• Keine Ergebnisse gefunden

Phase separation dynamics in a two-­‐dimensional magnetic mixture

N/A
N/A
Protected

Academic year: 2021

Aktie "Phase separation dynamics in a two-­‐dimensional magnetic mixture"

Copied!
24
0
0

Wird geladen.... (Jetzt Volltext ansehen)

Volltext

(1)

Phase  separation  dynamics   in  a  two-­‐dimensional  

magnetic  mixture

DPG  Berlin,  Talk  CPP  10.8                                                                                 Fachverband  Chemische  Physik  und  Polymerphysik

March  27th,  2012        

K . Lichtner 1 , A . J . Archer 2 , S . H . L . Klapp 1

1) 2)

(2)

Motivation

2

Soft Matter 2012

more examples:

(3)

V core (r i , r j )+ V mag (r i , r j , s i , s jα,B δ β ,B

V mag (r, r , s 1 , s 2 ) = − J e ( | r r

| 1)

| r − r | /σ s 1 · s 2

A  simple  model:  Heisenberg  mixture

3

H int = 1 2

α,β

� N

i,j=1 i=j

V αβ (r i , r j , s i , s j ) , where α, β = { A, B }

Interaction potential

εe ( −| r r

| )

2

2

Model

(4)

Part  I:  Equilibrium  Theory

(5)

µ α = δ F [ { ρ α } ] δρ α

Central  quantity:

Density  functional  theory

5

Ω[ { ρ α } ] = F [ { ρ α } ] − �

α

dr �

µ α − V ext (r, ω ) �

ρ α (r, ω ) ρ α (r, ω ) = ρ α (r)h α (r, ω )

F [ { ρ α } ] = F id [ { ρ α } ] + F ex [ { ρ α } ]

Classical  grand   potential

Excess  free  energy:

F ex [ { ρ i } ] = 1 2

α,β

� 1

0

dr

dr

ρ (2) αβ (r, r , ω , ω ; λ)V αβ ( | r − r | , ω , ω ).

:

Equilibrium  density  is  given  by:

Methods

δ Ω[ρ α , h]

δρ α (r)

� �

� �

ρ

(0)α

(r)

= 0 , and δ Ω[ρ α , h]

δ h α (r, ω)

� �

� �

h

(0)α

(r,ω)

= 0

(6)

0 0.2 0.4 0.6 0.8 1

x

0 1 2

3 4 5

!" 2

metastable unstable Curie line

(x II , ! II ) (x I , ! I )

O

O

ρ c

Phase  diagram

Results  I:  Equilibrium  theory

6

µ I α = µ II α , P I = P II T I = T II

 Coexisting  states  with                                                                                  and

 Tricritical  point  with  stable  states  for  r  <  r_c

Phase  transitions   Isobars

First  order  demixing   transition  

    

Second  order  transition   for  the  magnetization

    

(7)

0 0.2 0.4 0.6 0.8 1

x

0 1 2 3 4 5

!"

2

metastable unstable Curie line

(x

II

, !

II

) (x

I

, !

I

)

O

O

ρ

c

10 20 30 40

0 1 2 3 4

!

A

"

2

P

*

= 96.85 P

*

= 71.47 P

*

= 62.39 P

*

= 53.96

10 20 30 40

z / "

1 2 3 4

!

B

"

2

P P

T

Inhomogeneous  densities

7

 Minimize:  

                     System  completely  equilibrated

 Full  information  of  system  after  phase  separation

                   Coexisting  bulk  densities  and  bulk  magnetizations                                

Results  I:  Equilibrium  theory

δΩ[ρ

α

, h]

δρ

α

(r)

� �

� �

ρ(0)α (r)

= 0 , and δΩ[ρ

α

, h]

δh

α

(r, ω)

� �

� �

h(0)α (r,ω)

= 0

(8)

10 20 30 40 z / !

