• Keine Ergebnisse gefunden

Protokoll zum Experimentalvortrag

N/A
N/A
Protected

Academic year: 2021

Aktie "Protokoll zum Experimentalvortrag"

Copied!
38
0
0

Wird geladen.... (Jetzt Volltext ansehen)

Volltext

(1)

Hinweis

Bei dieser Datei handelt es sich um ein Protokoll, das einen Vortrag im Rahmen des Chemielehramtsstudiums an der Uni Marburg referiert. Zur besseren

Durchsuchbarkeit wurde zudem eine Texterkennung durchgeführt und hinter das eingescannte Bild gelegt, so dass Copy & Paste möglich ist – aber Vorsicht, die Texterkennung wurde nicht korrigiert und ist gerade bei schlecht leserlichen Dateien mit Fehlern behaftet.

Alle mehr als 700 Protokolle (Anfang 2007) können auf der Seite

http://www.chids.de/veranstaltungen/uebungen_experimentalvortrag.html eingesehen und heruntergeladen werden.

Zudem stehen auf der Seite www.chids.de weitere Versuche, Lernzirkel und Staatsexamensarbeiten bereit.

Dr. Ph. Reiß, im Juli 2007

(2)

Wintersemester 1998/99

Veranstaltung:Übungen im Experimentalvortrag für Lehramtskandidaten Leitung: Dr. J. Butenuth, Dr. E. Gerstner, Prof.Dr. H.Perst

Protokoll zum Experimentalvortrag

"Mineralische Düngemittel"

vorgelegt von Petra Claußen Friedrich-Ebert-Str.119

35039 Marburg

(3)

Inhaltsverzeichnis

1 EINLEITUNG.---... ~.2

2 PFLANZENERNAHRUNG.. 2

3 KERNNÄHRSTOFFDÜNGER 11 • • • • • • • • • • • • • • • •·.~• .-• • • •~.~ ~• • • • • • • • • ••• • • •• • •~.·3

3.1 Stickstoffdünger 3

i~ 3.1.1 Nährstofflösung nach Knop ~ 5

3.1.2 Stickstoff in Düngern ~ ~ ~ ~ 7

3.1.3 Herstellung eines Ammoniumdüngers u u • • • • • • • •l 0

3.2 Phosphatdünger __ 13

3.2.1 Phosphat in Düngern 14

3.2.2 Phosphatgehalt im Boden _ 16

3.3 Kaliumdünger __ .--21

3.3.1 Kalium in Düngern ~ 26

4 DIE BEDEUTUNG DES KALKS 28

4.1 Kalkgehalt in Gartenerde 29

5 DÜNGER IN DEN SCHLAGZEILEN 31

6 LITERATURVERZEICHNIS~....~~.__.~...•..__.•~__ ..----...~__~ ~~..•.~...~--....35

(4)

1 Einleitung

Die Düngung steht immer wieder im Brennpunkt:

erhöhte Nitratgehalte im Grundwasser, die Eutrophierung von

Oberflächengewässern werden der Düngung angelastet. Das hat mich dazu veranlaßt die Dünger einmal genauer unter die Lupe zu nehmen.

Anhand von Stickstoffdüngern, Phosphatdüngern und Kalidüngern ergänzt durch die Bedeutung des Kalkes wird ein Überblick über einen Teil der Dünger geben, und zum Schluß auf mögliche Umweltbeeinträchtigungen durch die Düngung

eingegangen.

2 Pflanzenernährung

Bisher hat man geglaubt, daß die Fruchtbarkeit des Bodens von seinem

Humusgehalt abhinge. Liebig dagegen behauptete: "Die ersten Quellen der Nahrung sind in der anorganischen Natur zu suchen."

Was hat er damit gemeint, was gehört denn zur Nahrung der Pflanze? Pflanzen benötigen für ihr Wachstum 15 Nährelemente.

Diese sind in vier Gruppen unterteilt:

In der ersten Gruppe sind die Gase Kohlendioxid und Sauerstoff und das Wasser mit den drei Hauptnährelementen Kohlenstoff, Sauerstoff und Wasserstof zusammengefaßt.

Die zweite Gruppe enthält 6 weitere Hauptnährelemente, die auch als

Makronährelemente bezeichnet werden. Hierzu gehören Stickstoff, Phosphor und Kalium als Kernnährelemente und Calcium, Magnesium und Schwefel. Stickstoff, Phosphor und Kalium werden als Kernnährelemente bezeichnet, weil schon bei vorübergehendem Fehlen Wachstumsstörungen eintreten. Aus diesem Grund beschränke ich mich hier auf diese Elemente.

Des weiteren gibt es die Gruppe der Spurenelmente bzw. Mikroelemente mit Eisen, Mangan, Bor, Zink, Kupfer und Molybdän und als letztes die Gruppe der

nützlichen Elemente, zu denen Silizium, Natrium und Chlor gehören.

(5)

Nach der Betrachtung der für die Pflanzenernährung notwendigen Stoffe, liegt die Definition von Düngung bzw. Düngern auf der Hand. Was wird darunter aber genau verstanden?

Düngung:

Maßnahme, durch Zufuhr von Pflanzennährstoffen den Ertrag und die Qualität von Nutzpflanzen zu verbessern

In der BRD werden als Dünger alle Stoffe angesehen, die dazu bestimmt sind, mittelbar oder unmittelbar zugeführt zu werden, um das Wachstum von Pflanzen zu fördern oder ihren Ertrag zu erhöhen oder ihre Qualität zu verbessern.

