• Keine Ergebnisse gefunden

Picosecond Third Harmonic Generation in /?-BaB

N/A
N/A
Protected

Academic year: 2022

Aktie "Picosecond Third Harmonic Generation in /?-BaB"

Copied!
9
0
0

Wird geladen.... (Jetzt Volltext ansehen)

Volltext

(1)

Picosecond Third Harmonic Generation in /?-BaB

2

0

4

and Calcite

A. Penzkofer, P. Qiu *, and F. Ossig

Naturwissenschaftliche Fakultat H-Physik, Universitat Regensburg, D-8400 Regensburg, Fed. Rep, of Germany

*On leave from Shanghai Institute of Optics and Fine Mechanics, Academia Sinica, Shanghai, Peop.Rep.of China

1. I n t r o d u c t i o n

Phase-matched t h i r d harmonic generation has been achieved i n metal vapors [ 1 , 2 ] i n e r t gases [ 3 ] , organic dyes [ 4 - 6 ] , l i q u i d c r y s t a l s [7] and b i r e f r i n g e n t c r y - s t a l s [ 8 - 1 4 ] . T h i r d harmonic l i g h t may be generated by the d i r e c t t h i r d - o r d e r n o n l i n e a r i n t e r a c t i o n , vL+vL+vL+v3, due t o the t h i r d - o r d e r n o n l i n e a r s u s c e p t i b i - l i t y X ^ G * O R I T M A Y B E 9e n e ra t e d by cascading the second harmonic g e n e r a t i o n , vL+vL-^v2, and the frequency m i x i n g , v2+vL+v3. The second harmonic g e n e r a t i o n and the frequency mixing are due t o the second-order n o n l i n e a r s u s c e p t i b i l i t i e s XJH G

and X F M • Phase-matching, Ak=0, i s necessary f o r e f f i c i e n t t h i r d harmonic light:

g e n e r a t i o n . In b i r e f r i n g e n t c r y s t a l s i t i s achieved by c r y s t a l o r i e n t a t i o n and angle t u n i n g . In c r y s t a l s w i t h i n v e r s i o n center o n l y d i r e c t t h i r d harmonic gene- r a t i o n i s allowed w h i l e i n c r y s t a l s without i n v e r s i o n c e n t e r cascading and mixed ( d i r e c t and cascading) t h i r d harmonic generation a r e p o s s i b l e . A double phase- matching o f t h e second harmonic generation and the frequency mixing r e q u i r e s two s e p a r a t e l y o r i e n t e d c r y s t a l s i n s e r i e s . The subsequent phase-matched second har- monic g e n e r a t i o n and phase-matched frequency mixing i s most e f f i c i e n t and i s w i d e l y used [15]. The v a r i o u s phase-matching schemes f o r t h i r d harmonic genera- t i o n i n negative u n i a x i a l b i r e f r i n g e n t c r y s t a l s are summarized i n Table 1.

Table 1 S i n g l e and double phase-matched angle-tuned g e n e r a t i o n o f t h i r d - h a r m o n i c l i g h t i n negative u n i a x i a l b i r e f r i n g e n t c r y s t a l s ( ne< no) . D = d i r e c t . C = c a s - cading. D+C = mixed. IC = i n v e r s i o n c e n t e r .

C r y s t a l Process Phase-matching I n t e r a c t i o n C o n t r i b u t i o n s i n g l e c r y s t a l , s i n g l e phase-matched

Y X eff,THG with IC D T H G =0

A kS H G= 0.A kF M *0 V type type type

I II I I I

O l O L ° L+e3

° LeLeL "e3

Y X eff,THG

without IC C

T H G =0

A kS H G= 0.A kF M *0 V type type

I

II ° L ° L *e2 v (2)

* eff,SHG

C type

type type

I II I I I

o2oL-*e3 o2e L - e3

e2 < Ve3

v ( 2 ) X eff,FM

D+C A kT H G= A kS H G+ A kF M= 0 type type type

I II I I I

°L° L0L> e3

° LeL e i + e3

Y (3) + Y( 2 )

X eff, THG *eff,cas two c r y s t a l s , double phase-matched

without IC C A ksHG,i =0 and

A kr a,2 =0 type type

I II

oo+e

oe-»-e 1: Xe1f,SHG a n d 2: x ( 2 )

* eff.FM

a) Cascading t h i r d harmonic generation w i t h A kS H G =0 i s l e s s e f f i c i e n t compared to Ak =0 [13].