0 0.2 0.4 0.6 0.8

m P

*

= 96.85

P

*

= 71.47 P

*

= 62.39 P

*

= 53.96

Magnetization

8

10 20 30 40

0 1 2 3 4

!

A

"

2

P

*

= 96.85 P

*

= 71.47 P

*

= 62.39 P

*

= 53.96

10 20 30 40

z / "

1 2 3 4

!

B

"

2

P P

T

 Inhomogeneous  magnetization  profile  for  species  B  

 No  magnetization  in  phase  I

 Softening  of  the  interface  can  also  be  seen  in  the   magnetization

Results  I:  Equilibrium  theory

(9)

Part  II:  Out  of  equilibrium

(10)

ρ α (r)

Dynamical  density  functional  theory

10

One-body Smoluchowski equation for a binary mixture:

Γ 1 ∂ρ α (r, t)

∂t = k B T ∇ 2 α ρ α (r, t) + ∇ αα (r, t) ∇ α V ext (r, t)] + + 1

2 ∇ α

αβ

dr ρ (2) αβ (r, r , t) ∇ α v 2 (r, r )

Adiabatic approximation and sum rule:

Theory:  DDFT

DDFT key equation:

U. Marconi, P. Tarazona, JCP 110 8032,1999

Γ α 1 ∂ρ α (r, t)

∂t = ∇ ·

ρ α (r, t) ∇ δ F [ρ A (r, t), ρ B (r, t)]

δρ α (r, t)

(11)

Spinodal  decomposition

Results  II:  non-­‐equilibrium

11

 Study  states  where  dynamics  is  linearly  unstable          Density  variations  grow  slowly  over  time

0 0.2 0.4 0.6 0.8 1

x 0

1 2 3 4 5

!"2

metastable unstable Curie line

(xII, !II) (xI, !I) O

O

ρc

(12)

Nucleation  (2d)

12

 Exchange  of  energy,  volume  or  particles  such  that:

 Surface  tension  impedes  the  formation  of  droplets

 Supercritical  nuclei  for  R  >  Rc

Results  II:  non-­‐equilibrium

0 1 2 3

R / R

c

0

Ω

droplet

(R)

B

~R

~R

2

ρ A

(13)

Nucleation  dynamics

Results  II:  non-­‐equilibrium

13

 Isotropic  particles  in  the  sea  of  magn.  particles

 Pathways  for  supercritical  and  subcritical  nuclei

0 0.2 0.4 0.6 0.8 1

x 0

1 2 3 4 5

!"2

metastable unstable Curie line

(xII, !II) (xI, !I) O

O

ρc

time

(14)

DDFT  free  energy  pathway

 EDFT  and  DDFT  consistent  in  predicting  nucleus  growth  or   shrinking,  but:  free  energy  pathways  are  different!

 Recall  that  EDFT  works  in  (T,V,      )  ensemble  and  DDFT  in   (T,V,N)  ensemble,  respectively

14

0 100 200

N

ex

-30 -20 -10 0 10 20

ΔΩ / k

B

T

a

b c d

e

f

Results  II:  non-­‐equilibrium

µ

(15)

Summary

 Model  for  a  binary  colloidal  mixture

 Phase  diagram  and  equilibrium  (EDFT)                                 results  of  the  free  interface

 DDFT  study  with  consistent  results

 Free  energy  pathways  of  EDFT  and  DDFT

(16)

 Surface  tension

16

1 10 100

(P * -P c * )

0 4 8 12

!" / (k B T)

Results  I:  Equilibrium  theory

P = P T (z )ˆ e x e ˆ x + P N (z )ˆ e z e ˆ z γ =

−∞

dz (P − P T (z ))

 Pressure

 Line  tension

(17)

0 0.2 0.4 0.6 0.8 1

x

0 1 2

3 4 5

!" 2

metastable unstable Curie line

(x II , ! II ) (x I , ! I )

O

O

ρ c

Phase  separation  dynamics

17

Can  we  study  nucleation  with  DDFT?