(Dünger-Gesetzes vom 15.11.1977)

3 KernnährstoffdünM!:

3.1 Stickstoffdünger

Bedeutung des Stickstoffs

Da Stickstoff in der Pflanzenernährung zu den wichtigsten Elementen gehört, soll hier als erstes seine Bedeutung durch die folgende Graphik veranschaulicht

werden. Sie zeigt unter den vielfältigen Aufgaben des Stickstoffs unter anderem den hohen Massenertrag, der besonders für die Landwirtschaft und die Ernährung von Bedeutung ist.

(6)

Eiweiß entsteht

hoher Massenertrag

Bedeutung des Stickstoffs für die Pflanzen

Einbau in

Photosyntheseprodukte

Stickstoff

Förderung vegetativen Wachstums

(7)

'1'

3.1.1 Nährstofflösung nach Knop

Um die Wirkung bzw. den Mangel eines Nährstoffs zu verdeutlichen habe ich Mais zum einen in einer Stickstoffnährlösung und zum anderen in einer

Stickstoffmangelnährlösung gezogen.

Die Nährlösung enthielt alle für die Pflanzenernährung notwendigen Nährelemente.

Während bei der Stickstoffmangelnährlösung Calciumnitrat durch Calciumchlorid ersetzt wurde.

Nährlösung nach Knop Geräte:

2 Meßkolben 11

Chemikalien:

19 Calciumnitrat (Ca(N03)2*4H20) 0,25 9 Magnesiumsulfat (MgS04*7H20)

0,25 9 Kaliumdihydorgenphosphat 0,12 9 Kaliumchlorid

Spatelspitze Eisen(III)-chlorid 1 mg Borsäure

1 mg Mangansulfat

1 mg Kupfersulfat (CuS04*5H20) Zinksulfat (ZnS04*7H20)

auf 11auffüllen

Stickstoffmangelnährlösung:

Calciumnitrat durch CaC12*2 H20 ersetzen

(8)

Optimale Wachstumsbedingungen setzen voraus, daß alle Nährsalze, die die Pflanze dem Boden entzieht diesem wieder zugeführt werden, sonst kommt es zu Mangelerscheinungen, die sich bei Stickstoffmangel wie folgt äußern:

• Pflanze kümmert

• Blätter blaßgrün

• ältere Blätter chlorotisch, fallen ab

• Notblüte

• geringerer Ertrag

• Eiweißgehalt und biologische Wertigkeit sind geringer

Nährstoffaufnahme und Nährstoffbedarf von Mais

Schon bei geringem Mangel eines Nährstoffs treten Mangelsymptome auf, wie sie bei Maispflanzen beobachtet werden können.

Die folgende Graphik, bei der der Verbrauch an Nährstoffen gegenüber der

Wachstumsphase aufgetragen ist, verdeutlicht durch den starken Anstieg zu Beginn den hohen Verbrauch an Stickstoff bei jungen Maispflanzen besonders gut.

(9)

Nährstoffaufnahme und Nährstoffbedarf von Mais

240 kg/haNährstoff K2 0

220 _fII. N

200 180 160 140

120 P20S

100 80 60

40 ..

s ·- •••• . l -··

I MgO

20

I Cl

....

I s:::

C s::: c

(1) Cl Q) lt::::J

~ -os::: Cf) .... (1)0 ' -

~

:::J C :::J Cf) ~Cl

ca (1)- 0 Q)

~

ti= Cl"U ..c:

....

..c:J2

:::J :::J . - (J ::::J :ca C

~

< ....,~ Cf) CD Z .0)

3.1.2 Stickstoff in Düngern

Da Stickstoff für die Pflanzen unverzichtbarist und durch Dünger zugeführt werden muß,weil der Boden oft nicht genügend zur Verfügung stellen kann,weise ich ihn in einem Dünger nach.

(10)

Versuch 1: Nachweis von Stickstoff in einem Dünger

Ich habe für diesen wie auch die anderen Nachweise der Kernnährelemente

Blaukorn gewählt, einen häufig verwendeten und für die Nachweise gut geeigneten Dünger.

Geräte:

• Demonstrations-Reagenzglasständer

• 1 Demonstrations-Reagenzglas

Chemikalien:

• konz. H2S04

• kalt gesättigte, angesäuerte FeS04-Lsg.

• Düngemittelextrakt

Durchführung:

1. Schritt: Extraktion der wasserlöslichen Bestandteile des Düngers

2. Schritt: Nachweis von Stickstoff im Filtrat ( Ringprobe )

3 Tropfen der Probelösung werden im Reagenzglas mit 3 Tropfen einer kalt gesättigten mit 1Tropfen 2,5 molll H2S04angesäuerten FeS04-Lsg. versetzt und vorsichtig mit konz. H2S04unterschichtet, indem man das Reagenzglas schräg hält und die konz. H2S04an der inneren Wandung herunterfließen läßt.

In der Berührungszone zwischen einer N03- - Lösung und konz. Schwefelsäure entsteht freie Salpetersäure, die durch die Eisen(lI) - Ionen zu Stickstoffmonoxid reduziert wird. Dieses wird durch überschüssige Eisen(lI) - Ionen komplex

gebunden. Es entsteht der Nitroso- Eisen- Komplex, den man als braunen Ring sieht.