312 Springer Proceedings in Physics, Vol. 36

Nonlinear Optics of Organics and Semiconductors

Editor T. Kobayashi © Springer-Verlag Berlin, Heidelberg 1989

(2)

In t h i s paper the s i n g l e phase-matched t h i r d harmonic generation i n s i n g l e c r y s t a l s of c a l c i t e and e-BaB204 i s s t u d i e d . C a l c i t e i s a negative u n i a x i a l c r y - s t a l with i n v e r s i o n center ( t r i g o n a l system, space group R3c, point group 3m).

B-BaB204 i s a newly developed negative u n i a x i a l c r y s t a l without i n v e r s i o n center [16,17] ( t r i g o n a l system, space group R3, point group 3; a higher symmetry o f R3c and 3m i s s t a t e d i n [18]). The l a r g e e f f e c t i v e second harmonic c o e f f i c i e n t s , the wide transparent waveband (190 - 3500 nm), and the high damage t h r e s h o l d make BBO very important f o r second harmonic generation and frequency mixing i n the u l t r a v i o l e t s p e c t r a l region [19-24]. e-BaB20- was a p p l i e d s u c c e s s f u l l y i n the second harmonic generation o f femtosecond pulses [25,26].

Table 2 gives a l i s t o f c r y s t a l s that have been a p p l i e d t o the phase-matched t h i r d harmonic generation i n a s i n g l e c r y s t a l .

Table 2 Realized phase-matched t h i r d harmonic generation i n s i n g l e c r y s t a l s . A l l c r y s t a l s are negative u n i a x i a l . D = d i r e c t . D+C = mixed.

C r y s t a l Class I n t e r a c t i o n Laser

[nm]

References

C a l c i t e t r i g o n a l , R3c t r i g o n a l , R3c D Q-switched 694.3 8,9 Q-swi tched 1060 11,14 Mode-locked 1054 t h i s work KDP t e t r a g o n a l , 42m D+C Q-switched 1064 11

ADP t e t r a g o n a l , 42m D+C Q-switched 1060 10 Mode-locked 1060 10

6-BaB204 t r i g o n a l , R3(R3c) D+C Mode-locked 1054 t h i s work

2. Fundamentals

The geometrical arrangement o f phase-matched t h i r d harmonic generation i n a

s i n g l e c r y s t a l i s sketched i n F i g ^ l . The angle 0 between the c r y s t a l f i x e d z - a x i s ( o p t i c a x i s ) and wave-vector icL(||ic3) i s adjusted to phase-matching. aL and a3 are the w a l k - o f f angles between the ray d i r e c t i o n s of e x t r a o r d i n a r y and ordinary p o l a r i z e d l i g h t .

Col l i n e a r phase-matching of mixed o r d i r e c t THG r e q u i r e s

A k = k e 3 - k a L - k b L - k c L = 0 » ( 1>

a,b,c i n d i c a t e the p o l a r i z a t i o n s o o r e o f the fundamental waves. In the case of type-II phase-matching i t i s k3e-2kOL-keL=0. The wave-vectors are r e l a t e d to the r e f r a c t i v e i n d i c e s n by k=27rnv/c0 where v i s the frequency and c0 i s the vacuum l i g h t v e l o c i t y . The o r d i n a r y r e f r a c t i v e index n0 i s independent of c r y - s t a l o r i e n t a t i o n . The e x t r a o r d i n a r y r e f r a c t i v e index depends on the polar angle 0 by

n n

np( 0 ) = —y—5— o o 1/2 5 (2)

e ( nZc o sZ0 + nZs i nZ0 )1 / z

n0 and ne are the p r i n c i p a l r e f r a c t i v e i n d i c e s .

(3)

lL.eff

F i g . l Schematic geometrical arrangement

The walk-off angle aL l i m i t s the overlap length o f the o und e pump l a s e r components i n the case o f type-II and t y p e - I l l phase-matching t o

AdL

ALfe f f * 2 S [

where A dLi s the pump pulse beam diameter. The walk-off angle a3 allows t h i r d harmonic generation over the whole c r y s t a l length but a m p l i f y i n g i n t e r a c t i o n between pump and t h i r d harmonic l i g h t occurs only w i t h i n an e f f e c t i v e length

(3)

l3 , e f f * 2£ (4)

