• Keine Ergebnisse gefunden

Slump along the Yukon Coastal Plain, 2015

N/A
N/A
Protected

Academic year: 2022

Aktie "Slump along the Yukon Coastal Plain, 2015 "

Copied!
17
0
0

Wird geladen.... (Jetzt Volltext ansehen)

Volltext

(1)

INCREASING COASTAL SLUMP ACTIVITY IMPACTS THE RELEASE OF SEDIMENT AND ORGANIC CARBON INTO

THE ARCTIC OCEAN

Justine Ramage

Anna Irrgang, Anne Morgenstern, Hugues Lantuit

(2)

Introduction

Sea Ice median September Extent (1979 - 2000) CAFF Arctic definition

AMAP Arctic definition Permafrost Coastlines Continuous Permafrost Discontinuous Permafrost Sporadic Permafrost Isolated Patches

4 5 6 7 8 9 10

3 2

1 Barents Sea Kara Sea Laptev Sea East Siberian Sea Chukchi Sea Beaufort Sea Hudson Bay Lincoln Sea

Norwegian Sea Wandel Sea

(3)

Slump along the Yukon Coastal Plain, 2015

Introduction

(4)

Slump along the Yukon Coastal Plain, 2015

Introduction

Lantuit, H., & Pollard, W. H. (2005). Temporal stereophotogrammetric analysis of retrogressive thaw slumps on Herschel Island, Yukon Territory. Natural Hazards and Earth System Science, 5 (3), 413-423.

(5)

Introduction

372 www.gsapubs.org

|

Volume 45

|

Number 4

|

GEOLOGY

(Ham and Attig, 1996), and modified glacigenic permafrost landscapes in western Arctic Canada during the early Holocene warm period (Murton, 2001). The recent acceleration of thaw slump- ing (Segal et al., 2016a) and the development of immense mass-wasting complexes in northwest- ern Canada demonstrate the efficiency of this climate-sensitive process in mobilizing glacial sediment stores (Fig. 1; Fig. DR1).

To explore the relation between glaciated landscapes and permafrost terrain sensitivity we mapped thaw slumps at regional to continen- tal scales and investigated the nature of fluvial effects. We integrated spatial data on thaw slump distribution and patterns of fluvial sedimentary disturbance with theory on the preservation of relict Pleistocene ground ice (e.g., Murton et al., 2005) and paraglacial landscape change (Ballan- tyne, 2002) to demonstrate that (1) permafrost has delayed the geomorphic evolution of glaci- ated terrain, so that these landscapes retain sig- nificant potential for climate-driven change; and (2) the patterns and intensity of accelerated thaw slump activity in northwestern Canada and the nature of fluvial effects indicate deglaciation- phase or early postglacial geomorphic dynamics.

METHODS

To investigate the distribution of slump- affected terrain, a 1,274,625 km2 area of north- western Canada was mapped using SPOT (Sat- ellite Pour l’Observation de la Terre) 4 and SPOT 5 satellite imagery (A.D. 2005–2010), hosted on the Government of the Northwest Ter- ritories (GNWT) Spatial Data Warehouse web viewer (http://www.geomatics.gov.nt.ca /sdw.

aspx), to classify 15 × 15 km grid cells accord- ing to the density of large active slumps (>1 ha).

The grid classes included none (0 slumps), low (<5 active slumps), and medium (6–14 active slumps) to high (≥15 active slumps). The data, consisting of 5665 ranked grid cells, were com- piled in ArcGIS 10.0–10.2 (https://www.arcgis .com/; for methods and data, see Segal et al.,

2016b).