(11)

Säure - Base - Reaktion nach Bränsted

Redox - Reaktion

+5 +2 2+ + +2

HN03 + 3 Fe (aq) + 3 H30 ---... NO

Ligandensubstitution

+2 2+ +2 +1 +3 2+

[Fe(H20 )6 ] + NO-..---~~ [Fe(H20)S(NOt] + H20

Stickstoffdünger

Es gibt neben dem Blaukorn aber noch weitere Stickstoffdünger, sie werden in zwei große Gruppen, die Nitratdünger und die Ammoniumdünger, unterteilt.

1. Nitratdünger (Kurzzeitdünger)

• Ammonsalpeter (NH4N03) 35%N

• Kalksalpeter, Ca(N03)2, 15% N

• Natronsalpeter, NaN03

2. Ammoniumdünger (Langzeitdünger)

• schwefelsaures Ammoniak 21%N

• Ammoniumsulfat (NH4)2S04 20% N2

• Ammonsulfatsalpeter 2 NH4N03*(NH4)2S04

(12)

Sie sind für unterschiedliche Pflanzen geeignet, weil verschiedene Pflanzen

unterschiedliche Ionen aufnehmen, um ihren Nährstoffbedarf zu decken. Kartoffeln und Gräser bevorzugen NH4+- Ionen, während Zucker- und Futterrüben N03--lonen aus dem Boden aufnehmen.

Im Blaukorn habe ich das Nährelement Stickstoff als Nitrat-Ion nachgewiesen, es handelt sich hier offensichtlich um einen Nitratdünger.

Die Nitratdünger unterscheiden sich wie auch die Ammoniumdünger durch ihren unterschiedlichen Gehalt an Stickstoff.

Ammoniumdünger wirken eher langsam und werden aufgrunddessen auch Langzeitdünger genannt, ihre langsame Wirkung beruht zum einen auf einer

vorhergehenden Umsetzung zum anderen darauf, daß kolloide Silikate des Bodens die Ammonium - Ionen festhalten und diese so vor Auswaschung schützen.

3.1.3 Herstellung eines Ammoniumdüngers

Nachdem die Vielfalt der Stickstoffdünger mit den vielen verschiedenen

Zusammensetzungen eher verwirrend wirkt, ist es schön zu sehen wie einfach ein bedeutender Ammoniumdünger, das Ammoniumsulfat, hergestellt werden kann.

Versuch 2: Herstellung von Ammoniumsulfat Geräte:

• 200 ml Erlenmeyer

• Standzylinder

'1 • 50 ml Becherglas

• Glasfilter

• Stativ

• Filterring

• Filter

• Urglas mit pH-Papier

• Pipetten

• Magnetrührer

• 4 cm Rührfisch

• Stativstange

• Befestigung für Erlenmeyer

(13)

Chemikalien:

• BaCl2-Lösung

• Salzsäurelösung

10 g Ammoniumcarbonat

10-12 9 gebrannter Gips (Moltofill aus dem Baumarkt)

Durchführung:

In einem Erlenmeyerkolben löst man 10 9 Ammoniumcarbonat in 50-60 ml desto Wasser; während man über dem Drahtnetz zum Sieden erhitzt, trägt man löffelweise 10-12g gebrannten Gips ein, nach 15 min filtert man.

Ammoniumcarbonat und Calciumsulfat haben sich in Ammoniumsulfat und Calciumcarbonat umgesetzt.

2. Schritt: Umsetzung mit gebranntem Gips

+ 2-

2 NH4 (aq) + C03 (aq)

2- 2+

+ 804 (aq) + Ca (aq)

..

CaC03 + 2 NH4+ (aq) + 8042-(aq)

Das auch wirklich Ammoniumsulfat entstanden kann anhand zweier Nachweisreaktionen gezeigt werden.

(14)

Nachweisreaktionen:

1. Sulfat -Ionen

Ba2+ + 2 CI

2. Ammonium - Ionen

+ -

NH4 + OH ...

(15)

'~

3.2 Phosphatdünger

Nachdem ein kleiner Einblick über das Nährelement Stickstoff vermittelt wurde, kann das zweite wichtige Kernnährelement, der Phosphor, folgen.

Zu Beginn steht auch hier wieder die Bedeutung des Phosphors für die Pflanze, da dies die Grundlage für das Verständnis einer entsprechenden Düngung bildet.

Bedeutung des Phosphors für die Pflanzen

Baustein wichtiger Zellbestandteile

Förderung der Krümelbildung

-,

Energ iestoffwechsel ( AMP, ADP, ATP )

/

Wirkung und Aufgaben

Leben der Bodenbakterien

/

Bestandteil der

Vermehrungsorgane P-reich

(16)

3.2.1 Phosphat in Düngern

Ich werde nun auch Phosphor im Blaukorn nachweisen. Vielleicht kann man dann sagen, was sich hinter dem Namen Blaukorn verbirgt.

