eps/. eps→0,{Λ, 0, 2}, assume ; int1=Integrate-

16(x zast+x^3 zast^3)1+ 1

x2zast2-2 hΛ 1-x2 1+x2zast25/2

, x+

Integrate 48 x3zast3Λ 1-x2 1+x2zast25/2

, x; tInt0=Limitint0+eps int1, x→0, assume ; tInt1=Limitint0+eps int1, x→1, assume ;

tInt=Simplify[tInt1-tInt0, assume ]

Out[31]= 32 eps zast3Λ

1+zast22

+2 ArcTan zastΛ

1+zast2 1+zast22

-

8 eps π 1+zast1 2-2 hzastΛGamma [2+2 h] (1+2 h)1+zast2Gamma 32+2 h

In[32]:= (* solving for Λ; we have to pick the positive branch

correspondingt to positive dtdy(zast) for positiveλ *)

solLambda =Solveλ==SimplifySeries[tInt,{Λ, 0, 2}], Assumptions →1+zast^2>0//

Normal ,Λ[[1]];

replLambda =Λ →FullSimplifySeriesΛ/. solLambda ,{eps, 0, 1}, assume //Normal ;

(4)

In[34]:= CollectFullSimplify2 zast

FullSimplifySeriesΛ/. solLambda ,{eps, 0, 1}, assume //Normal   λ, eps

Out[34]= 1+zast2+eps -16 zast2+

4 π 1+zast1 2-2 h1+zast2Gamma [1+2 h] Gamma 32+2 h

◼ Integral yielding l+lamda

In[35]:= (* integral for the shifted length l+λ=

0(l+λ)dy=∫0y*dy+∫yl+λ* dy=∫0z*dz+dydz++∫z0*dz-dydz-=

2∫0z*dz+dydz+=2∫0zastdz z f1[z]

f2[z] z2Λ2-z2f1[z]+Nast2zast2f1[z]

; *)

repldyInt=FullSimplifySolvedz/. replDz ⩵2 dzdy/. replz, dy, zast>0//

Flatten;

dyInt=dy/. repldyInt/. dx→1/. replNast/. repldtzast/. replF;

integrand=CollectFullSimplifyNormal Simplify

SeriesSeriesSimplifyNormal SeriesdyInt/. replGN,{eps, 0, 1}, Assumptions → x>0, x<1, zast>0, h>1/4/.

replLambda ,{eps, 0, 1},{λ, 0, 2},

Assumptions → x>0, x<1, zast>0, h>1/4,{eps,λ}

Out[37]= 2 x zast - 1

-1+x2 1+x2zast2

+ x1+zast2 λ2

4 1-x2 zast1+x2zast23/2 +

eps 1

4 zastx 64 x2zast4 1-x2 1+x2zast25/2

+ 64 x4zast6 1-x2 1+x2zast25/2

-

641+x2zast1 2-2 hzast2 1-x2 1+x2zast2

+

1

4 zastxλ2 - 16 zast2

1-x2 1+x2zast25/2

+ 24 x2zast2 1-x2 1+x2zast25/2

+ 8 x2zast4

1-x2 1+x2zast25/2

- 8 1+ 1 zast2

2 h 1+ 1

zast2 1+ 1 x2zast2

-2 h

1+zast2  1-x2 1+x2zast23/2 + 8 π x2 1+ 1

x2zast2

2 hzast4 1+zast2 1+x2zast2 x2zast4

1-2 h

Gamma [1+2 h]  1-x2 1+x2zast25/2Gamma 3 2+2 h

(5)

In[38]:= I2=SimplifyIntegrateintegrand/. eps→0,{x, 0, 1}, Assumptions →{x>0, x<1, zast>0};

I3=eps IntegrateSimplify

x 64 x2zast4

1-x2 1+x2zast252

+ 64 x4zast6

1-x2 1+x2zast252

4 zast ,

{x, 0, 1}, Assumptions →zast>0;

I4=eps Integrate

x -641+

1

x2zast2-2 hzast2 1-x2 1+x2zast2

4 zast ,{x, 0, 1}, Assumptions → zast>0, h>1/4; I5=epsλ2Integrate

1

4 zastx - 16 zast2

1-x2 1+x2zast25/2

+ 24 x2zast2 1-x2 1+x2zast25/2

+ 8 x2zast4 1-x2 1+x2zast25/2

, {x, 0, 1}, Assumptions →zast>0;

I6=epsλ2Integrate 1

4 zastx - 8 1+ 1 zast2

2 h 1+ 1

zast2 1+ 1 x2zast2

-2 h

1+zast2  1-x2 1+x2zast23/2 +

8 π x2 1+ 1 x2zast2

2 hzast4 1+zast2 1+x2zast2 x2zast4

1-2 h

Gamma 1+2 h  1-x2 1+x2zast25/2Gamma 3

2+2 h , {x, 0, 1}, Assumptions → zast>0, h>1/4;

In[43]:= (* total result to linear order in eps and quadratic inλ *)

yInt=CollectI2+I3+I4+I5+I6//FullSimplify ,{eps,λ}

Out[43]= λ2

4 zast+2 ArcTan[zast] + eps -16 zast

1+zast2+16 ArcTan[zast] +

π zast-1+4 h1+zast2-2 hλ2Gamma [1+2 h] Gamma 32+2 h

- 8 π zast1+4 h1+zast2-2 hGamma [1+2 h]

Hypergeometric2F1 1 2, 1,3

2+2 h,-zast2  Gamma 3 2+2 h

◼ Ge�ng zast

In[44]:= (* master equation determining z_* to all orders in lambda *)

master =Collect

SimplifyNormal SeriesSeriesl+λ-yInt/. zast→z00+z01 eps+z10λ+z11λeps+ z20λ^2+z21λ^2 eps,{eps, 0, 1},{λ, 0, 2},{eps,λ};