The association between slump-affected ter- rain and the late Wisconsinan ice sheet margin (Dyke and Prest, 1987) was assessed using the GLM (generalized linear model) function in

“R” (R Core Team, 2013) to perform a logistic regression (family = binomial; link = logit) that modeled the odds (p/q) of disturbance in each grid cell as a function of the Euclidian distance (d) from the ice margin, p/q = ead + b. To examine if broad-scale patterns of thaw slump distribu- tion are supported by fine-scale data sets, we used a digitized slump inventory from the Peel Plateau, northwestern Canada, derived from color satellite imagery (2007–2008; Segal et al., 2016a). Slump-affected terrain in the Peel Plateau was plotted along a 100 km geological transition from unglaciated terrain to moraine to Holocene alluvium.

To investigate the association between thaw slumping and glaciated terrain at the circumpo- lar scale we mapped the records of relict ground ice and thaw slump occurrences from the pub- lished literature. Metadata, ice type, and refer- ences are provided in the Data Repository, in addition to the sources of spatial base-layers (Figs. 2A and 2B).

To describe the nature of topographic and sedimentary disturbance resulting from thaw slumping, and to derive order of magnitude esti- mates of denudation rates, we used a surface model derived from 2011 lidar data from the GNWT. The material volumes displaced by indi- vidual thaw slumps were estimated by recon- structing pre-slump topography using contour lines, and then differencing the regridded old topography from the new.

Fine-scale slump mapping in the Peel Plateau and a database of total suspended

sediment concentrations (TSS) in streams (n

= 198) of the Peel River watershed (80,000 km2) were used to assess slump-driven flu- vial effects. Catchment sizes were estimated using a topographic model derived from the Canadian Digital Elevation Model (20 m reso- lution) (Government of Canada, 2000). Tau- DEM (v.5.3) Fill, D8, and Flow Accumulation algorithms (http://hydrology .usu .edu /taudem/;

Tarboton, 1997) were applied to trace the drain- age network and catchment area upstream of thaw slump and water sampling locations. To investigate the influence of slumping on the flu- vial sedimentary regime, TSS concentrations during the summer flow period for streams in the Peel basin were compiled (Kokelj et al., 2013; Chin et al., 2016) and plotted against catchment area. Samples from larger tributar- ies collected from 2000 to 2005 were provided by the GNWT.

D

A

B

Proportion ofTerrain with Slumps (%)

Distance from Ice Margin (km)

0.0 0.1 0.2 0.3

0.4 0 200 400 600 800

C

1200 800 400

0 20 40 60 80 0

0.0 0.1 0.2

TerrainArea affected by Elevation (m)Ice Extent

Peel Plateau Mackenzie Delta

Transect distance (km) Unglaciated

Slumping (km/100 km)22

D

Alluvium Hummocky Moraine

Richardson Mnts

100

Figure 2. Thaw slump distribution and glaciated terrain. A: Slump-affected terrain in northwest- ern Canada and positions of the Laurentide Ice Sheet from ca. 18–11 ka. B: Circumpolar map showing published observations of thaw slumps and thick ground ice in glaciated permafrost terrain. C: The proportion of terrain with slumps and distance from the late Wisconsinan ice front (thick blue line in Fig. 2A). A χ2 test comparing the logistic model to a null model (inter- cept only) is highly significant (χ2 = 475.5, P < 0.01). D: Topography and slump-affected area along a west to east corridor (black rectangle in A) through unglaciated terrain, hummocky moraine, and Holocene alluvium.

Kokelj, S. V., Lantz, T. C., Tunnicliffe, J., Segal, R., & Lacelle, D. (2017). Climate-driven thaw of permafrost preserved glacial landscapes, northwestern Canada. Geology, 45 (4), 371-374.

(6)

Introduction

Ramage et al., 2017

! (

! (! (!(!(!(

! (!(!(!(!(!(!(!(!(!( !(

!

!(

!( (

! (

! (

! (

!

!( (

! (

! (! (

!

!(

!(

! (

!(

!(

!( (

! (!

!(

!( (! (

! (

! (! (

! (!(!(!(

! (!(

! (!(!(

! (!(!(!(!(!(!(!(!(

! (! (!(!(!(!(!(

! (

! (

! (

! (! (

! (!(!(!(!(!(!(!(!(!(!(!(

! (!(

! (! (

! (

! (

! (

! (

! (!(

! (

! (

! (

! (

! (!(!(!(!(!(

! (

! (!(!(!(

! (!(

! (! (!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(

! (

!