Versuch 3: Nachweis von Phosphor in Dünger

Geräte:

• säurefeste Handschuhe

• Reagenzglasständer

• Demonstrationsreagenzglas

Chemikalien:

• konz. HN03

• Ammoniummolybdatreagenz

• Düngemittelextrakt

Durchführung:

1.Schritt: Extraktion wasserlöslicher Bestandteile des Düngers (vgl. Versuch 1)

2. Schritt: Nachweis von Phosphor im Filtrat

Etwas Lösung wird mit einigen Tropfen konzentrierter HN03erwärmt, bis keine nitrosen Gase mehr entweichen (Oxidation reduzierender Ionen, die den Nachweis stören). Zu der HN03-sauren Lösung werden weitere Tropfen HN03 und in der Kälte einige Tropfen Reagenzlösung gegeben. Bei Gegenwart größerer P043- -

Mengen entsteht in der Kälte innerhalb von 3 Min. eine gelbe Fällung von Ammoniummolybdophosphat.

(17)

zitronengelb

Durch das Ansäuern des Filtrats bildet sich Phosphorsäure, diese reagiert mit dem Ammoniumheptamolybdat zu Ammoniummolybdophosphat, dem Salz der

Heteropolysäure und ist als zitronengelber Niederschlag erkennbar. Des weiteren entsteht Ammoniumnitrat und Wasser.

Als nächstes kann man sich auch hier die Frage stellen, was passiert bei einer zu geringen Gabe an Phosphat? Woran können Mangelerscheinungen erkannt werden?

Ein Phosphatmangel ist an folgenden Symptomen direkt bzw. indirekt erkennbar:

• Blätter stehen steil nach oben (nStarrtrachtU)

• schwaches Wachstum

• Blüte und Reife verzögert

• Anreicherung von Amiden: Eiweißsynthese gestört

• geringere Haltbarkeit landwirtschaftlicher Produkte

• Frostresistenz eingeschränkt

• ältere Blätter oft dunkelgrün oder auch durch Anthocyan rot gefärbt

Düngungsempfehlungen

Nun ist es aber schwer nicht zuviel und nicht zu wenig zu düngen. Um diesem

Problem Abhilfe zu schaffen, gibt es genaue Düngeempfehlungen, die sich nach der Nährstoffversorgung im Boden richten. Rückschlüsse auf die notwendige Düngung können nur durch genaue Kenntnisse des Nährstoffgehalts im Boden gezogen werden.

In der Düngungsempfehlung wird dem Boden je nach Nährstoffgehalt eine bestimmte Stufe zugeordnet, nach der sich dann die Düngung richtet.

(18)

Zum Beispiel bedeutet Stufe A, der Boden hat wenig Nährstoffe, folglich ist eine erhöhte Düngung notwendig.

Angestrebt wird eine Erhaltungsdüngung, daß bedeutet dem Boden werden nur die Nährstoffe, die die Pflanzen ihm entziehen wieder zugeführt. Auf diese

Erhaltungsdüngung, die der Stufe Centspricht, sind die Dünger abgestimmt.

Fazit: Düngt man in Maßen, so droht keine Überdüngung.

3.2.2 Phosphatgehalt im Boden

Es soll nun photometrisch die Versorgungsstufe bei Gartenerde bestimmt werden.

Versuch 4: CAL-Methode (Methodenbuch der VDLUFA)

Geräte:

100 ml Meßkolben

• 500 ml Meßkolben

• 50 ml Meßkolben

• 50 ml Meßkolben

• Küvetten

• Eppendorfpipette oder Blutzuckerpipette

10 ml Pipette

'1' • Meßzylinder 15 ml

CAL - Vorratslösung:

7,7 9 Calciumlactat CSH 10ceo,* 5H20

3,95 9 Calciumacetat (CH3COO)2Ca*xH20 (getrocknet)

je in 0,03 I heißem Wasser lösen und beide Lösungen vereinigen.

Nach dem Abkühlen 8,95 ml Essigsäure ( p = 1,06 g/ml) zugeben und mit Wasser auf 0, 10 I auffüllen.

(19)

CAL-Gebrauchslösung:

0,1 I CAL-Vorratslösung mit Wasser auf 0,5 I verdünnen. Die Lösung enthält je 0,05 mol/l Calciumacetat und -lactat und 0,3 mol/l Essigsäure (pH-Wert 4,1). Zur

Kontrolle mit NaOH (c= 1moili) gegen Phenolphthalein titrieren (Sollverbrauch 30 ml)

Ammoniummolybdatlösung:

2,5 g Ammoniumheptamolybdat in etwa 40 ml Wasser von ca. 50°C lösen und nach dem Erkalten mit Wasser auf 0,05 I auffüllen.

Mehrere Wochen haltbar

Reduktionslösung:

0,625 g Ascorbinsäure

175 mg Zinn(II)-chlorid SnCI2*2H 20 in 25 ml Salzsäure (c= 10 moili) mit Wasser auf 50 ml auffüllen.

( Lsg. täglich frisch)

Durchführung:

1. Schritt: Extraktion von Phosphat aus der Bodenprobe mit Hilfe einer Acetat-Lactat-Lösung

59 luftgetrocknete Erde in Erlenmeyerkolben (300 ml) einwiegen, mit 100 ml CAL- Gebrauchslösung versetzen, einige Male umschwenken. 90 min. rühren, filtrieren und die ersten 5-1

°

ml des Filtrats verwerfen.

10 ml Filtrat

15 ml Wassser

• 1 ml Molybdatreagenz

1 ml Reduktionslsg.