(6)

In[45]:= replz00=FlattenSimplifySolve[(master /. λ →0/. eps→0)⩵0, z00], assume [[1]]; replz01=SimplifyFlatten

SolveSimplifymaster /. λ →0/. replz00 eps, assume  ⩵0, z01[[1]];

replz10=FlattenSolve[(D[master ,λ] /.λ →0/. eps→0)⩵0, z10][[1]]; replz11=

FlattenFullSimplifySolveSimplifyD[master ,λ] /.λ →0/. replz10 eps2

1+z0022 ⩵0, z11[[1]];

replz20=SimplifyFlattenSolveD[master ,{λ, 2}] /. eps→0/. replz10/. replz11 ⩵0, z20[[1]];

replz21=SimplifyFlattenSolveSimplifyD[master ,{λ, 2}] /. replz20/. replz10/. replz11/. replz01 eps2 ⩵0, z21[[1]];

In[51]:= z=CollectSimplify

z00+z01 eps+z10λ+z11λeps+z20λ^2+z21λ^2 eps/. replz20/. replz21/.

replz10/. replz11/. replz00/. replz01,{eps,λ}; replzast=zast→z

replzast2=zast0→SeriesCoefficientzast/. replzast,{eps, 0, 0}, zast1→SeriesCoefficientzast/. replzast,{eps, 0, 1};

Out[52]= zast→ 3 Csc[l] 4(1+Cos[l])

+λ Csc[l]2 2(1+Cos[l])

-Cos[2 l]Csc[l]2 2(1+Cos[l])

2 Csc[l] 4(1+Cos[l])

-3 Csc[l]2Sin[2 l] 8(1+Cos[l])

- Csc[l]2Sin[3 l]

4(1+Cos[l])

+eps 6 Csc[l] 1+Cos[l]

-4 l Csc[l]2 1+Cos[l]

+4 l Cos[2 l]Csc[l]2 1+Cos[l]

+

4 π Cscl

2-1-4 hGamma [1+2 h]Hypergeometric2F1 1 2, 1,3

2+2 h,-Tanl 22 Secl

23  Gamma 3

2+2 h-2 Csc[l]2Sin[3 l] 1+Cos[l]

+

λ -8 l Csc[l] 1+Cos[l]

+ 32 π Cscl

2-5-4 hCsc[l]3Gamma [1+2 h]Hypergeometric2F1  1

2, 1,3

2+2 h,-Tanl

22Secl

2 Gamma 3 2+2 h+ 4 l Csc[l]2Sin[2 l]

1+Cos[l] +

4 π Gamma [1+2 h]Secl

221-2 hTanl

24 h Gamma 12+2 h

+

λ2 - 2 Csc[l] 1+Cos[l]

+10 l Cot[l]Csc[l] 1+Cos[l]

-11 l Csc[l]2 1+Cos[l]

-3 l Cos[2 l]Csc[l]2 1+Cos[l]

+ 48 π Cscl

2-7-4 hCsc[l]4Gamma [1+2 h]Hypergeometric2F1  1

2, 1,3

2+2 h,-Tanl

22Secl

2 Gamma 3 2+2 h+ π Cscl

21-4 hGamma [1+2 h]Hypergeometric2F1 1 2, 1,3

2+2 h, -Tanl

22Secl

23  2 Gamma 3

2+2 h +3 Csc[l]2Sin[2 l] 1+Cos[l]

+

(7)

-1+16 h2 π Cscl

2Gamma [1+2 h]Hypergeometric2F1 1 2, 1,3

2+2 h, -Tanl

22Secl

2 Secl 22

-2 hTanl

24 h  2 Gamma 3

2+2 h + 4 π Gamma [1+2 h] Secl

22 1

-2 hTanl

21+4 h  Gamma 1 2+2 h+

(1+4 h) π Gamma [1+2 h]Hypergeometric2F1 1 2, 1,3

2+2 h,-Tanl 22 Secl

22 1

-2 hTanl

21+4 h  2 Gamma 3

2+2 h + π Gamma [1+2 h]Hypergeometric2F1 1

2, 1,3

2+2 h,-Tanl 22 Secl

22 1

-2 hTanl

23+4 h  Gamma 3 2+2 h- 1

2(3+4 h) (5+4 h)Gamma 3

2+2 h

π Gamma [1+2 h] Secl

2 Secl 22

-2 hTanl 24 h 15 Cscl

2+32 h Cscl

2+16 h2Cscl

2+ (5+4 h) (7+8 h+ (-3+8 h)Cos[l]) Hypergeometric2F1 3

2, 2,5

2+2 h,-Tanl

22Secl

25Tanl 2- 24 Hypergeometric2F1 5

2, 3,7

2+2 h,-Tanl

22Secl

25Tanl 23

In[54]:= (* small l expansion of z_* *)

Collect

Normal ExpandSeriesz,l, 0, 3/. l4 h→0/. 1 l

-4 h

→0/. l1+4 h→0/. l3+4 h→0, {eps,λ}

Out[54]= l 2+l3

24+ 1 2+l2

8 λ+ - 1 4 l+ l

12+53 l3

1440 λ2+eps -2 l3

3 -2 l2λ+ -4 l 3 -53 l3

45 λ2

In[55]:= CollectFullSimplify[z/. eps→0],λ/.1+Cosl →2Cosl2^2/. Sinl →2 Sinl2Cosl2

Out[55]= 1

2λSecl 22+1

2(-3 Cot[l] +Csc[l])Secl

22+Tanl 2

In[56]:= (* this is the exact expression for z_* to leading order in eps *)