!( (

! (

! (

!

!( (

! (

! (

! (

! (

! (

! (

! (

! (!(

! (!(

! (

! (

! (

! (

! (

! (

! (

! (

! (

! (

! (

! (

! (

! (

! (!(

! (

! (

! (!(

!

( !(

! (

! (

! (

! (!(

! (

! (

! (

! (

! (

! (

!

(!( !(

! (

! (! (! (!(!(

! (

! ( !(!(!(!(!(

!

!( (

! (

! (

! (

! (

! (!(!(!(

! (! (!(!(!(

! (

! (

! (

! (

! (

! (

! (

! (!(

!

( !(

! (

! (!(

! (!(!(!(

!

!( (

!

!( (

! (

!

!(

!(

!( (

! (

!

!(

(

!

!(

!(

! (

!( (

! (!(!(!(

! (!(

! (

! (

! (!(

! (

! (

! (

! (

! (

! (

! (

! (

! (

! (

! (

! (

! (

! (! (

! (

! (

! (

! (

! (!(!(!(!(!(!(!(!(!(!(!(!(!!(!(!((

! (

! (!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(!(

! (

! (!(!(!(!(!(

138°W 138°W

139°W 139°W

140°W 140°W

69°40'N 69°40'N

69°20'N 69°20'N

69°N 69°N

0 15 30

Kilometers

RTSs size [ha]

!

( 0.00 - 3.00

!

( 3.00 - 6.13

!

( 6.13 - 9.25

!

( 9.25 - 20.81

Erosion rates [m / yr, 1970-2011]

0.0 to 0.6 - 0.7 to 0.0 -1.0 to -0.7 -4.4 to -1.0

Glaciation limit

±

Be au

f or t Se

a B e a u f o r t S e a

Herschel Island

(7)

Objectives

The objectives are:

ü  to measure their evolution on a ca. 150 km coastline along the Yukon Coast between 1951 and 2011

ü  to estimate the amount of carbon released from the land to the shore

?

(8)

Part 1: evolution

2. Landform digitalization and classification

1. Georeferencing aerial photos (1950s and 1970s)

±

Shoreline 1952 Active RTSs 1952

Active RTSs 1972 Stable RTSs 1972

Active RTSs 2011 Stable RTSs 2011

0 25 50 100

Meters

1952

1972

2011 A

B

C

D 3. Extraction of geospatial

data

A. Landform identification

(9)

Stabilized surface

Active surface

Slumps reactivating on previously disturbed surfaces

Part 1: evolution

(10)

Part 1: evolution

Evolution of slumps 1952-2011

0 50 100 150 200

1952 1972 2011

Year

Number of RTSs | Coverage (ha)

Legend

L− active RTSs L− stable RTSs Mm− active RTSs Mm− stable RTSs Mr− active RTSs Mr− stable RTSs

LMm Mr

Number RTSs Coverage RTSs

L - Lacustrine plains Mm - Rolling moraines Mr - Ice-thrust moraines

(11)

2011

1972 1972 2011

Volume of material eroded due to slumping between 1972 and 2011 ((S1 -S2)*L)) Retrogressive thaw slump in 2011

Volume of material eroded and transported alongshore due to coastal erosion between 1972 and 2011 (R * dH)

HEADWALL HEADWALL

SHORELINE SHORELINE

Volume of material reworked and settled in the retrogressive thaw slump between 1972 and 2011 (estimated to be 5.5 %) coastal retreat (R)

length of the slump in 2011 (L)

height of the slump (H)

mean elevation before slumping in 1972 (S1)

mean elevation after slumping in 2011 (S2)

a b c d

Part 2: fluxes

B. Volume estimations

(12)

Part 2: fluxes

B. Volume estimations

! !!!!!!!! !