(20)

Der Anteil des lactatlöslichen Phosphats am Gesamtphosphat wird dem pflanzenverfügbaren Anteil gleichgesetzt.

Mit dieser Extraktion werden die an Bodenbestandteilen adsorbierten sowie die in der Bodenlösung befindlichen Phosphat-Anionen erfaßt. Die Oxalat- und Lactat- Anionen verhindern dabei die Bildung schwerlöslicher Phosphate durch

Komplexbildung der Kationen.

2. Schritt: photometrische Bestimmung bei 585 nm

7 H [P(M 0 )] SnCI21Ascorbinsäure

3 03 10 4 ~ Mo03_x(OH)x

x= 2- 0,

Molybdänblau

Das herausgelöste Phosphat, was hier in Form von Phosphorsäure vorliegt, wird als erstes mit Ammoniumheptamolybdat im Sauren umgesetzt, es bildet sich

12- Molybdatophosphorsäure oder Dodekamolybdatophosphorsäure, die

anschließend mit Zinn(lI)chlorid und Ascorbinsäure zu Molybdänblau reduziert wird.

Von diesem wird dann die Extinktion gemessen.

(21)

Extinktion bei 585 nm

~"../ / v:

~",

"

~",/ / v:

~",

,

/

~",

"

"

~",

,

. /

~",

,

~",./ / v:

~".

,

"

~"

,

~"". /

"

~"-'

,

~",.-'

"

~"-'

,

1,4 1,8 1,6

1,0

0,0

°

5 10 15 20 25 30 35 40 45 50 55 60 65 70 0,8

0,4 1,2

0,6

0,2

mg P20s/100g Boden

o

Auswertung

Wenn zuvor eine Kalibriergerade erstellt wurde, in dem die Extinktion gegenüber dem Phosphatgehalt in Phosphorpentoxid aufgetragen wurde, kann jetzt anhand der gemessenen Extinktion der Phosphatgehalt der Gartenerde abgelesen und einer entsprechenden Versorgungsstufe zugeordnet werden.

(22)

Versorgungsstufen für Phosphat

Grad der Bodenversorgung P20S[mg}I 100 g Boden

A =niedrig 0-10 Meliorations-

Düngung

B=mittel 11-20 erhöhte Düngung

C=gut 21-30 Erhaltungs-Düngung

o=hoch 31-40 verringerte Düngung

E=sehr hoch >41 keine Düngung

Welche Möglichkeiten der Phosphatdüngung gibt es denn?

Sicherlich gibt es wie bei den Stickstoffdüngern auch hier eine ganze Reihe von Möglichkeiten dem Boden Phosphat zuzuführen, aus diesem Grund möchte ich hier die gängigsten Phosphatdünger vorstellen.

1'. PhoSRhatdünger

1. Thomasphosphat, Thomasmehl

• Abfallprodukt bei der Endphosphorisierung des Eisens

• zitronensäurelöslich, weil zur Gehaltsbestimmung eine zweiprozentige Zitronensäurelösung verwendet wird.

=>Wirkt langsam, weil es nicht leicht löslich ist und ist daher für saure Böden geeignet.

• 16% P20s

(23)

2. Rhenaniaphosphat (Glühphosphat3 CaNaP04*Ca2Si04)

• zitratlöslich,weil zur Gehaltsbestimmung eine Lösung des Ammoniumsalzes der Zitronensäure verwendet wird.

=>Wirkt schneller und ist somit für weniger saure Böden geeignet.

• 26% P20 s

3.Triplephosphat (Triammoniumphosphat (NH4)3P04)

• wasserlöslich

• 500k P20S

4. Superphosphat(Ca(H2P04)2, CaS04)

• wasserlöslich

Nur bei niedrigen Kalk- und Magnesiumgehalt zu verwenden, da sonst schwerlösliche Phosphate ausfallen.

• 18% P20s

• viele Spurenelemente

3.3 Kaliumdünger

Gesetz vom Minimum

Liebig erkannte als erster, daß sich die Erträge eines Ackers immer nachdem Pflanzennährstoff richten, der in der geringsten Menge vorhanden ist. Es erscheint uns heute selbstverständlich, daß z. B. ein Mangel an Kalium nicht durch erhöhte Gaben an Phosphat ausgeglichen werden kann. Das Fehlen eines Nährstoffs einer Daube kann nicht durch größere Mengen eines anderen (einer längeren Daube) ausgeglichen werden.

(24)

Gesetz vom Minimum

:

Vielen Böden fehlt ein genügender Kaligehalt,um bei intensivem Anbau höchste Erträge zu liefern.Besonders der Kartoffel- und Rübenanbau erfordert einen Kalisalz reichen Boden.

Als Kalidünger stehen uns eine Anzahl von Salzen zur Verfügung,die bergmännisch gewonnen werden.Sie kommen fein gemahlen in den Handel.

Aber warum ist Kalium so bedeutsam?

(25)

Bedeutung von Kalium

Verdrängung der Calcium - Ionen

Erhöhung der Frostresistenz

Wirkung und Aufgaben

Erhöhung des

osmotischen Druckes

spezifische Aktivierung von Enzymen

Energieübertragung

(26)

Kaliummangelerscheinungen an einigen bekannten Pflanzen

Betrachtet man folgende Abbildungen, kommen sie einem bekannt vor. Wir haben sie aber nie als Kalimangelerscheinungen wahrgenommen und uns wird erst jetzt bewußt wie häufig sie auftreten.

