• Keine Ergebnisse gefunden

Function of RTN4/Nogo during development and as transgene in adult zebrafish

N/A
N/A
Protected

Academic year: 2022

Aktie "Function of RTN4/Nogo during development and as transgene in adult zebrafish"

Copied!
90
0
0

Wird geladen.... (Jetzt Volltext ansehen)

Volltext

(1)

   

Function  of  RTN4/Nogo  during  development  and   as  transgene  in  adult  zebrafish  

 

 

Dissertation    

   

zur  Erlangung  des  akademischen  Grades   eines  Doktors  der  Naturwissenschaften  (Dr.  rer.  nat.)  

an  der  Universität  Konstanz,  

Mathematisch-­‐naturwissenschaftliche  Sektion   Fachbereich  Biologie  

vorgelegt  von  Manuel  Alejandro  Pinzón-­‐Olejua  

(2)

Contents    

 

Acknowledgements………...  4  

Introduction……….………..………  5  

Axon  regeneration  in  the  fish  CNS  and  the  role  of  Nogo…..………..………..  7  

Specific  Introduction  to  Part  I……...……….…..………...….  10  

Expression  and  function  of  rtn4a  and  rtn4b  in  zebrafish  embryos……….………  10  

Specific  Introduction  to  Part  II……...……….……….  12  

Generation  of  Nogo-­‐A  transgenic  zebrafish…..……….………..…….  12  

Transgenesis  to  study  the  function  of  genes  in  zebrafish……..………...  12  

The  Cre/lox  system  in  zebrafish……….………..  13  

Myelin-­‐targeted  expression  of  rat  Nogo-­‐A  in  transgenic  zebrafish…….………...  14  

Aims  of  the  work………..………...  17  

Material  and  Methods………..………  18  

Part  I:  Expression  and  function  of  rtn4a  and  rtn4b  in  zebrafish…..…………..………….……  18  

Part  II:  Rat-­‐Nogo  transgenic  Zebrafish………..…..  24  

  Results……….………  27  

Part  I:  Expression  and  function  of  rtn4a  and  rtn4b  in  zebrafish  embryos………  27  

Expression  patterns  of  rtn4a  and  rtn4b…..……….………..….  27  

Morphological  defects  of  rtn4a  and  rtn4b  knockdown…..……….………..…….  28  

Roles  of  Rtn4b  in  neuronal  development………..………...…  35  

Retina  and  brain  development……...………..    41  

Part  II:  Nogo-­‐A  transgenic  zebrafish………..………..……  47  

Myelin-­‐targeted   and   endogenous-­‐like   expression   in   transgenic   zebrafish   lines………..………..  47  

Visualization  of  the  transgene  without  fusion  proteins……..………..………….  48  

Transgenic  lines……….……….………  49  

Analysis  of  promoter  activity……...……….…….  50  

Efficiency  of  IRES-­‐based  approaches  for  zebrafish  transgenesis………..………..…….  53  

(3)

           Contents    

Conditional   system   (Cre/lox)   and   transposase   mediated   transgenesis  

(Tol2)……….………  53  

Temporally  controlled  site-­‐specific  recombination  in  the  rat-­‐Nogo-­‐A  effector  line  using   a  neuronal  Cre  driver  line………..…..  58  

Cre  expression  in  oligodendrocytes  and  Schwann  cells  in  young  larvae  and  adult  optic   nerve  of  the  mbp  driver  line………..………...…..  59  

Effective   recombination   and   targeted   expression   of   a   reporter   gene   upon   CreERT2   expression  in  oligodendrocytes  and  Schwann  cells……..………….………..  61  

  Discussion……….………  65  

Part  I:  Expression  and  function  of  rtn4a  and  rtn4b  in  zebrafish  embryos   Part  II:  Nogo-­‐A  transgenic  zebrafish   Perspectives……….………..……….……….………..  75  

  Summary……....………...………..………..  78  

Zusammenfassung……….………  79  

References………….……….………..  80  

List  of  abbreviations…….………..………..  87  

Record  of  contributions……….……….………...  90  

(4)

Acknowledgements  

 