!!!!!! !!! ! !!!!!!!

!!! !!!! !!! !!!!!!!!!!! ! ! !

! !! ! !!!! !!!!!! !!! ! !

! ! !! ! ! !

! ! ! !

! ! !! ! !!!!!!!! ! ! !! !!!!! !! !!! !!

!

!

! !!

! ! ! !

! ! ! ! !!!!!!!!!!!! !!!!!!! ! !! !!!! ! !!!!!! !!

! ! ! ! !! ! ! !! !!

! ! ! ! !

!

! ! ! !! !

! ! !! ! !

! !

! !!

!

! !!!! ! !!

! ! !! !

! !! !

! ! ! !!!! ! ! !!

! !

! ! ! ! !!

! ! !! ! !

!

! ! !!! !!!!

!! ! ! ! !!! !! ! ! !!!!! !! !!!!

!

! !

!

! !!!!!!! !!!!!!!!! !

!

!

!! !

!

! ! ! ! !

!! ! ! ! ! !

! !!! ! !!!! !!!! ! ! !!

! ! ! ! !

! !

! !

! !! ! !!!!! !! ! ! !

!

!!

!

! ! ! !!!! ! ! !!

! !! !! !

! ! !! !! ! ! !!! !! !! ! !

!

!

! ! !

!

! !

! !

! !

!

! !!

! ! ! !! !!!!!! ! !

!

! ! !! !

! ! ! !!!! !

!! ! !! !

! ! ! ! !!

! ! !! ! !

!

!

! !

! !

! ! !! !

! !!! ! ! ! !!!!!! !!!! !! !

!

!

!

! ! !

! !

!

!

!

!

!

!

! !

! !

!

! !

!

! ! ! !

!!! ! !!! !! ! !!! !!!

!

! !

!

! !! !

! ! !!! !!! !

!

! ! !

! ! !

! ! !! !! !

! !! !

! ! !

! ! !

!

!

! !

!

! ! ! !!! !! !! !

! ! !! !!! ! !

!

!

! !

!

! !

!

!

!! ! ! !!!!!!! !!!!!!! ! ! !! !! ! ! !!

!

! ! ! !!

!

!

!

! !

!

!

! !!!

! !

!

!

!

!

!

!

! !

! ! !

!

!

!

!

!

!! ! !

!

!

!

! ! !

!

!

! ! !

! !

!

! ! ! !! !! ! !!

!

!

!

!

! ! !

!

! !

! ! !

!

!

!

! ! !

!

!

!

! !

!

! !

!

!

! !

! ! !

!

! !

!

! ! ! !

!

!

!

!

!

! ! ! !

!

! !

! ! ! ! !

!

!

!

!

! ! !

!

! !

!

! !

!

! ! ! ! ! !!

!

!

!! !

!

!

! !

!

!

! ! !

! !! ! !

!!

!

! !! !!

!

!

!

!

!

! ! ! ! !

!

!

!

!

! ! !

! !! ! !!! !

!

! !!

!!

!

! !

!!!!

! !

!

! ! ! !

! ! !! !

!

!

!

!

! ! !

! !

! !

!

!

!

! !

! ! ! ! ! ! !

!!

! ! !!

!

!

!

!

!

! ! !! !

! !

!

!

!

! !

! !

! ! ! !

!

!

!

! !!!

!

!

!

! !

! !

! ! ! !

!

!

! !

!

!

! !

!

!

!

!

! ! ! ! ! !

!

!

!

!

! !! ! !

!

!

!

!

! !

! ! !

!

! ! ! !

!

!

!!

! ! !

!

! !

!

!

!

!

!

! ! !

! !!!! !!! !!!!! !!!!! !! !! !! !!! !!!!!

!

!

! ! ! !

!

! !

!

! ! !

!

!

!

!!

!

! ! ! ! !

!

! !

! !

!

! !! ! !

! ! !

!