Johannisbeere:

Anfangs blau-grüne Blätter,Übergang in braune Nekrosen vom Rand her, Blätter mit aufgerollten Rändern nach unten gebogen, Absterben der Blätter, uneinheitliche Beerenreife.

(27)

Tomate:

Links normal ausgereift,rechts Tomate mit .Grünkraqen ",grünlich-gelbe,harte scharf abgesetzte, unregelmäßige Flecken im Fruchtfleisch um das Stilende.

Kartoffel:

Geringere Knollengröße, schwaches Zellgewebe,schlechtere Lager- und Transportfähigkeit,Qualitätsminderung durch Blaufleckigkeit.

(28)

3.3.1 Kalium in Düngern

Nach dem Blaukorn schon die ersten beiden Kernnährelemente enthielt möchte ich nachweisen, daß auch das Stiefkind Kalium enthalten ist.

Versuch 5: Nachweis von Kalium in einem Dünger Geräte:

• Mikroskop

• Objektträger

Chemikalien:

• Perchlorat -Lsg., c(HCI04) =9 mol/l

• Salzsäurelsg.

Durchführung:

1. Schritt: Extraktion der wasserlöslichen Bestandteile eines Düngers (s. Versuch 1)

2. Schritt: Nachweis von Kalium

1 Tropfen der Hel-sauren Probelösung und 1 Tropfen HCI04werden auf einem Objektträger vereinigt und die entstehenden Kristalle durch das Mikroskop beobachtet.

KCI04 bildet weiße rhombische, stark lichtbrechende Kristalle.

K+ + C104 ...

(29)

Blaukorn ist wie zu Beginn schon erwähnt ein häufig verwendeter Dünger, wie wir jetzt wissen enthält er die drei Kernnährstoffe Stickstoff, Phosphor und Kalium. Er wird deshalb auch Mischdünger genannt. Warum Mischdünger und somit auch Blaukorn heute fast ausschließlich verwendet werden zeigen die drei folgenden Punkte:

• Arbeitsvereinfachung

• Fehlervermeidung (Explosionen)

• chemische Umsetzungen, die den Wert des Düngemittels herabsetzen oder ganz aufheben werden vermieden

Unter den Mischdüngern sind die NPK-Dünger, die Stickstoff-, Phosphor-, Kalidünger, am häufiqsten. Derzeit sind 76 Typen zugelassen.

NPK - Dünger

• Ammoniaksuperphosphat

• Kaliammoniumsuperphosphat (Am-Sup-Ka )

• Nitrophoska

• Harnstoff-Kali-Phosphat (Hakaphos)

(30)

4 Die Bedeutung des Kalks

Kalk ist im Boden vielseitig wirksam.Eine Kalkdüngung ist der erste Schritt zur Erhöhung der Bodenfruchtbarkeit, deshalb habe ich diesen Punkt in meinen Vortrag mit aufgenommen.

Auswirkung der Kalkdüngung

VerstärktAb-

gabe vonCO,~....~~. .

in bodennahe..

LuftschichI.

Förderung der Mikroorganismen, schnellere Zersetzung

der Substanz.

jldungvon wertvolle Dauerhumus,

verbesserteNährstoff-l..~. , ...- . . kapazität

rößeres Poren- volumen,mehr Luft imBoden, . Wasserführung.

gut.

Verstäl1<tes • • • • • • • • •61

Wurzeiwachstum.r'"

Wurzeln gehen lIIIIIIu...- - - _

tiefer

Dem Boden zugeführter

Kalk bewirkt.

Bessere Verfügbarkeit der Haupt-u

Spurennähr- , • • • • • • • •stoffe

r

Entgiftung, Entsäuerung,

H'-Blndung, günstiges pH

Di rektwirkung des Kalkes

indirekteWirkung des Kalkes

(31)

I I

4.1 Kalkgehalt in Gartenerde

Ich werde nun den Kalkgehalt im Boden bestimmen.

Versuch 6: Bestimmung des Kalkgehalts im Boden

Geräte:

100 ml Becherglas

• Bürette 25 ml

• Magnetrührer

• Erlenmeyerkolben

• Filterring

• Stativ

• Glasfilter 10 cm

Faltenfilter passend

Chemikalien:

• Phenolphthalein

• Salzsäure, c(HCI) =1molll

Natronlauge, c(NaOH) =1mol/t

Probenvorbereitung :

0' 5 g des Bodens bei 1000eim Trockenschrank trocknen

Durchführung:

Reaktion mit dem Boden: Säure - Base - Reaktion nach Broensted ( Überschuß Säure)

3-5 9 des getrockneten Bodens werden mit 10 ml Salzsäure versetzt. Dabei reagiert die Salzsäure mit dem Calciumcarbonat. Ende der Reaktion nach ca. 15 min ..

..

Ca2++ 2 CI- + CÜ2(g) + 3 H20

(32)

Da Salzsäure im Überschuß zugesetzt wurde kann durch Rücktitration mit Natronlauge der Verbrauch an Salzsäure bestimmt werden. Die überschüssigen Hydronium - Ionen reagieren mit den Hydroxid - Ionen zu Wasser.