3

For femtosecond pulses the temporal overlap o f the o and e pump pulse compo- nents o f t y p e - I I and t y p e - I l l phase-matched c r y s t a l s may be l i m i t e d by the group v e l o c i t y d i s p e r s i o n . The group r e f r a c t i v e index i s

°9 " i v M n 3v

(5)

The time delay between o r d i n a r y and e x t r a o r d i n a r y rays i s given by ( 6 t / 6 j , )o L e L = [ng o L ~ng e L (0) ] /co and the.overlap length i s l i m i t e d t o

At,

o 2 (6t/6£) (6)

oLeL

The d u r a t i o n o f the generated t h i r d harmonic pulse i s given approximately by A t3 . + ( « t/ a £ ) 23 o |_ £ f j1 ^ ; (7)

where il i s the s h o r t e r length o f iQ, and « .L f e f f .

The energy conversion e f f i c i e n c y o f t h i r d harmonic generation i s given by 112,13]

_ 2.2- i ,2 s i n (Ala/2) -,.A .n . A t v

nE K O l Jxe f f I U | a ) 2 )2 f( A dL, A OL, A vL, A tL)

(4)

k comprises constant f a c t o r s . The f u n c t i o n f takes care o f the r e d u c t i o n of con- v e r s i o n e f f i c i e n c y due t o the f i n i t e beam diameter AdL, the divergence A Ol, the s p e c t r a l width A vL, and the pulse d u r a t i o n A tL o f the pump pulse.

3. C r y s t a l data

The d i s p e r s i o n o f the p r i n c i p l e r e f r a c t i v e i n d i c e s n0 and ne o f c a l c i t e [271 and BBO [19] are depicted i n F i g . 2 . The transmissions T are shown i n F i g . 3 . The t y p e - I , I I , and I I I phase-matching angles o f d i r e c t THG i n c a l c i t e and o f mixed THG i n BBO are p l o t t e d i n Fig.4. The corresponding w a l k - o f f angles a L and a3 are diagrammed i n F i g . 5 .

The angular dependence nE(0)/nE(OpM) o f B B 0 i s shown i n Fig.6a f o r XL =

1.054 um (A0L=O, AvL=0, A dL= « ) . AG 1 / 2 i s the FWHM of the angular detuning curve.

F i g . 2 Fig.3 dashed)

0.5 1 2 3 Q2 0.5

WAVELENGTH x turn] WAVELENGTH X t u r n ] R e f r a c t i v e i n d i c e s o f 6-BaB204 ( s o l i d ) [19] and c a l c i t e (dashed)[27].

Spectral t r a n s m i s s i o n o f 6-BaB204 {i = 6 mm, s o l i d ) and c a l c i t e (i - 33 mm,

j i i i i i i i i i i i i

2 3 1 2 3 1 2

WAVELENGTH XL [um] WAVELENGTH xL [|im]

Fig.4 Type-I, I I , and I I I phase-matching i n 6-BaB204 (a) and c a l c i t e (b).

Fig.5 Walk-off angles aL( a ) and a3( b ) of BBO ( s o l i d and dotted) and c a l c i t e (dashed, only t y p e - I I i s shown).

(5)

A 0i / 2 1 S "inverse p r o p o r t i o n a l t o the c r y s t a l length i. A G1 / 2* versus wavelength i s p l o t t e d i n Fig.7 f o r c a l c i t e and BBO. The i n t e r n a l divergence o f the pump l a s e r r a d i a t i o n , A 0A?L,int > _T^ f » should be l e s s than A G

r J\/2

able l o s s o f e f f i c i e n c y (external divergence angle

i n order t o avoid remark-

A G ,

no LA 0L , i n t ) -

The frequency dependence nE( v ) / nE( vL) a t a f i x e d angle i s s i m i l a r t o the angular dependence a t a f i x e d wavelength. nE( v ) / nE( vL) o f BBO i s depicted i n

Fig.6b ( A Gl= 0 , A Vl= 0 , A dL= « ) . Phase-matching i s adjusted t o V~l = XL = 1.054 nm.

A vi / 2 i s t h e F W H M o f t h e sPe c t r a l detuning curve. Av w? i s i n v e r s e p r o p o r t i o n a l to the c r y s t a l length i. A $1 / 2£ , versus wavelength i s d i s p l a y e d i n Fig.8. The s p e c t r a l width o f the pump l a s e r A vL should be l e s s than A v1 / 2 i n order t o avoid remarkable l o s s o f e f f i c i e n c y .