!

!!!

! ! ! !

!!! !

!

!

!

! ! !

! !

!

!

!

! ! !

!

! !! !

!

!

! !!!

! !

! !

!

! ! !

!

! ! !

!

!! !

!

! !

!

!

!

!!

! !

!

!

!

! !! ! !

!

! !!!

!!

! !

!

! !

!! ! !

!

!

!

!

!!! !! ! ! !

! !!! ! !

!

!

! ! ! !!!!!! !!!! ! ! !

!

!

!

! !! !

! !!! ! !! ! ! !

!

! !

!! !

! !

!

!

!

! ! ! !

! !!!!!!!!!! !! !

!

!

! ! !!!!!!! ! !!!

!!

! ! !!! !

!

!! !

! ! !!!!!! !! !!

!

! !!! ! !

!!!!! ! !

!

! ! !!!! ! ! !!!!!!!!

!

!! !!! !!! ! ! !! ! !! !

!

!! !

!

! !

!

! !

! ! !! !!!! !

!

! !!! !! !!

!

! !

! !!

!

! !

!

! ! !

! !

!

!!

!

!

!!

!!

!!!

! ! !

! ! !

! ! !!

!

! !!

!

! !!

!! !!! !! !!! !!

!

! !

!! !!

!

!

! !

!

!!

!!

!

!

!

!

! ! !

!

!! ! !!

! !!

!

!

! !

!

! ! !!!

!

! !!

! ! ! !!!

!

!

!

!

!

!

! ! ! !

!

!

!!

!

!

! ! !

!

! !

!

! !

! ! ! !! !

! !!!!!!!!!!!!! !!!!!!!!!!!!!

! !!! !

!

! !

! ! !!!!!!!!!!!!!

!

! !!

! !!!

! ! !!!

!

! !

! !

!

!

!

!!!

! !

! !

!

!

!!

!!

! !!!

!

!!!

!

!

!

!

!

!

!

!

!

!

!!!!

!

!

!

!!

!

!!

!

!

!

!

!

!

!

!

!

! !!!

!!

!

!!

!!

!

! !

!! !

!!! !! !

!

!!

! ! !!

!!

!

!

!

! !

!

!

!

!

! ! !!

!! ! !!!!!

!

! !

! ! ! !! !!!

!

!

!!

!!!

!! ! !

!! ! !!!!! !! !! !! !!!

! ! !!!!! !!!!!!!!!

! !

!! ! !!

!!!!!! !

!

!

!!

! !

!! !

! !

! !! ! !!!! !!

! ! !! ! !!!!

!

!!!!!!!

! !

!

!

!

!

!!!

!

! !

!

!

!

! !

!

! !

!

!! !

! ! !

!!!!! !

!

!

!

!

!

!

!

! !

!

! !

!!!!! !!

!

!!!

!

!!!!

!!!!! !!!!!!!

!

!!!!!

! ! ! ! ! !! ! !!!! !!

!

!

!

!!

!!

!!!!!

!!

!!! !!!!! !!!

!

!

!!

!!!

!!!!

!

!! !

! !!

! ! !!!!! !!! !!!!!!!!!!!!!

!

!

!

!

!

!

!

!

!

!

!!!!

!

!

!!

!!!

!

!

!!

!!!!!!

!!

! !

! !

!

! ! !

! ! ! !!

! !

! !!

! !!!

!! !

!! !

!! !

!

!

!

!

! !

! !

!!

!

!! !

! !

! !

!

!!

! !!

!!!

!

!!!!!! ! !

! !!!!

!!!!!!!!! !! !! !! !!!!!

! !

!

!

!!!

!!

! !

!!!! !!! ! !!!!!!!!!!

! ! !!!! !!! !! !!!!!!!!!!

! !!!

! !

! ! !!

!!

! !! ! !!!

!! ! ! ! !! ! ! !!!!!!!!

!

! !!!

! !

!!! ! ! !!! ! !!!

! !

