• Keine Ergebnisse gefunden

MEASURING AND MODELING SOIL INTRA-DAY VARIABILITY

N/A
N/A
Protected

Academic year: 2022

Aktie "MEASURING AND MODELING SOIL INTRA-DAY VARIABILITY "

Copied!
21
0
0

Wird geladen.... (Jetzt Volltext ansehen)

Volltext

(1)

MEASURING AND MODELING SOIL INTRA-DAY VARIABILITY

OF THE 13 CO 2 & 12 CO 2 PRODUCTION AND

TRANSPORT IN A SCOTS PINE FOREST

Goffin Stéphanie, Parent F., Plain C., Epron D., Wylock C., Haut B.,

Maier M., Schack-Kirchner H., Aubinet M., Longdoz Bernard

(2)

Background & Objectives

Fs: One of the largest component of C cycle

10 times greater than fossil fuel emissions

 Uncertainties >>>

? Climate Change Impact ?

? Positive feedback to the GHG effect ?

Soil CO

2

efflux (Fs)

Soil: large C pool

 Fs changes may rival the

loading of atmosphere by fossil fuel

today

Empirical description Mechanistic understanding

Past Future

(3)

Background & Objectives

High Low

[CO2]

CO2

CO2

CO2

Fs

Transport Production

Autotrophic

Heterotrophic

Abiotic

Diffusion

Avection + Dispersion

Liquid phase

Depth

(4)

Background & Objectives

Fs

Transport Production Ps

Autotrophic Heterotrophic

f(porosity, humidity…)

f(Temperature, humidity, substrate)

CO2

CO2

CO2

-70 -60 -50 -40 -30 -20 -10 0

-70 -60 -50 -40 -30 -20 -10 0

-70 -60 -50 -40 -30 -20 -10 0

b) c) d)

Fine and Coarse Roots Corg High

Low Porosity

0 20 40 60 80 100 120

10 12 14 16 18 20 22

Temperature Profile

Temperature [°C]

⇒ Multilayer Approach needed

(5)

Background & Objectives

• Discrimination during CO

2

assimilation

• Discrimination changes with climatic conditions

During drought, discrimination decrease  photoassimilats more enriched in 13CO2 ( ex: -25‰)

Temporal variation of 13CO2 may give informations about transfert time of photoassimilates

13CO2=‐8‰

13CO2=‐27‰

Fs

13CO2 = ‐27‰

Sources

13CO2 may differs between CO2 sources

 13CO2 may helps for partitionning Fs between sources

⇒ Understanding of 

13

CO

2

fluctuations (space & time) needed

(6)

Improving mechanistic understanding of F

s

Multilayer Approach Isotopic Signal Analysis

1) Determine the CO

2

production rate Ps and its isotopic signature 

13

Ps for the different soil horizons.

2) Find factors affecting Ps & 

13

Ps intra & inter day fluctuations

3) Evaluate by modeling which processes (production or transport) drive Fs temporal variability

Sources & 

13C Sources & 

13C Sources & 

13C Sources & 

13C Sources & 

13C Sources et 

13C

Background & Objectives

(7)

1. Determine Ps and 

13

Ps for ≠ layers

Fdown

z Fup

Ci Psi Fs

i

down up

 

i i

up i down

i Ps

thick F F

t

C

12

CO

2

&

13

CO

2

balances for each i layer

• Diffusive Flux-Gradient approach

i _ i x

x

i x

i _ x

x z

D C z

z

C D C

F

i

i _ up i

_ i down

i

i thick

z D C

z D C

t Ps C

➨ Ps and Ps for each layer

for 12CO2

& 13CO2

Vertical profile of their dependence on SWC measured on samples at

for 12CO2

& 13CO2

12

CO

2

&

13

CO

2

vertical profile measured by

(8)

Field Measurements

1. Determine Ps and 

13

Ps for ≠ layers

Membrane porous tube

0 cm 5 cm 10 cm 20 cm

40 cm 80 cm

Soil depth

(Parent et al. 2013)

(9)

Field Measurements Half‐hourly In situ measurements during

1. Determine Ps and 

13

Ps for ≠ layers

Soil  Chamber

2 m

SWC sensors T° sensors

TDLS:

12[CO2] &

13[CO2] 1) membrane

tube ≡ [CO2] &

13CO2 in soil layers 2) from

chamber

≡ EFs &

13EFs

21 days

(Parent et al. 2013)

(10)

(47°56’N- 7°36’E)

Ah AhC C

Eddy Covariance

tower

Meteorological station

Hartheim experimental site

Slow growing 46 year old Scots Pine Forest (Pinus sylvestris L.)