The group v e l o c i t y d i s p e r s i o n l i m i t s the temporal overlap (Eqs.6 and 7 ) . The curves o f (&t/6i)oLeL and (<$t/<5£)e3oL are depicted i n Fig.9a and 9b, r e - s p e c t i v e l y .

UJ

F c

a

Z 10 -1 z

jOL

ui

1

A '

| 1 1 ' • ' " • T V | V I 1—» 1 |

- (a)

: /

" , A i

' i i

li

' I • 11 • / 1 i

1 -10 10

0 - 0

P M

Cmrad]

f o r

9 - \ [cm"

1

]

.6 Angular (a) and s p e c t r a l (b) detuning curves o f 3-BaB20. a t x.

type-II phase-matched mixed THG (i = 0.72 mm). 1.054 um

0»-—I 1 1 1 1 1 I I I I I I L

1 2 3 WAVELENGTH xL d m ]

Fig.7 Halfwidth o f angular tuning curves f o r BBO ( s o l i d ) and c a l c i t e (dashed, only t y p e - I I ) . Mixed THG.

(6)

WAVELENGTH x, [|tin]

Fiq.8 Halfwidth o f s p e c t r a l tuning curves f o r BBO ( s o l i d and dotted) and c a l - c i t e (dashed, o n l y type-II i s shown). Mixed THG.

£ -Si

£

-I 41

mmm

+-*

«o

8

o

-f> 0

S 0 I V

\\\ (b)

• w

-

mm,

' - ^ ^ ^ -

i

i . . . , i .

"

_JL-——

1 1 — J J 1 1 1 1 ' 1 » ' ' ' 1

WAVELENGTH x

L

l^ml

Fig.9 Time delays (&t/6i)oLqL (a) and ( 6 t / 6 £ )e 3 o L (b) f o r mixed THG i n BBO ( s o l i d ) and d i r e c t THG i n c a l c i t e (only type-II i s shown).

4. Experimental

The experimental setup i s shown i n Fig.10. S i n g l e picosecond l i g h t pulses o f a p a s s i v e l y mode-locked Nd-phosphate g l a s s l a s e r ( A tL - 5 ps, A L = 1.054 Mm) are used as pump p u l s e s . The energy conversion e f f i c i e n c y o f t h i r d harmonic l i g h t versus input pump pulse peak i n t e n s i t y i s measured and the angular detuning curves are determined. The c a l c i t e c r y s t a l i s 2 cm long and the length o f the B-BaB204 c r y s t a l i s i = 7.2 mm. In some c a l c i t e measurements a c y l i n d r i c a l lens i s i n s e r t e d t o generate a l i n e - f o c u s which increases the l i g h t i n t e n s i t y a t the c r y s t a l without i n c r e a s i n g the r e l e v a n t l a s e r divergence A Gl i n the plane span- ned by the o p t i c a x i s and the l i g h t propagation d i r e c t i o n .

(7)

M.L.LASER 1 — | SWITCH [ - HAMPLIFIERI \

PM

\ '* /

F CR i i

cjn SA

[J ]PD2 6 PD1

Fig.10 Experimental setup. PD1, PD2, photodetectors. SA, s a t u r a b l e absorber (Kodak No.9860) f o r peak i n t e n s i t y d e t e c t i o n [28]. CR, c r y s t a l . F, f i l t e r . PM, p h o t o m u l t i p l i e r .

5. R e s u l t s

Type-II phase-matched mixed (BBO) and d i r e c t ( c a l c i t e ) THG are i n v e s t i g a t e d . The angular detuning curves nE( o ) / nE( O pM) of BBO and c a l c i t e are shown i n Fig.11.

For BBO the s p e c t r a l width o f the pumg l a s e r i s A vL = 10 cm"1. In the case o f c a l c i t e two curves are depicted f o r AvL = 10 cm" and A V L = 40 cm" ( s e l f - p h a s e modulated p u l s e s ) .

The phase-matched THG energy conversion e f f i c i e n c y versus pump pulse peak i n - t e n s i t y i s depicted i n Fig.12. A t the highest i n t e n s i t i e s a p p l i e d conversion e f f i c i e n c i e s o f nE » 0.01 ( I0 L = 5 x l 01 0 W/cm2)-and nE * 8 x l 0 "5 ( I 0 L = 1 01 1 W/cm2) have been obtained f o r BBO and c a l c i t e , r e s p e c t i v e l y . The damage t h r e s h o l d o f c a l c i t e i s Ith,c > 10 W/cm2 and the damage t h r e s h o l d o f BBO i s Ith,B" 10 W/cm2 [18,22] f o r s i n g l e pulses o f 5 ps d u r a t i o n . A t pump pulse i n t e n s i t i e s s l i g h t l y below the damage t h r e s h o l d very high conversion e f f i c i e n c i e s are expected i n both c r y s t a l s .