LOla=Tanl2+λ  2 Cosl2^2+λ^2/4Tanl2 Cosl2^2-1Sinl

Out[56]= 1

2λSecl

22+Tanl 2+1

2 -Csc[l] +Secl

22Tanl 2

In[57]:= Simplify[% - %%]⩵0

Out[57]= True

(8)

◼ Area integral

General defini�ons

In[58]:= (* area integrand*)

R[x]:= x2Λ2+ (Nast^2-x^2)ff1[x zast];

dA=2 Nast Sqrtff1[x zast]  x R[x]Sqrtff2[x zast]; dA==

SimplifyLz, dz, dtdy/. replDt/. replDz/. repldyInt/. replz/. dx→1, assume

Out[60]= True

Divergent part

In[61]:= (* the integral diverges for x→0 *)

Simplify

SeriesSeriesCoefficientdA/. replF/. replGN,{eps, 0, 0},{x, 0, 0}, assume

Out[61]= 2

x+O[x]1

In[62]:= (* next we split up the integral∫zcut/zast1 Lⅆx=

01Lⅆx-∫0zcut/zastLⅆx and subtract 0=∫012/xⅆx-∫0zcut/zast2/x ⅆx+2 Logzcut

zast *) AdivLO=Integrate[2/x, x];

Adiv1LO=AdivLO/. x→1;

AdivcutLO=AdivLO/. x→zcut/zast;

AcutLO=Adiv1LO-AdivcutLO

Out[65]= -2 Logzcut zast

Convergent part, LO

In[66]:= dALOpert=SimplifyNormal

SeriesNormal SeriesNormal SeriesSeriesdA-2/x/. replNast/. repldtzast/. replF/. replGN/. replLambda ,{λ, 0, 2},{eps, 0, 0}/.

replzast,{eps, 0, 0},{λ, 0, 2}, assume

Out[66]= -2 x+

2 1-x4+(-1+x1+Cos[l]2

)2Cos[l]

x -

22-x2+-1+x2Cos[l] 1+Cos[l]

1-x4+(-1+x2)2Cos[l]

1+x2+Cos[l] -x2Cos[l]2

+

2 xλ 1+Cos[l]

1-x4+(-1+x2)2Cos[l] Tanl2 -1-x2+-1+x2Cos[l]

(9)

In[67]:= (* the near boundary part 0zcut/zast... of the

integral is of O(zcut^2) and can be neglected *) CollectIntegrateSimplify

SeriesSeriesCoefficientdA-2/x/. replF/. replGN,{eps, 0, 0},{x, 0, 2}, assume ,{x, 0, zcut/zast}, zcut

Out[67]= -zcut2-1+Nast2zast22 2 Nast2zast2

In[68]:= (* Mathematica needs some help to manage

the O(eps^0) integral for the regularized area *)

In[69]:= I7=IntegratedALOpert, x;

I7dn=SimplifyNormal Series[I7,{x, 0, 0}], assume ;

I7up=SimplifyNormal Series[I7,{x, 1, 0}], assume /. x→1;

In[72]:= (* Evaluating the limit of AppellF1 requires

advanced educated guessing and hindsight, see below *)

In[73]:= N -I Cotl

2AppellF11,1 2,1

2, 2, 1 x2,-

Cotl

22

x2  x^2-

2 Log[x] -2 I ArcTanCotl

2-Log4 Cosl

22 /. x→10^(-5) /. l→Pi10

Out[73]= 4.8761×10-11+2.66454×10-15

In[74]:= (* graphical checks that these two

expressions are equivalent up to O(x^2) terms *) PlotRe -I Cotl

2AppellF11,1 2,1

2, 2, 1 x2,-

Cotl

22

x2  x^2-

2 Log[x] -2 I ArcTanCotl

2-Log4 Cosl

22 /. l→Pi10,{x, 0, 0.001}

Out[74]=

0.0002 0.0004 0.0006 0.0008 0.0010

1.×10-7 2.×10-7 3.×10-7 4.×10-7 5.×10-7

(10)

In[75]:= PlotIm -I Cotl

2AppellF11,1 2,1

2, 2, 1 x2,-

Cotl

22

x2  x^2-

2 Log[x] -2 I ArcTanCotl

2-Log4 Cosl

22 /. l→Pi10,{x, 0, 0.001}

Out[75]=

0.0002 0.0004 0.0006 0.0008 0.0010

-2.×10-15 -1.×10-15 1.×10-15 2.×10-15

In[76]:= AregPertLO=FullSimplify

Normal SeriesI7up-I7dn/.

ⅈAppellF11,1

2,1

2, 2, 1

x2,-Cot

l 22

x2 Cotl

2

x2 →-2 Log[x] + 2 I ArcTanCotl

2+Log4 Cosl

22/. replzast/. eps→0,{λ, 0, 2}

Out[76]= - λ2

2+2 Cos[l]

+Log[2(1+Cos[l])] -λTanl 2

In[77]:= (* contribution from the log to LO *)

AcutPertLO=CollectFullSimplify

Normal SeriesSimplifySeriesAcutLO/. replzast,{eps, 0, 0},{λ, 0, 2}, λ 

Out[77]= 2λCsc[l] +λ2 -3

2Cot[l]Csc[l] -Csc[l]2

2 -2 Log[zcut(Cot[l] +Csc[l])]

In[78]:= (* trivial sanity check that adding and taking limits commutes *)

AcheckLO=FullSimplifyNormal SeriesAcutLO+I7up-I7dn/. 1

x2ⅈAppellF11,1 2,1

2, 2, 1 x2,-

Cotl

22

x2 Cotl 2 → -2 Log[x] +2 I ArcTanCotl

2+Log4 Cosl 22/. replzast/. eps→0,{λ, 0, 2};

FullSimplifyAcheckLO-AcutPertLO-AregPertLO

Out[79]= 0

(11)

HEE, LO

In[80]:= FullSimplifyCotl+Cscl-Cotl2

Out[80]= 0

In[81]:= (* holographic entanglement entropy O(eps^0) *)

HEEcLO=1/ (4 GN) (AcutPertLO+AregPertLO) //Normal ; HEELO=

FullSimplifyFullSimplifyFullSimplifyHEEcLO/.λ →0, Assumptions →{zcut>0}/.