Mean annual air Temp:10.3°C Mean annual precip: 642 mm

Haplic Regosol (calcaric, humic) (FAO, 2006) Humus type is mull (1-3 cm

thick)

Site Description

1. Determine Ps and 

13

Ps for ≠ layers

(11)

0 30 60 -80

-70 -60 -50 -40 -30 -20 -10 0

Depth [cm]

% of total CO2 production

0 20 40

-80 -70 -60 -50 -40 -30 -20 -10 0

Fine Rootimpacts [impacts/0.01m2]

0 7.5 15

-80 -70 -60 -50 -40 -30 -20 -10 0

Coarse Rootimpacts [impacts/0.01m2]

0 3 6 9

-80 -70 -60 -50 -40 -30 -20 -10 0

CorgProfile [% mass of the fine soil fraction]

O

Ah

AhC

C

a) b) c) d)

Horizon % CO2 Prod

Ol 11.5

Ah 64.7

AhC 15.8

C 8

2.5cm 0 cm

-20 cm

-40 cm

-80 cm Ol

Ah

AhC

C

1. Determine Ps and 

13

Ps for ≠ layers

Vertical Profile of Ps

(12)

Mean diel varation explained by LOCAL T° in Ah & AhC

 No significant diel variation in C

 In the litter relationship with u* because of advection not taken into account

dz ) D dC dz(

d dt

) C (

Adv d

Ps

Mean diel variation

2. Factors affecting Ps and 

13

Ps

Intra‐day Ps variability

(Goffin et al. 2014)

(13)

0.16 0.2 0.24 -28

-26 -24

Daily mean SWC7[m3m-3] Daily mean13 PAh []

y=-34.67*SWC7-19.29 R2=0.71

)

Significant day to day variations of 

13

Ps (> 2.5‰) in Ah

Best explained by soil moisture

240 248 256

-29 -27 -25

13PAhSGT

13PAh(SWC7&VPD(SWC) DOY-3) R2=0.80

Soil drought impact = enrichment Same impact as for photosynthesis 

discrimination !!!

13

Inter‐day 

13

Ps variability 

Not observed with chamber efflux measurements

o Mixing of ≠ layers contribu ons

o Perturbation of local soil climate by chamber ?

2. Factors affecting Ps and 

13

Ps

(Goffin et al. 2014)

(14)

3. Who (transport or production) is responsible for Ps and 

13

Ps temporal variability ?

(Goffin et al. undre review)

3 model versions simulating CO

2

production and transport

Comparison of their outputs with [CO

2

] and Fs measurements

o Reference model (RM): 

each layer produce CO2 following Q10 relationship with the local  t° & diffusion is the only transport process

o Transport Version (TV):

Advection and dispersion are ss o Production Version :

Production is also driven by Photosynthesis Pressure 

Concentration Wave (PPCW) by adding a dependence on VPD 

(15)

15

28/08/20102 03/09/2010 09/09/2010 4

6 8 10

F smolCO 2m-2 s-1 ] Reference Model

Model with the Phloem Pressure Concentration Wave Measure

28/08/2010 03/09/2010 09/09/2010 0.5

1 1.5

2x 105

[CO 2] 5cmmolCO 2m-3 ]

Reference Model

Model with the Phloem Pressure Concentration Wave Measure

Ref PPCW Measure 0

5000 10000 15000

intra-day variation

Ref PPCW Measure 0

0.5 1 1.5 2

intra-day variation

a) b)

d) c)

o No significant improvement with TV

o PPCW : Not perfect but diurnal fluctuations are better reproduced  and difference in phase is reduced

3. Who (transport or production) is responsible for Ps and 

13

Ps temporal variability ?