The e f f e c t i v e n o n l i n e a r s u s c e p t i b i l i t i e s xlW are determined by comparison o f the measured energy conversion e f f i c i e n c i e s nE w i t h c a l c u l a t i o n s (Eq.5). The ob- tained values are l i s t e d i n Table 3 together with other c r y s t a l parameters. A

4 3 2 1 o 1 2

INTERNAL DETUNING ANGLE 0-e

p M

[mrad]

Fig.11 THG conversion e f f i c i e n c y versus detuning angle f o r BBO o f 0.72 cm length (a) and c a l c i t e o f 2 cm length ( b ) . A0L =5x10 r a d . ( l , o ) , AvL = 10 cm"1. ( 2 ,A) , A Vl = 40 cm"1. Type-II phase-matching.

(8)

d e t a i l e d a n a l y s i s o f the e f f e c t i v e s u s c e p t i b i l i t i e s i n d i c a t e s t h a t x(!L ™,r

x (2> are o f the same order o f magnitude f o r BBO [ 1 3 ] . e" '

6 £ f fCclS

and

z 10

o

V)

QC

HI > 10

o z u

UJ LLt

10

~ i — i i 11— r — i i | i y\ 11 i \ \\y\\

/ 1 / 1

2 / Ith.C '

- y

-

4 _

-

6

-

i i i i t i i i i i i i i 11 1 I i f f 1

10* 10* 10" 10" 10°

INPUT PEAK INTENSITY I0L TW/cm2]

Fig*12 Energy conversion e f f i c i e n c y o f BBO (curve 1, 0 ; i = 7.2 mm) and c a l c i t e (curve 2,A; % • 2 cm). Type-II phase-matching. A0L = 10"4 r a d . A\>L = 20 c n r1. The damage thresholds It h / B (BBO) and I t h f C ( c a l c i t e ) are i n d i c a t e d .

Table 3 Phase-matched t h i r d harmonic generation o f picosecond pulses o f a Nd-phosphate g l a s s l a s e r i n c a l c i t e U = 2 cm) and 6-BaBpO- (i = 7.2 mm).

A tL = 5 ps, XL = 1.054 nm.

Parameter C a l c i t e 6-BaB204

System Point group Space group Process

Phase-matching

0PM

A°l/2 *

A v1 / 2 £

[rad cm]

(6t/6£) e3oL [°]

[°]

[ps cm'1]

<5 t/ 6 A )o L e L [ps cm"1] [ m2V- 2] [ m2V -2] [ m2V -2]

[W cm"2]

x eff,THG

Y (2)

* eff,cas

Y (3)

* eff

^ E n(I

t r i g o n a l 3m R3c D

type-II (ooe+e) 35.96

2.3x10 _ 4 8.8 6.75 5.85 1.7 2.2 3x10 "2 4

3x10-24 (2.1x10-16 esu) 8 x l 0- 5 a )

> 10 1 3

* 1

t r i g o n a l 3 (3m) R3 (R3c)

D + C

type-II (ooe+e) 47.4

3.4xl0- 4 3.7 4.45 4.05 2.0 2.1 6 . 4 x l 0- 2 3 6 . 6 x l 0- 2 3

1.3x10-22 (9.2x10 "1 S esu)

0.01 b )

- 1 01 2

+ 1

a: I OL 1 01 1 W/cm2. b: I OL 5x101 0 W/cm2.

(9)

References

1. J.F. R e i n t j e s : In Laser Handbook, ed. by M. Bass and M.L. S t i t c h , Vol.5 (North-Holland, Amsterdam, 1985) C h . l .

2. C R . V i d a l : In Tunable Lasers, ed. by F.L. Mollenauer and J.C. White ( S p r i n - ger, B e r l i n , Heidelberg, 1987) p. 57.