Rücktitration:

H30+(aq) + OH(aq)

Durch den Verbrauch an Salzsäure läßt sich dann der Gehalt an Kalk bestimmen.

Berechnung des Kalkgehalts

Einwaage: 5 g Gartenerde

w(Kalk) =x 0/0

=c(HCI) *(V(HCI) - V(NaOH) *t) * 5000/Einwaage

Um einen Vergleich zu haben, kann vorher der Kalkgehalt an Blumenerde bestimmt, der deutlich höher liegt. Der Blumenerde wurde, damit der Boden eine optimale Nährstoffaufnahme gewährleistet, Kalk zugesetzt.

Bodensorte Kalkgehalt [%]

Gartenerde 1,5

Blumenerde 5,95

(33)

5 Dünger in den Schlagzeilen

Zum Schluß, nachdem ein kleiner Einblick über die Kernnährstoffe in Düngemitteln und die Bedeutung des Kalks gegeben wurde, soll dieanfangs angesprochene Problematik,der Eutrophierung der Oberflächengewässer durch die

Phosphatdünger wieder aufgegriffen werden, indem betrachtet wird, was passiert, wenn man einen Phosphatdünger auf einen Boden gibt.

Phosphatdynamik im Boden

.~w"..

~'~'.: ..:..

.........

Phosphat ausge-

fällt als Fe-,AI-.Ca-Salz

Bodenminerale

adsorbiertes Phosphat (intern)

Boden

....~.."".

.;....(...)~~:-...'.' ~..~

..>......-)00;.

:-...')(.~

..;." l-,

.

;...,...:..

~.......~ ~.

.' ;'ot.,•)o'-

;~.~:.~:~

":-.... c..."

:-'.";'"'\""

........~...

.....~''',"-:

.......;...:.

..:...,;..:~..:

•"~-..I :-v ~*',

..., ,;:,::-<!

.":-', ,••.". >

',.1'.1'''-':-

;? ~ ~ {

.• ..:.!O,{••• •~~....."

..:..:.'....

".,,,;,,,

..-~.".".;. .

~ ~.-:-..

...' .

.......""'.:............

• -;i,.~>.

:.... ..,

..:-..-.....'

,"..'.....~.,..",...

.... 1'..r»

(34)

Phosphat-Ionen werden von Tonteilchen wegen ihrer geringeren Korngröße stärker als Nitrat-Ionen adsorbiert.

Selten werden mehr als 20 % aus einem frisch zugeführeten Phosphatdünger aufgenommen.

Die Pflanze deckt ihren Phosphat - Bedarf durch Phosphatneubildungen, die durch frühere Phosphatdünger in den Boden gelangten.

Versuch 7: Adsorption von Phosphat

Geräte:

• 2 Demonstrationsreagenzgläser

• Reagenzglasständer

• Reaktionslösungen

• 2 Meßkolben 50 ml

Chemikalien:

• Zitronensäure

• p-Methylaminophenol-sulfat(Photo-Rex")

• Natriumdisulfit

• konz. Schwefelsäure

0\ •

Ammoniumheptamolybdat

Calciumdihydrogenphosphatlösung:

450 mg Ca(H2P04) 2*H20 /1000 ml

Reagenzlösung I:

2 9Zitronensäure, 2 9 p-Methylaminophenol-sulfat ("Photo-RexU) und 10 9 Natriumdisulfit werden in möglichst wenig desto Wasser gelöst -wenn nötig, unter gelindem Erwärmen- und die Lösung im 100 ml-Meßkolben bis zur Marke aufgefüllt.

(35)

Reagenzlösung 11:

In einem 1000 ml-Meßkolben werden 50 ml konz. Schwefelsäure mit ca. 900 ml desto Wasser verdünnt (erst Wasser dann SäureI), dazu fügt man 50 9

Ammoniummoylbdat und füllt nach dessen Auflösung bis zur Marke auf.

Durchführung:

Zur Prüfung der Phosphat - Adsorption werden 50 ml Calciumdihydrogenphosphat

(=22,5 mg Salz) mit 50 g wenig oder ungedüngtem Boden gemischt und 5 Minuten innig gerührt. Nach dem Filtrieren wird der Phosphat- Nachweis durchgeführt.

1. Schritt: Reaktionen im Boden sehr komplex, z. B. Festlegung als

• Eisen- und Aluminiumphosphat bei pH<4,5

• Ca-Apatit bei pH>7

Phosphat-Ionen dringen in das Innere von Bodenaggregaten ein, bilden calciumreiche Phosphate und schließlich Apatite.

Pflanzenverfügbare Phosphate gehen bei diesem Prozeß in bodeneigene Formen über und werden so immobilisiert.

2. Schritt: Nachweis der Adsorption von Phosphat

(36)

Photo - Rex!~052-

7 H3[P(Mo3010)4] .. Mo03_x(OH)x x= 2- 0,

Molybdänblau

(Photo - Rex =p - Methylamino - phenolsulfat)

Das herausgelöste Phosphat, welches hier in Form von Phosphorsäure vorliegt, wird als erstes mit Ammoniumheptamolybdat im Sauren umgesetzt, es bildet sich 12- Molybdatophosphorsäure oder Dodekamolybdatophosphorsäure, die anschließend mit Photo-Rex und 5205

2-zu Molybdänblau reduziert wird. Die Farbtiefe der Lösung zeigt im Vergleich mit der reinen Phosphatlösung, das der Boden in der Lage ist Phosphat zu adsorbieren.