(Goffin et al. undre review)

o RM: Relatively good reproduction of inter‐day variability but intra‐

day variability too low and not in phase

➨ Working on production description instead on transport one is a better option to improve soil CO2 model

(16)

• Set up of an experimental in-situ device to obtain vertical profile of Ps and Ps

• Identify a dependence of one layer to local temperature

• Soil CO

2

model should develop production description more than transport one to simulate hourly/daily

variability

• Indentify enrichment of Ps with soil drought in Ah horizon

Key points

(17)

Thank  you for your  attention

17

Meet me on poster #21

(18)

Materials & Method

4. Laboratory Measurements

 Soil horizon specific physical parameters :

• Porosity, pF curves

• Relationships between Ds(SWC)

Undisturbed soil cores of 200

cm

3

collected in each horizon

(19)

Material & Method

4. Laboratory measurements – Ds determination

0 20 40 60 80

0 0.1 0.2 0.3

Depth [cm]

SWC [m3/m3]

Ah1 Ah2 AhC

C

In Situ measurements

0

20

40

60

80

0.00E+00 2.00E‐06 4.00E‐06 6.00E‐06

Depth [cm]

Soil Diffusivity [m2s‐1]

Ah1 Ah2 AhC

C

Ds(SWC)AH1 Ds(SWC)AH2 Ds(SWC)AHC Ds(SWC)C

Ds [m2s‐1]

0.10 0.20 0.30 0.40 0.50

0 0.10 0.20 0.30 0.40

Soil W ater Content [m3/m3]

Ds/D0 []

Ds/D0(SWC)

Ds/D0 Ah1 Ds/D0 Ah2 Ds/D0 AhC Ds/D0 C cm

Laboratory measurements

dz ) ] CO [ D d dz(

d dt

]) CO [ ( ) d

z (

P 2 s 2

19

(20)

‐80

‐70

‐60

‐50

‐40

‐30

‐20

‐10 0

0.00E+00 1.00E‐06 2.00E‐06 3.00E‐06 4.00E‐06 5.00E‐06 6.00E‐06 7.00E‐06

Depth [cm]

Soil Diffusivity [m2/s]

from laboratory measurements Harmonic Average

AH1 AH2

AHC

C

Pingintha et al, 2009

Level 0

Litter

n

k sk

k n

k

k s

D z z D

1 1

Materials & Method

4. Laboratory Measurements– Parametization

Background & Objectives

Materials & Method

Results & Discussion Conclusions

(21)

Ah Production terms Litter Production terms

Soil production shows clear diel and daily fluctuations in Ah

The diel and daily fluctuations are best explained by the T measured in the topsoil

temperature is the most important driver of soil CO2 production

Unlike other horizons, Ol production was best explained by surface soil water content (SWC) (R2=0.46)

2392 243 247 251 255

3 4 5 6

CO2 Production molCO2m-2s-1]

2390 243 247 251 255

1 2 3 4

DOY

Rain [mm]

ProdAhSGT

ProdAh(T°3cm) R2=0.67

b) a)

240 248 256

0 0.5 1 1.5

DOY ProdOl [µmolCO 2m-2 s-1 ] ProdOlSGT

ProdOl(SWC

0cm) R2=0.46

Day to day variation

21

1. Determine Ps and 

13

Ps for ≠ layers

Vertical Profile of CO

2

sources

Referenzen

ÄHNLICHE DOKUMENTE

• Groundwater model e.g., ParFlow can simulate vertical flux of soil moisture, combined with integrated surface and sub-surface drainage.. • Aggregation of slope with

The work consists of three parts: (1) A laboratory experiment on gas diffusion and gas permeability, exploring gas transport parameters at low water tensions; (2) A

In: Sodic soils: Distribution, Proper- ties, Management, and Environmental Consequences (Eds M.E. Oxford University Press, New York, USA. Clay dispersion and macro-

Based on these results, we recommend (i) carrying out repeated samplings under similar soil conditions, (ii) recording water content and bulk density of the fine earth

In this part of a joint companion study, we describe the vertical translocation as well as plant uptake of three different titanium dioxide (nano-)particles (TiO 2 NPs)

In the spirit of the Canon DNA and philosophy, Canon EMEA embraces more flexible ways of working that enable the company and employees to perform at their required and best

Along with soil CO 2 efflux the parameters temperature and soil moisture were measured weekly and a soil survey analysis was conducted in 2009, including soil bulk density, root

As stemflow may be a possible vector for the pas- sive dispersal of organisms we hypothesized that it contains a diverse composition of typical colonizers of bark, moss, lichens,