3. A.H. Kung, J.F. Young, S.E. H a r r i s : Appl. Phys. L e t t . 22, 301 (1973).

4. P.P. Bey, J.F. G u i l i a n i , H. Rabin: IEEE J . Quant. E l e c t r o n . g E j 7 , 86 (1971).

5. J.C. D i e l s , F.P. SchSfer: Appl. Phys. 5, 197 (1974).

6. A. Penzkofer, W. Leupacher: Opt. Quant. E l e c t r o n . 20, 222 (1988).

7. J.W. S h e l t o n , Y.R. Shen, Phys. Rev. L e t t . 26, 538 TT971).

8. R.W. Terhune, P.O. Maker, C M . Savage: Appl. Phys. L e t t . 2, 54 (1963).

9. P.D. Maker, R.W. Terhune: Phys. Rev. 137, A801 (1965).

10. C.C. Wang, E.L. Baardsen: Appl. Phys. L e t t . 15, 396 (1969).

11. S.A. Akhmanov, L.B. Meisner, S.T. Parinov, S.M. Sal t i e ! , V.6. Tunkin: Sov.

Phys. JETP 46, 898 (1977).

12. A. Penzkofer, F. O s s i g , P. Qiu: Appl. Phys. B, t o be p u b l i s h e d . 13. P. Q i u , A. Penzkofer: Appl. Phys. B45, 225 (1988).

14. A.P. Sukhorukov, I.V. Tomov, Sov. Phys. JETP 31, 872 (1970).

15. D. E i m e r l , IEEE J . Quant. E l e c t r o n . QE-23, 575 (1987).

16. C. Chen, B. Wu, A. J i a n g , G. You: S c i . S i n i c a (Ser.B) 28, 235 (1985).

17. A. J i a n g , F. Cheng, Q. L i n , C Chen, Y. Zheng: J . C r y s t . Growth 79, 963 (1986).

18. D. E i m e r l , L. Davis, S. Velsko, E.K. Graham, A. Z a l k i n : J . A p p l . Phys. 62, 1968 (1987).

19. K. Kato, IEEE J . Quant. E l e c t r o n . QE-22, 1013 (1986).

20. K. M i y a r z a k i , H. S a k a i , T. Sato: Opt. L e t t . 11, 797 (1986).

21. P. L o k a i , B. Burghardt, D. B a s t i n g , W. Miickenheim, Laser und O p t o e l e k t r o n i k 19, 296 (1987).

22. H. Schmidt, R. W a l l e n s t e i n : Laser und O p t o e l e k t r o n i k 19, 302 (1987).

23. R.S. Adhav, S.R. Adhav, J.M. P e l a p r a t : Laser Focus 23/9, 88 (1987).

24. J.T. L i n , C. Chen, Laser Focus 23/11, 59 (1987).

25. Y. I s h i d a , T. Yajima: Opt. Commun. 62, 197 (1987).

26. K.L. Cheng, W. Bosenberg, F.W. Wise, I.A. Walmsley, C L . Tang: Appl. Phys.

L e t t . 52, 519 (1988).

27. American I n s t i t u t e o f Physics Handbook, 3rd ed., ed. by D.E. Gray (McGraw- H i l l , New York, 1972) p. 6-20.

28. A. Penzkofer, D. von der Linde, and A. Laubereau, Opt. Commun. 4, 377 (1972).

Referenzen

ÄHNLICHE DOKUMENTE

Jedes Jahr im März kommen die Bürgerinnen und Bürger aus ganz Shanghai auf die Kirschblütenstraße der Tongji-Universität, um die hübschen Kirschblüten zu bewundern.. Unter

Shanghai und seine Be- wohner fühlten sich in dieser Zeit angeblich dem eleganten Paris näher als Beijing; die luxuriösen Bauten am Bund (Uferstraße am Huangpul aus den zwanziger

Hauptschule, Realschule, Gymnasium: Konzepte, Arbeitsblätter, Kopiervorlagen, Unterrichtsentwürfe c OLZOG Verlag GmbH... The Many Faces of

In the theoretical discussion the various phase- matched cascading processes and direct third- harmonic generation processes are analysed.. The experiments are restricted to

i) The absolute hyperpolarizability \y^\ is nearly the same for all three dyes despite the fact that rhodamine 6 G has two resonances (absorption peaks near 2co l and co 3 ),

A comparison of third-harmonic generation with cascading second- order processes was used to derive x ( 3 ) ( — co 3 ; co v co v co x ) values for liquids and solids [4, 5],

As the theme of 2010 Expo, the idea of 'better city better life' was implemented through the process of the planning, construction, development operation and utilization in the

In the context of the Chinese vector in the activities of the Shanghai Cooperation Organisation, this trend is expressed in consistent investment in the export of products