1+Cosl →2Cosl2^2/.Cotl+Cscl →Cotl2/. Logzcut Cotl

2->Log[zcut] +LogCotl 2/. Log1+Cosl-2 LogCotl

2 →Log2Cosl2^2 Cotl2^2/.

Log2-2 Cosl →Log4Sinl2^2 replGbyc= {GN→3/ (2 c)};

SimplifySeriesHEELO,l, 0, 2, Assumptions →l>0/. replGbyc,l>0, zcut>0

Out[82]=

-2 Log[zcut] +Log4 Sinl22 4 GN

Out[84]= 1

3c Log l

zcut-c l2

72 +O[l]3

QNEC, LO

In[85]:= (* QNEC O(eps^0) *)

QNEC=

Simplify1 2 Pi(D[HEEcLO,{λ, 2}] +6/c D[HEEcLO,{λ, 1}]^2) /.λ →0/. replGbyc

Out[85]= - c 12π

In[86]:= (* Daniels definitionof the lightlike deformation : k=(λ/2,λ/2) O(eps^0) *)

HEElahalf=HEEcLO/.λ → λ/2;

QNEClahalf=

1 2 Pi DHEElahalf,{λ, 2}+6/c DHEElahalf,{λ, 1}^2/.λ →0/. replGbyc//

Simplify

Out[87]= - c 48π

In[88]:= (* lightlike projection of the EMT O(eps^0) *)

Tkk=1 2 Pi(-c/24); QNEClahalf⩵Tkk

Out[89]= True

(12)

NLO

In[90]:= (* O(eps^1) integral for the regularized area; this is length,

so we split it into O(1) int8, O(λ) int9 and O(λ^2) int10 parts;

thos parts have to be massaged individuallyfor Mathematica to succeed *) preparedANLOpert=

SeriesSeriesdA/. replNast/. repldtzast/. replF/. replGN/. replLambda , {λ, 0, 2},{eps, 0, 1}//Normal ;

dANLOpert=eps SeriesSeriesCoefficientpreparedANLOpert/. zast→(zast0+eps zast1), {eps, 0, 1}/. replzast2,{λ, 0, 2}//Normal ;

(13)

In[92]:= (* let us start with O(1) *)

int8=FunctionExpandSimplifyExpanddummy3 dANLOpert/.λ →0, assume /. 16 π x -1+x2 -1-x2-Cosl+x2Cosl

1+Cosl Cscl 2

-4 h

Gamma 1+2 hHypergeometric2F1 1 2, 1,3

2+2 h,-Tanl 22 

-1+x2 -1-x2-Cosl+x2Cosl2Gamma 3

2+2 h - 16 π x Cosl

-1+x2 -1-x2-Cosl+x2Cosl

1+Cosl

Cscl 2-4 h

Gamma 1+2 hHypergeometric2F1 1 2, 1,3

2+2 h,-Tanl 22 

-1+x2 -1-x2-Cosl+x2Cosl2Gamma 3

2+2 h dummy1 dummy3 /. 1+

Cotl

22 x2

-2 h

→dummy2 dummy3 ;

int81=IntegrateSimplifyint8/. dummy1 →0/. dummy2 →0/. dummy3 →1, assume , x;

int82=IntegrateSimplifyint8/. dummy1 →0/. dummy2 1+ Cotl

22 x2

-2 h

/. dummy3 →0, assume , x;

int83=IntegrateSimplifyint8/. dummy1

16 π x√-1+x2 -1-x2-Cosl+x2Cosl  1+CoslCscl 2-4 h Gamma 1+2 hHypergeometric2F1 1

2, 1,3

2+2 h,-Tanl 22 

-1+x2 -1-x2-Cosl+x2Cosl2Gamma 3

2+2 h -

16 π x Cosl√-1+x2 -1-x2-Cosl+x2Cosl  1+Cosl

Cscl

2-4 hGamma 1+2 h Hypergeometric2F1 1

2, 1,3

2+2 h,-Tanl 22 

-1+x2 -1-x2-Cosl+x2Cosl2Gamma 3

2+2 h /. dummy2 →0/. dummy3 →0, assume , x;

(14)

In[96]:= I8up=Simplify

SimplifySimplifyNormal Seriesint81+int82+int83,{x, 1, 0}, assume /. Gamma 2+2 h → 1+2 h2 h Gamma 2 h/.

Hypergeometric2F1 2 h,1

2+2 h,3

2+2 h,-Tanl 22+ 4 h Hypergeometric2F1 1

2+2 h, 1+2 h,3

2+2 h,-Tanl 22 →

4 h+1 Cosl2^4 h, assume ;

I8dn=SimplifyNormal Seriesint81+int82+int83,{x, 0, 0}/. Cotl

22 x2

-2 h

→0;

I8=SimplifyI8up-I8dn, assume

Out[98]= - 8 eps π Cscl

2-2-4 hGamma [1+2 h] Hypergeometric2F1 1

2, 1,3

2+2 h,-Tanl

22Secl

22  Gamma 3

2+2 h - 4 eps(1+4 h) π Gamma [2 h]Sinl

24 h Gamma 3

2+2 h

+8 eps l Tanl 2

In[99]:= Simplify

Dint91+int92+int93+int94+int95, x-ExpandDdANLOpert,λ/.λ →0/. l→Pi2/. h→2/. eps→1/10, assume