! !!

!! !!!!!!!!! ! !!!!!!! !!!!!!!

! ! !!! !

! ! !!! !

!

! ! ! !

! ! !

! ! !!

! ! !! !!

! ! ! !!!!!!!!! ! !

! ! !

! ! ! !

!

! ! !

! !

!!

!

!!

!

! !!!!!

! ! !!!

!

!

! !

!

! !

!

! !!!

! !

!

!!

!

!!

!

!

! ! !

!

!

!

!

! !

! ! ! !

!

! !

!

! ! !!!

!

!

!

!

!!

!

!

!

! ! !!!!!! !!!!!!!!

!!!

!!

! !

!

!

! !!

!

!

!!

!

!!!!

! !! !

! !!!!! ! !!!!! ! !!!!!!!!!!!!!!!!!

!

!

! !!!!!!

!

! !!

! ! !! !!!

!

!!

!! ! !!! !

! !

!!! !

!! ! ! !!

!!!! ! !!

!!!!!!!!!! ! !!!!!!!!! !!! !!!!!!!!!

!

! !! !

!

! !

! !!

! !

!! ! !!

!! !!!!! ! !!!!!

!

!!! !!!!! ! ! !

!

!! ! ! !!!!! ! !!!!

!

!

! !

!!!!! !!!!!!

! !

! !

! !

!!! !

! !

! !

!!

! !

!

! !

!

!! !

!

!!! !

!!

!!!! !

!

!

!

!!

! !

!!

! ! !!

! !

! !

! !

! !

! !!

!

!!!!!!

!

! !

!

!

!

! ! !!

!!

!! !

!

!!

! !

!! !!! !!

!!! ! !!!

!

!

! ! !

!!!

!

!

!

!

!

!!

!!!

!

!!

! !!

!

! !

!

! !

!!!

!!

!

!

!

!!!!

!

!!

!!!

!!!!!!!

±

0 100200 400 600Meters

active RTS stable RTS

! Elevation points

LiDAR elevation 100 m

0 m

SPLINE elevation 62 m

0 m

(13)

10 Mr 9

11 Mr 2

12 Mr 12

13 Mr 7

18 Mm

0 19

L 0

20 Mm

1 22

L 0

23 Mm

0 24

L 1

28 Mr 12

29 Mm

0 32

L 1

33 Mm

0 34

L 1

35 L 1

36 Mm

2 0

20000 40000 60000 80000 100000 120000

volume of eroded material(103 m3 )

WEST EAST

Segment order Geologic unit Number of RTSs

Part 2: fluxes

”New” slumps 1972-2011

Referenzen

ÄHNLICHE DOKUMENTE

The aim is to reveal di ff erences in total organic carbon (TOC), total carbon (TC) and total nitrogen (TN) between undisturbed (tundra zone, permafrost zone) and disturbed zones

Like at the Border site, the mean annual erosion rate was highest during the time period from 1997 to 2000, amounting to -1.77 m/a (Table 12), and decreased thereafter. This amounts

• Local hydrological change: lower and variable lake water level pre 1900.. Thank you for

The Cut-Throat Flume equipped with a radar sensor determines the water level which quantifies the discharge of the eroding Retrogressive Thaw Slump into the nearshore

Hydrochemical Analysis of a Retrogressive Thaw Slump on Herschel Island, Yukon Coast. Stefanie Weege, Hugues Lantuit, Antje Eulenburg, Michael Fritz,

Ridges: Betula glandulosa, Salix pulchra, Eriophorum vaginatum, Ledum decumbens, Vaccinium vitis-idaea, Empetrum nigrum, Rubus chamaemorus, lichens, mosses,

The post-2009 slump in the EA mainly reflects a combination of adverse aggregate demand and supply shocks, in particular lower productivity growth, and persistent adverse shocks

The persistent Eurozone slump after 2008-09 (double-dip recession) reflects a combination of adverse supply and demand shocks, in particular negative shocks to