Results  II:  non-­‐equilibrium

or  unstable  states  (spinodal  decomposition)?

(18)
(19)

 Full  dynamics  with  interactions                                                            

 Orientation,  hydrodynamics  etc.

 Difficult  to  solve

Methods

19

(I) Computer  simulations

noise forces

inertia friction

Methods

(20)

m(r, t)

(I) Computer  simulations

(II) Density  functional  theories

Static  DFT Dynamic  DFT

 Equilibrium  properties,   microscopic  description

 Phase  diagrams,  

interfaces,  nucleation   barriers

 States  out  of  equilibrium,   time-­‐dep.  order  parameter

 Relaxation  into  equilibrium   of                            ,  

noise forces

inertia friction

Methods

Methods

20

ρ(r, t)

(21)

Outline

21

(I)  Introduction

(II)  Equilibrium  theory  (EDFT)

Model

• Phase  diagram

• Static  results

(III)  Out  of  equilibrium  (DDFT)

• Comparison  to  EDFT

Nucleation

(IV)  Conclusion

(22)

DDFT key equation:

U. Marconi, P. Tarazona, JCP 110 8032,1999

DDFT  for  binary  mixtures

22

• we assume magnetic moments have very short relaxation time so that m can be minimized at each time instant: Ω[ρ α , h]

∂h α (r, ω)

� �

� �

h

(0)α

(r,ω)

= 0

Γ α 1 ∂ρ α (r, t)

∂t = ∇ ·

ρ α (r, t) ∇ δ F [ρ A (r, t), ρ B (r, t)]

δρ α (r, t)

• we use the same Helmholtz free energy as above (EDFT):

F [ { ρ α } ] = F id [ { ρ α } ] + F ex [ { ρ α } ] Theory:  DDFT

Note, that

(23)

Nucleation:  critical  droplet  theory  (2d)

23

 Exchange  of  energy,  volume  or  particles  such  that:

 surface  tension  impedes  the  formation  of  droplets:

Results  II:  non-­‐equilibrium

0 1 2 3

R / R

c

0

Ω

droplet

(R)

B

~R

~R

2

ρ A γ

(24)

Nucleation  barrier

24

0 50 100 150 200

N

ex

0

20 40

61 / k

B

T

x = 0.9x = 0.92

x = 0.94 x = 0.96 x = 0.97

0.9 0.92 0.94 0.96 0.98

x

0 40 80 120

!"

c

/ k

B

T

CNT

DFT

 Results  consistent  for  concentrations  near  binodal

 CNT  is  weak  for  smaller  concentrations  (near  the  spinodal)            Reason:  CNT  is  clearly  a  macroscopic  theory

Results  II:  non-­‐equilibrium

Referenzen

ÄHNLICHE DOKUMENTE

The dissociation results in a slightly looser network for the low-modified styrene–butadiene copolymer samples in comparison to the pristine styrene–butadiene copolymer at

The satellite workshop will address topics at the in- terface between soft matter science, energy re- search and scattering and imaging with neutrons. Two sessions are planned

focused on the static equilibrium conditions of a magnetic clutch [10], this article shows the dynamic behavior of the output when the input magnet is driven with a constant

The surface energy of the liquid layer for increasing (open squares) and decreasing (circles) magnetic induction. The full circles mark the increase of E s through the

In the quantum spin model for limiting cases of small and large quantum fluctuations magnetic phases are expected to be stable: antiferromagnetic states resemble the Ising ground

In this Thesis, I am concerned with the dynamics of OP vortices, driven by either an IP rotating magnetic field or a static field with both IP and OP components, in the Heisenberg

The existence of a supersaturated SF 6 vapor layer above the liquid-vapor interface would explain why the cloud patterns occur only in a thin layer above the liquid-vapor in-

however, the CL-CL demixing transition and associated critical point is induced by another critical point (that of the solvent), which demonstrates a coupling of critical phenomena