Out[99]= - 1

1575-1+x2 1+x26

4 x 1-x4 315π -2+x2 1+x23-2 243+x2 972-80 Hypergeometric2F1 1

2, 1,11

2 ,-1 - 32 Hypergeometric2F1 1

2, 1,11 2 ,-1+ 4 x6 -387+4 Hypergeometric2F11

2, 1,11

2 ,-1 - 6 x4 -243+8 Hypergeometric2F11

2, 1,11

2 ,-1 + 2 x8 279+8 Hypergeometric2F11

2, 1,11 2 ,-1

In[100]:= (* now consider O(λ);

to avoid issues when expanding around x=1 we take instead the directed limit from below otherwise the integrals do not evaluate correctly! *) int9=ExpandDdummy8 dANLOpert,λ/.λ →0/.

Hypergeometric2F1 1 2, 1,3

2+2 h,-Tanl 2

2

 →dummy4 dummy8 /.

Tanl

24 h→dummy5 dummy8 /. 1+ 161+Cosl2Sinl2

x2-3+CsclSin3 l2

-1-2 h

→dummy6 dummy8 /.

(15)

1+ 161+Cosl2Sinl2 x2-3+CsclSin3 l2

-2 h

→dummy7 dummy8 ;

int91=IntegrateSimplifyint9/. dummy4 →0/. dummy5 →0/. dummy6 →0/.

dummy7 →0/. dummy8 →1, assume , x;

int92=IntegrateSimplifyint9/. dummy4 →Hypergeometric2F1 1

2, 1,3

2+2 h,-Tanl

22/. dummy5 →0/.

dummy6 →0/. dummy7 →0/. dummy8 →0, assume , x; int93=IntegrateSimplifyint9/. dummy4 →0/. dummy5 →Tanl

2

4 h

/. dummy6 →0/. dummy7 →0/. dummy8 →0,

Assumptions → x>0, x<1, l>0, l<Pi, h>1/4, x; int94=IntegrateSimplifyint9/. dummy4 →0/. dummy5 →0/.

dummy6 1+ 161+Cosl2Sinl2 x2-3+CsclSin3 l2

-1-2 h

/. dummy7 →0/. dummy8 →0, assume , x;

int95=IntegrateSimplifyint9/. dummy4 →0/. dummy5 →0/. dummy6 →0/. dummy7 1+ 161+Cosl2Sinl2

x2-3+CsclSin3 l2

-2 h

/. dummy8 →0, assume , x; I9up1=SimplifyLimitint91, x→1, Direction→1, assume ,

Assumptions → x>0, x<1, l>0, l<Pi, h>1/4; I9up2=SimplifyLimitint92, x→1, Direction→1, assume ,

Assumptions → x>0, x<1, l>0, l<Pi, h>1/4; I9up3=SimplifyLimitint93, x→1, Direction→1, assume ,

Assumptions → x>0, x<1, l>0, l<Pi, h>1/4; I9up4=SimplifyLimitint94, x→1, Direction→1, assume ,

Assumptions → x>0, x<1, l>0, l<Pi, h>1/4; I9up5=SimplifyLimitint95, x→1, Direction→1, assume ,

Assumptions → x>0, x<1, l>0, l<Pi, h>1/4; I9up=I9up1+I9up2+I9up3+I9up4+I9up5;

I9dn=

SimplifyExpandNormal Seriesint91+int92+int93+int94+int95,{x, 0, 0}/. Cotl

22 x2

-2 h

→0, assume ; I9=SimplifyI9up-I9dn, assume  λ

(16)

Out[113]= 1

2epsλCscl 2-4 h 1

Gamma [3+2 h]

π Cscl

2Gamma [1+2 h] -32(1+h) (1+h+h Cos[l])Gamma [2+2 h] Gamma 3

2+2 h

- Gamma [3+2 h] (5+4 h) (7+8 h+ (-2+8 h)Cos[l])Gamma 5

2+2 h- 2(13+16 h+4(1+4 h)Cos[l])Gamma 7

2+2 h  (1+Cos[l])Gamma 5

2+2 hGamma 7

2+2 h Secl 2+ 32 Cosl

23Sinl

2 -2 π Gamma [1+2 h] (1+Cos[l])Gamma 3 2+2 h+ Gamma 1

2+2 hHypergeometric2F1 1 2, 1,3

2+2 h,-Tanl 22 + Cscl

22+4 hGamma 1

2+2 hGamma 3

2+2 hSin[l]l+Sin[l]  (1+Cos[l])3Gamma 1

2+2 hGamma 3

2+2 h + 8 π Gamma [2+2 h]Tanl2

(1+2 h)Gamma 32+2 h

In[114]:= (* finally consider O(λ^2); same remarks as above;

evaluation of this part takes a while *)

int10=ExpandDdummy8 dANLOpert,{λ, 2}/.λ →0/. Hypergeometric2F1 3

2, 2,5

2+2 h,-Tanl

22 →dummy1 dummy8 /. Hypergeometric2F1 1

2, 1,3

2+2 h,-Tanl

22 →dummy2 dummy8 /. Hypergeometric2F1 5

2, 3,7

2+2 h,-Tanl

22 →dummy3 dummy8 /. 1+ 161+Cosl2Sinl2

x2-3+CsclSin3 l2

-2 h

→dummy4 dummy8 /.

1+ 161+Cosl2Sinl2 x2-3+CsclSin3 l2

-1-2 h

→dummy5 dummy8 /.

1+ 161+Cosl2Sinl2 x2-3+CsclSin3 l2

-2-2 h

→dummy6 dummy8 /.