I  would  like  to  express  my  deep  gratitude  to  Prof.  Dr.  Claudia  Stuermer  for  her   patient   guidance   and   enthusiastic   encouragement   during   the   last   years.   Her   willingness   to   give   her   time   so   generously   has   been   very   much   appreciated.   I   would  like  to  express  my  very  great  appreciation  to  Dr.  Edward  Malaga-­‐Trillo  for   his  valuable  and  constructive  suggestions  during  the  planning  and  development   of  this  research  work.  My  special  thanks  are  extended  to  my  colleagues  from  the   Stuermer-­‐Lab   for   their   advice   and   nice   discussions.   I   wish   to   thank   various   people   for   their   contribution   to   this   project;   Annette   Yvonne   Loss   for   the   zebrafish   care;   Marianne   Wiechers   and   Ulrike   Binkle   for   the   generation   of   the   Rtn4a  and  Rtn4b-­‐specific  antibodies.    

 

I  would  also  like  to  thank  the  members  of  the  following  institutes  for  enabling   me   to   visit   their   labs   and   learn   very   valuable   techniques   employed   in   this   project:  

 

Daniele  Soroldoni  and  Andrew  Oates  (Max  Planck  institute  for  Cell  biology  and   Genetics   -­‐   Dresden)   for   their   advice   in   the   Bacterial   Artificial   Chromosomes   recombineering;    

 

Stefan   Hans   and   Michael   Brand   (Center   for   Regenerative   Therapies   -­‐   Dresden)   for  their  support  in  the  generation  of  the  Cre-­‐Lox  transgenic  lines.  

 

Finally,  I  wish  to  thank  Konstanza,  Bernarda,  Georg  and  Manuel  for  their  support   and  encouragement.    

 

(5)

  Introduction    

Introduction  

 

The   question   why   axons   in   the   central   nervous   system   (CNS)   of   mammals   are   unable   to   spontaneously   regenerate   is   of   fundamental   clinical   importance.  

Various  efforts  have  been  undertaken  to  develop  a  cure  for  paraplegic  patients   and   other   CNS   injuries.   Even   though   such   a   cure   is   still   not   available,   progress   has  been  made  in  understanding  the  reasons  underlying  the  poor  regenerative   capabilities  of  the  mammalian  CNS.    

Ramon   y   Cajal   was   the   first   who   realized   that   axon   regeneration   in   the   adult   mammalian   CNS   is   inhibited   by   factors   in   the   environment   of   severed   fiber   tracts.   Many   years   later,   Alberto   Aguayo   showed   that   nerve   grafts   from   the   peripheral  nervous  system  (PNS),  when  transplanted  into  the  CNS,  can  promote   axon  regrowth  in  the  injured  mammalian  spinal  cord  and  optic  nerve  (Kandel  et   al.,   2013).   It   was   subsequently   discovered   that   CNS   myelin   and   the   myelin-­‐

producing   cells,   the   oligodendrocytes,   are   the   major   inhibitory   elements   of   the   CNS   (Carbonetto   and   Muller,   1982,   Schwab,   2010).   Experiments   using   fractionations  of  the  myelin  proteins  combined  with  functional  assays  finally  led   to  the  identification  of  Nogo-­‐A,  a  protein  enriched  in  CNS  myelin,  whose  role  as  a   strong   inhibitor   of   neurite   development   and   regeneration   is   nowadays   well-­‐

known   (Chen   et   al.,   2000,   GrandPre   et   al.,   2000,   Prinjha   et   al.,   2000,   Schwab,   2010).    

Nogo-­‐A  is  the  longest  of  the  three  Nogo-­‐gene  transcripts,  comprising  Nogo-­‐A,  -­‐B   and  –C,  and  belongs  to  the  reticulon  (RTN)  gene  family  consisting  of  RTN-­‐1,  -­‐2,  -­‐3   and   -­‐4   (Nogo).   RTN   proteins   including   Nogo-­‐A,   are   predominantly   structural   proteins  of  the  endoplasmic  reticulum  (ER)  (Voeltz  et  al.,  2006).  Less  than  5%  of   the  Nogo-­‐A  protein  reaches  the  plasma  membrane  but  this  small  fraction  seems   sufficient   to   exert   inhibition   on   contacting   cells.   There   are   two   inhibitory   domains   in   Nogo-­‐A:   The   Nogo-­‐66   loop   within   the   evolutionarily   conserved   reticulon-­‐homology   domain   (RHD)   and   the   Nogo-­‐A-­‐specific   delta20   domain   (Figure  1).  The  respective  neuronal  receptors  are  NgR1  in  complex  with  Lingo,   Troy   and   p75   (for   Nogo66;   Figure   1)   and   the   G-­‐protein   coupled   sphingolipid  

(6)

receptor  S1PR2  (for  Nogo-­‐A;  Figure  1),  which  also  seems  to  be  part  of  a  receptor   complex  (Kempf  et  al.,  2014,  Schmandke  et  al.,  2014).    