(37)

6 Literaturverzeichnis

u. Dämmgen, D. Frühauf, Bodenversauerung und Kalkdüngung, Naturwissenschaften im Unterricht, 33/1985, H.8,S. 291ff.

Düngemittel, Praxis der Naturwissenschaften, 38/1989, H.2

Düngung und Düngemittel, Naturwissenschaften im Unterricht Physik/Chemie, 32/1984, H.10

'I' E. Gerstner, Versuche zur Chemie der Nichtmetalle auf der Basis von E. FlucklC.

Mahr, Anorganisches Grundpraktikum, Weinheim (1985) Marburg 1987

A. F. Holleman, N. Wiberg, Lehrbuch der Anorganischen Chemie, Berlin; New York, 1985

G. Jander, E.Blasius, Lehrbuch der analytischen und präparativen anorganischen Chemie, Stuttgart, 1989

H. Lüthje, Lehrbuch der Chemie Band I, Würzburg 1960

H. Munk, M.Rex, Zur Eichung von Bodenuntersuchungsmethoden auf Phosphat, Agribiological Research 43/1990, H. 2, S.164ff.

H. Munk, M. Rex, Eichung von Bodenuntersuchungsmethoden auf Phosphat - ein Methodenvergleich (CAL, DL, P-H20 ,EUF, CaCI2) , VDLUFA-Schriftenreihe 30/1990, S.209ff.

M. Rex, H. Munk, Optimale Phosphatdüngung auf leichten Böden, VDLUFA- Schriftenreihe 30/1990, S.237ff.

(38)

M. Rex, Eigenschaften von Konvertkalk aus nicht raumbeständiger Konvertschlacke und dessen Wirkung auf chemische und physikalische Bodeneigenschaften sowie den Ertrag, VDLUFA-Schriftenreihe 37/1994, S.617ff.

M. Rex, Zur Beurteilung und Bestimmung der basischen Wirksamkeit von silikatischen Kalken, VDLUFA-Schriftenreihe 44/1997, S.627ff.

M. Rex, Wann ist eine Phosphatdüngung mit ausgeglichener Bilanz optimal, Vortrag auf dem 106, VDLUFA-Kongreß, Jena 1994

M. Rex, Veränderung der Phosphatgehalte im Boden in Abhängigkeit von der Phosphatbilanz und der Phosphatform, VDLUFA-Schriftenreihe 46/1998, S.787ff.

M. Rex, Ertrag und pflanzensoziologische Entwicklung von Dauergrünland im Mittleren Schwarzwald unter dem Einfluß langjähriger mineralischer Düngung, Boden und Landschaft. Schriftenreihe zur Bodenkunde, Landeskultur und Landschaftsökologie, 77-90/1997, H.17

Römpp Chemie Lexikon, Stuttgart 1992

u. Sachweh, Der Gärtner 1: Grundlagen des Gartenbaus, Stuttgart 1987

s. Stockmann, M. Schallies, Phosphatbestimmung im Boden mit einem Minilabor, Praxis der Naturwissenschaften, 44/1995, H.3, S.25ff.

E.Weiter, Pflanzenernährung, Ullmanns Enzyklopädie der technischen Chemie, München, Berlin 1955, Bd.6, 5.110

W. Wemer, Justus von Liebig und die modernen Auffassungen von einer umweltverträglichen Mineralstoffernährung der Pflanze, Gießener

Universitätsblätter, 9/1986, H. 1, S.65ff.

Referenzen

ÄHNLICHE DOKUMENTE

• Einfache Düngungssyteme mit Amonit (Hauert AG) und ohne Säuregaben sind gut anwendbar in Substratkulturen (keine signi-fikanten Ertragsverluste, einfache Hand-habung,

Dies zeigt eine globale Metastudie des Forschungsinstituts für biologischen Landbau FiBL und der Universität Basel, die kürzlich im Fachmagazin „Frontiers in Plant

biologischen Landbau FiBL und der Universität Basel, die kürzlich im Fachmagazin „Frontiers in Plant Science“ publiziert wurde.. (Frick, 02.02.2018) Um bis zu 40 Prozent lassen

- Aufbringen von Düngemitteln, Bodenhilfsstoffen, Kultursubstraten, Pflanzenhilfsmitteln nur, wenn davor Gehalte an N ges , NH 4 -N, P ges bekannt sind (Kennzeichnung,

In allen drei Versuchsjahren bewirkte das Ausbringen von Agro Biosol keine signifikante Verringerung des Wurzel- befalles, weder bei den Unterlagen noch bei den nicht veredelten

Bei Broccoli konnte aufgrund der im Kulturverlauf bestimmten Nmin-Ge- halte im Boden und der Nitratwerte im Pflanzensaft bei allen N-Dün- gungsverfahren auf eine optimale

enhänge  der  uminosen  ka en.  Der  erst f  (N)‐haltigen bindung  der  toff  gebunde tzt werden kö e  Korrelation phat und Korn. die  bestehen

Sie erhalten eine Auswahl an Chemikalien und Geräten, mit denen sie einen Versuch zum Nachweis von Ammoniumkationen im Dünger planen können.. Hier sind mehr Chemi- kalien und