1+161+Cosl2Sinl2

-3+CsclSin3 l2

-2 h

→dummy7 dummy8 ; int101=IntegrateSimplify

int10/. dummy1 →0/. dummy2 →0/. dummy3 →0/. dummy4 →0/. dummy5 1+ 161+Cosl2Sinl2

x2-3+CsclSin3 l2

-1-2 h

/. dummy6 →0/.

(17)

dummy7 →0/. dummy8 →0, assume , x;

int102=IntegrateSimplifyint10/. dummy1 →0/. dummy2 →0/. dummy3 →0/. dummy4 1+ 161+Cosl2Sinl2

x2-3+CsclSin3 l2

-2 h

/. dummy5 →0/. dummy6 →0/. dummy7 →0/. dummy8 →0, assume , x;

int103=IntegrateSimplifyint10/. dummy1 →0/. dummy2 →0/.

dummy3 →Hypergeometric2F1 5 2, 3,7

2+2 h,-Tanl 22/. dummy4 →0/. dummy5 →0 /. dummy6 →0/.

dummy7 →0/. dummy8 →0, assume , x; int104=IntegrateSimplify

int10/. dummy1 →0/. dummy2 →Hypergeometric2F1 1 2, 1,3

2+2 h,-Tanl 2

2

/.

dummy3 →0/. dummy4 →0/. dummy5 →0/. dummy6 →0/. dummy7 →0/. dummy8 →0, assume , x; int105=IntegrateSimplify

int10/. dummy1 →Hypergeometric2F1 3 2, 2,5

2+2 h,-Tanl

22/. dummy2 →0/. dummy3 →0/. dummy4 →0/. dummy5 →0/.

dummy6 →0/. dummy7 →0/. dummy8 →0, assume , x;

int106=IntegrateSimplifyint10/. dummy1 →0/. dummy2 →0/. dummy3 →0/.

dummy4 →0/. dummy5 →0 /. dummy6 1+ 161+Cosl2Sinl2

x2-3+CsclSin3 l2

-2-2 h

/. dummy7 →0/. dummy8 →0, assume , x;

int107=IntegrateSimplifyint10/. dummy1 →0/. dummy2 →0/. dummy3 →0/. dummy4 →0/. dummy5 →0 /. dummy6 →0/.

dummy7 1+161+Cosl2Sinl2

-3+CsclSin3 l2

-2 h

/. dummy8 →0, assume , x; int10rest=int10/. dummy1 →0/. dummy2 →0/. dummy3 →0/. dummy4 →0/.

dummy5 →0 /. dummy6 →0/. dummy7 →0/. Tanl

24 h→dummy9 dummy8 /. Tanl

21+4 h→dummy10 dummy8 ; int108=IntegrateSimplifyint10rest/. dummy8 →0/. dummy9 →0/.

dummy10 ->Tanl

21+4 h, assume , x;

int109=IntegrateSimplifyint10rest/. dummy8 →0/. dummy9 →Tanl 24 h/. dummy10 →0, assume , x;

int110=IntegrateSimplifyint10rest/. dummy8 →1/. dummy9 →0/. dummy10 →0, assume , x;

I10up=SimplifyLimitint101+int102+int103+int104+int105+int106+

(18)

int107+int108+int109+int110, x→1, Direction→1, assume , Assumptions → x>0, x<1, l>0, l<Pi, h>1/4;

I10dn=SimplifyExpandSimplifyNormal Seriesint101+int102+int103+int104+ int105+int106+int107+int108+int109+int110,{x, 0, 0}, assume /. x Tanl

2

4 h

→0, assume ; I10=SimplifyI10up-I10dn, assume  λ^2/2

Simplify::time :

Time spent on a transformation exceeded 300.` seconds, and the transformation was aborted. Increasing the value of TimeConstraint option may improve the result of simplification .

Simplify::time :

Time spent on a transformation exceeded 300.` seconds, and the transformation was aborted. Increasing the value of TimeConstraint option may improve the result of simplification .

(19)

Out[128]= 1 32epsλ2

1 (1+2 h)Gamma 5

2+2 h

π -128(1+2 h)23+7 h+6 h2+8 h(1+h)Cos[l] +h(1+2 h)Cos[2 l]

Cscl

2-4 hCsc[l]2Gamma [1+2 h] + 1

1+h2132-2 hCosl

23(1+Cos[l])-3-2 h Csc[l]-4 h -(1+h) (-2+Cos[l]) 1+Cos[l] (2+2 h+Cos[l] +2 h Cos[l])

Gamma [2+2 h] + 2 (1+2 h)Cosl

23(-1+Cos[l])Gamma [3+2 h] + 4-h(1+Cos[l])2-2 hCscl

22Secl

26 2(1+2 h) (5+3 Cos[l])

3+7 h+6 h2+8 h(1+h)Cos[l] +h(1+2 h)Cos[2 l]Gamma [1+2 h] + 24 h(3+Cos[l]) (2+2 h+Cos[l] +2 h Cos[l])

Gamma [2+2 h]Sinl

22 Sin[l]4 h - 8 Cscl

2-4(1+h)Secl

22 215+32 h+16 h2 π Cscl

210Gamma [1+2 h] Gamma 3

2+2 hSin[l]6-1

4Gamma 1 2+2 h 815+32 h+16 h2 l+2 Cotl

2 Cscl

28+4 hGamma 3

2+2 hSin[l]5+ π Gamma [1+2 h] 960 Cosl

22Cos[l]Cotl

24-6415+32 h+16 h2

3+h+12 h2+-5+16 h2Cos[l] +h(-1+4 h)Cos[2 l]