 

 

Figure   1.   Nogo-­‐A   receptors   and   signaling.   The   main   signaling   pathways   targeted   by   Nogo-­‐A.  

Nogo-­‐A-­‐   Δ   20   and   Nogo-­‐66   both   are   known   to   activate   the   RhoA/ROCK   pathway,   resulting   in   depolymerization   or   attenuated   reorganization   of   the   actin   cytoskeleton,   increased   actomyosin   contraction,   as   well   as   reduced   stabilization   of   microtubules.   Furthermore,   Nogo-­‐A-­‐   Δ   20   was   demonstrated   to   inactivate   CREB   on   pincher-­‐mediated   endocytosis,   possibly   affecting   gene   expression.  Additionally,  the  Nogo-­‐A-­‐  Δ  20  domain  is  implicated  in  negative  regulation  of  integrin   activation.  Two  different  receptors  have  been  described  for  Nogo-­‐66  (PirB  and  the  NgR1-­‐Lingo1-­‐

p75/Troy-­‐receptor   complex);   the   functional   receptor(s)   for   Nogo-­‐A-­‐   Δ   20   remain   to   be   characterized.  Furthermore,  it  is  still  unclear  whether  and  if  so  what  part  of  Nogo-­‐A  is  involved  in   modulation   of   intracellular   calcium   transients   as   suggested   by   earlier   studies   using   purified   myelin  proteins  with  neurite  outgrowth  inhibitory  activity.  Finally,  given  the  fact  that  Nogo-­‐A-­‐  Δ   20  signaling  was  demonstrated  to  be  highly  dependent  on  endocytosis  in  vitro,  it  will  be  crucial   to   investigate   the   existence   of   soluble   Nogo-­‐A   fragments   in   vivo   and,   if   so,   identify   underlying   mechanisms  and/or  Nogo-­‐A-­‐specific  proteases.  Taken  from  (Schmandke  et  al.,  2014).  

 

Meanwhile,   many   additional   inhibitory   proteins   were   discovered   in   the  

(7)

  Introduction    

and  leptomeningeal  cells  (fibroblasts)  when  fiber  tracts  are  injured  (Silver  and   Miller,  2004).  But  Nogo-­‐A  is  one  of  or  perhaps  the  most  potent  inhibitor  as  was   demonstrated   by   the   fact   that   antibodies   against   the   Nogo-­‐A   specific   delta20   region   allow   axon   regeneration   in   vivo   when   applied   to   the   site   of   injury.   This   was  shown  in  rodents  and  primates,  and  clinical  trials  are  underway  in  human   patients  (Schwab,  2010).  

 

Axon  regeneration  in  the  fish  CNS  and  the  role  of  Nogo  

In  contrast  to  mammals  injured  axons  in  the  CNS  of  fish  are  able  to  regenerate   (Attardi   and   Sperry,   1963).   For   instance,   transection   of   the   optic   nerve   in   goldfish   and   zebrafish   leads   to   retinal   ganglion   cell   axon   regeneration   and   ultimately   to   the   recovery   of   vision   (Gaze,   1970,   Stuermer   et   al.,   1992).   This   suggested   that   fish   CNS   myelin   has   either   no   inhibitors,   which   prevent   axon   regrowth.   Or   axons   regrow   despite   of   inhibitors   which   is   possible   when   the   axotomized   neurons   possess   specific   neuron-­‐intrinsic   properties,   which   empowers  them  to  cross  through  inhibitory  terrain  (Stuermer  et  al.,  1992).    

To   address   this   issue,   experiments   were   performed   in   which   the   substrate   properties   of   fish   CNS   myelin   were   compared   with   mammalian   CNS   myelin.  