Cotl

24Hypergeometric2F1 1 2, 1,3

2+2 h,-Tanl 22+ 128(5+4 h) (7+8 h+ (-3+8 h)Cos[l])Cotl

22 Hypergeometric2F1 3

2, 2,5

2+2 h,-Tanl 22- 3072 Hypergeometric2F1 5

2, 3,7

2+2 h,-Tanl 22+

15 Cscl

210Sin[l]6+32 h Cscl

210Sin[l]6+ 16 h2Cscl

210Sin[l]6+32 h Cos[l]Cscl

210Sin[l]6+ 16 h2Cos[l]Cscl

210Sin[l]6-15 Cscl

212Sin[l]8- 32 h Cscl

212Sin[l]8-16 h2Cscl

212Sin[l]8  (3+4 h) (5+4 h) (1+Cos[l])3Gamma 1

2+2 hGamma 3 2+2 h

In[129]:= (* after this tour de force we add all results to get the O(eps) contribution

to the area integral apart from the log-term that we split away *) ApertNLO=I8+I9+I10

(20)

Out[129]= - 8 eps π Cscl

2-2-4 hGamma [1+2 h] Hypergeometric2F1 1

2, 1,3

2+2 h,-Tanl

22Secl

22  Gamma 3

2+2 h - 4 eps(1+4 h) π Gamma [2 h]Sinl24 h

Gamma 3

2+2 h

+ 1

32epsλ2 1

(1+2 h)Gamma 5

2+2 h

π -128(1+2 h)23+7 h+6 h2+8 h(1+h)Cos[l] +h(1+2 h)Cos[2 l]Cscl 2-4 h Csc[l]2Gamma [1+2 h] + 1

1+h2132-2 hCosl

23(1+Cos[l])-3-2 hCsc[l]-4 h -(1+h) (-2+Cos[l]) 1+Cos[l] (2+2 h+Cos[l] +2 h Cos[l])Gamma [

2+2 h] + 2 (1+2 h)Cosl

23(-1+Cos[l])Gamma [3+2 h] + 4-h(1+Cos[l])2-2 hCscl

22Secl

26 2(1+2 h) (5+3 Cos[l])

3+7 h+6 h2+8 h(1+h)Cos[l] +h(1+2 h)Cos[2 l]Gamma [1+2 h] + 24 h(3+Cos[l]) (2+2 h+Cos[l] +2 h Cos[l])Gamma [2+2 h]Sinl

22 Sin[l]4 h - 8 Cscl

2-4(1+h)Secl 22 215+32 h+16 h2 π Cscl

210Gamma [1+2 h]Gamma 3

2+2 hSin[l]6- 1

4Gamma 1

2+2 h 815+32 h+16 h2 l+2 Cotl

2 Cscl 28+4 h Gamma 3

2+2 hSin[l]5+ π Gamma [1+2 h] 960 Cosl

22Cos[l]Cotl

24-6415+32 h+16 h2

3+h+12 h2+-5+16 h2Cos[l] +h(-1+4 h)Cos[2 l]

Cotl

24Hypergeometric2F1 1 2, 1,3

2+2 h,-Tanl 22+ 128(5+4 h) (7+8 h+ (-3+8 h)Cos[l])Cotl

22 Hypergeometric2F1 3

2, 2,5

2+2 h,-Tanl

22-3072 Hypergeometric2F1 5

2, 3,7

2+2 h,-Tanl

22+15 Cscl

210Sin[l]6+32 h Cscl

210Sin[l]6+16 h2 Cscl

210Sin[l]6+32 h Cos[l]Cscl

210Sin[l]6+16 h2Cos[l]Cscl

210Sin[l]6-15 Cscl

212Sin[l]8-32 h Cscl

212Sin[l]8-16 h2Cscl

212Sin[l]8  (3+4 h) (5+4 h) (1+Cos[l])3Gamma 1

2+2 hGamma 3

2+2 h +8

(21)

eps l Tanl 2+ 1

2 eps λ Csc

l 2-4 h

1

Gamma [3+2 h]

π Cscl

2Gamma [1+2 h] -32(1+h) (1+h+h Cos[l])Gamma [2+2 h]

Gamma 3

2+2 h

-

Gamma [3+2 h] (5+4 h) (7+8 h+ (-2+8 h)Cos[l])Gamma 5 2+2 h- 2(13+16 h+4(1+4 h)Cos[l])Gamma 7

2+2 h  (1+Cos[l])Gamma 5

2+2 hGamma 7

2+2 h Secl 2+

32 Cosl

23Sinl

2 -2 π Gamma [1+2 h] (1+Cos[l])Gamma 3 2+2 h+

Gamma 1

2+2 hHypergeometric2F1 1 2, 1,3

2+2 h,-Tanl 22 + Cscl

22+4 hGamma 1

2+2 hGamma 3

2+2 hSin[l]l+Sin[l]  (1+Cos[l])3Gamma 1

2+2 hGamma 3

2+2 h + 8 π Gamma [2+2 h]Tanl2

(1+2 h)Gamma 32+2 h

In[130]:= (* now let us add again the log part and expand

to first order in eps and second order in lambda *)

Acuttotal=SimplifyNormal SeriesSeriesAcutLO/. replzast,{eps, 0, 1},{λ, 0, 2}

(22)

Out[130]= 2λCsc[l] -1

2(1+3 Cos[l])Csc[l]2-2 Logzcut Cotl

2+16 eps(1+Cos[l])Csc[l]2 -1

32Cscl

2Secl

234 l+4λ+9 lλ2+4 lλ2Cos[l] +-4 l-4λ+3 lλ2Cos[2 l] - 6 Sin[l] -4λ2Sin[l] -4 lλSin[2 l] -6λ2Sin[2 l] +2 Sin[3 l]+ π Cscl

2-4(2+h)Gamma [1+2 h] Secl 22

-2 hSin[l] -415+32 h+16 h2 λ

(-1+λCot[l])Cscl

29+4 hGamma 3

2+2 hSecl

23Sin[l]Tanl 24 h+ Gamma 1

2+2 h -λ2Cscl

25+4 hSecl

2 15 Cscl

24+32 h Cscl 24+16 h2Cscl

24+ (5+4 h) (7+8 h+ (-3+8 h)Cos[l])Cscl 22 Hypergeometric2F1 3

2, 2,5

2+2 h,-Tanl

22Secl 26- 24 Hypergeometric2F1 5

2, 3,7

2+2 h,-Tanl

22Secl 28 Tanl

24 h+1

415+32 h+16 h2Cscl 29 Hypergeometric2F1 1

2, 1,3

2+2 h,-Tanl

22Secl 25 4 Secl

22 2 h+9λ2 Secl

22 2 h-4λ Secl 22 2 h Sin[2 l] +2λ2Cscl

24 hTanl

24 h+2 hλ2Cscl 24 h Tanl

24 h+24 h2λ2Cscl

24 hTanl

24 h+2λ2Cos[l] 2 Secl

22 2 h+-3+16 h2Cscl

24 hTanl 24 h + Cos[2 l] -4+3λ2 Secl

22 2 h+ 2 h(-1+4 h)λ2Cscl

24 hTanl

24 h  16(3+4 h) (5+4 h)Gamma 1

2+2 hGamma 3 2+2 h

In[131]:= (* simple check that limits of small eps and small lambda commute *)

Acutcheck=

SimplifyNormal SeriesSeriesAcutLO/. replzast,{λ, 0, 2},{eps, 0, 1}; SimplifyAcutcheck-Acuttotal

Out[132]= 0

Total area

In[133]:= (* area consist of three parts: the regular O(1) piece,

the regular O(eps) piece and the log-contribution,

both to O(1) and O(eps); we treat different orders in λ separately, called area0, area1 and area2 the latter is split further into

(23)

four pieces to reduce the time for Mathematica to Simplify *) arearaw=CollectSimplifyAregPertLO+ApertNLO+Acuttotal, assume ,{eps,λ}; area0=Simplifyarearaw/. Hypergeometric2F1 1

2, 1,3

2+2 h,-Tanl 2

2

 →dummy1 /. Hypergeometric2F1 3

2, 2,5

2+2 h,-Tanl 2

2

 →dummy2 /. Hypergeometric2F1 5

2, 3,7

2+2 h,-Tanl 2

2

 →dummy3 /.

Sqrt1+Cosl →Sqrt[2]Cosl2/.λ →0, assume //FullSimplify ; area1=SimplifyDarearaw/. Hypergeometric2F11

2, 1,3

2+2 h,-Tanl

22 →dummy1 /. Hypergeometric2F1 3

2, 2,5

2+2 h,-Tanl

22 →dummy2 /. Hypergeometric2F1 5

2, 3,7

2+2 h,-Tanl 2

2

 →dummy3 /.

Sqrt1+Cosl →Sqrt[2]Cosl2,λ/.λ →0, assume //FullSimplify ; area21=SimplifyDdummy4 arearaw/. Hypergeometric2F11

2, 1,3

2+2 h,-Tanl 22 → dummy1 dummy4 /. Hypergeometric2F1 3

2, 2,5 2+2 h, -Tanl

22 →dummy2 dummy4 /. Hypergeometric2F1 5

2, 3,7

2+2 h,-Tanl

22 →dummy3 dummy4 /.

Sqrt1+Cosl →Sqrt[2]Cosl2,{λ, 2} 2/. dummy1 →0/. dummy2 →0/. dummy3 →0/. dummy4 →1, assume ;

area22=SimplifyCollectDdummy4 arearaw/. Hypergeometric2F1 1 2, 1,3

2+ 2 h,-Tanl

22 →dummy1 dummy4 /. Hypergeometric2F1 3

2, 2,5

2+2 h,-Tanl 22 → dummy2 dummy4 /. Hypergeometric2F1 5

2, 3,7

2+2 h,-Tanl

22 →dummy3 dummy4 /.

Sqrt1+Cosl →Sqrt[2]Cosl2,{λ, 2} 2, dummy4 /. dummy1 →0/. dummy2 →0/. dummy4 →0, assume ;

area23=SimplifyCollectDdummy4 arearaw/. Hypergeometric2F1 1 2, 1,3

2+ 2 h,-Tanl

22 →dummy1 dummy4 /. Hypergeometric2F1 3

2, 2,5

2+2 h,-Tanl 22 →

Referenzen

ÄHNLICHE DOKUMENTE

We take the whole of this body of work as read, in what we present here, for the simple reason that we do not have the time to repeat it. We do not repeat it also because we have

The market clearing price is equal to unit wage costs if the expenditure ratio is unity and distributed profit is zero.. In this elementary case, profit per unit is zero and

We obtain the simple result that the optimal departure time as well as the optimal expected cost depend linearly on the mean and standard deviation of the distribution of

In particular, we found that the number “8” is associated with plates with significantly higher winning bids, and the number “4” is associated with plates with significantly

Bishop and Cicchetti (1975) hint that: &#34;By separating the problem the way he [i.e., Schmalensee] does, the uncertainty and trade-offs of the early literature are lost.&#34;*

Potentially, a change in divorce legislation can impact on the age at marriage or, equivalently, the probability of transition from singlehood to marriage, both by directly changing

was observed (Fig. The amount of extractable binder of such low molecular weight prior to humid aging was unexpected. Examination of the GPC results obtained for

For example, over the period 1986-2012, a test of a linear factor model with the S&amp;P 500 Index as the sole factor on the cross-section of daily- rebalanced index option