When  offered  to  growing  axons,  the  mammalian  CNS  myelin  caused  growth  cone   collapse  but  the  fish  CNS  myelin  permitted  growth  cone  elongation  (Bastmeyer   et   al.,   1991,   Wanner   et   al.,   1995).   Combined   evidence   from   several   studies   indicated   that   fish   CNS   myelin   /   myelin   proteins   are   growth   permissive   or   at   least  by  far  less  inhibitory  than  their  mammalian  counterparts  (Diekmann  et  al.,   2005).  

   

These   assays   also   showed   that   axons   from   fish   and   mammals   responded   in   a   similar   manner:   axons   crossed   fish   CNS   myelin   but   were   inhibited   by   mammalian  CNS  myelin  (Bastmeyer  et  al.,  1991;  Wanner  et  al.,  2005;  Stuermer  et   al.,   unpublished).   This   suggests,   among   others,   that   fish   axons   should   have   a   receptor  for  Nogo-­‐A,  which,  in  turn,  predicts  that  they  possess  the  corresponding   ligand,  i.e.,  a  Nogo-­‐A  homologue.      

 

(8)

Whether  the  zebrafish  S1PR2  gene  serves  as  a  Nogo  receptor  has  not  yet  been   addressed.  However,  studies  searching  for  a  zebrafish  Nogo-­‐A  homologue  have   shown  that  the  rtn4  gene  was  duplicated  giving  rise  to  rtn4a  and  rtn4b  (Figure  2)   (Shypitsyna  et  al.,  2011).  Zebrafish  rtn4a  is  short  and  lacks  the  entire  N-­‐terminal   region,  which  comprises  Nogo-­‐A  delta  20  in  mammals  (Diekmann  et  al.,  2005).  

Zebrafish  rtn4b,   however,   has   a   longer   N-­‐terminal   domain   that   comprises   a   region  homologous  to  the  inhibitory  Nogo-­‐A  specific  domain.  Functional  assays   comparing  the  effects  of  recombinantly  expressed  Nogo-­‐A  delta  20  (or  its  slightly   longer  version  called  M1-­‐4)  and  the  corresponding  zebrafish  rtn4b-­‐derived  M1-­‐4   peptides   are   underway.   In   one   of   these   assays   (stripe   assay),   the   previously   discovered  difference  in  substrate  properties  between  the  fish  and  mammalian   Nogo  peptides  was  confirmed:  axons  freely  crossed  the  fish  M1-­‐4  whereas  they   avoided  the  mammalian  M1-­‐4  peptide  lanes  (Stuermer  et  al.,  unpublished).  

 

 

Figure  2  Schematic  representation  of  the  human  RTN4  gene  and  its  zebrafish  paralogues.  

All   three   major   isoforms   encoded   in   the  RTN4   gene   in   humans   (RTN4A,   RTN4B   and   RTN4C)   possess   the   reticulon   homology   domain   (RHD),   which   includes   the   Nogo66   domain.   The   N-­‐

terminal  region  of  RTN4A  contains  the  Nogo-­‐A-­‐specific  domain  (yellow)  and  the  neurite  growth   inhibitory   Delta   20   (Δ20)   stretch.   The   diagnostic   M1   to   M4   motifs   are   indicated   in   red.   The   zebrafish   has   two  RTN4   paralogues:  rtn4a   and  rtn4b.   Rtn4a   is   produced   in   three   different   isoforms   (Rtn4-­‐l   (blue),   Rtn4-­‐m   (green)   and   Rtn4-­‐n   (orange))   with   the   same   C-­‐terminal   RHD.  

Rtn4b  also  contains  the  M1  to  M4  N-­‐terminal  motifs  (red)  and  presents  a  distinct  RHD.  

Given   that   there   is   a   difference   in   substrate   properties   between   zebrafish   and   mammalian  M1-­‐4,  and  since  zebrafish  axons  recognize  mammalian  Nogo-­‐A,  we   wondered   whether   axon   regeneration   in   zebrafish   might   be   inhibited   if   the   mammalian  Nogo-­‐A  would  be  expressed  in  the  fish  CNS.  This  can  be  addressed  if   one   succeeds   in   expressing   the   inhibitory   region   of   mammalian   Nogo-­‐A   in   transgenic  zebrafish.  This  transgene  expression  should  be  directed  to  zebrafish  

(9)

  Introduction    

oligodendrocytes   so   that   Nogo-­‐A   should   be   found   in   the   glial   cells   and   in   CNS   myelin.  

In  this  thesis,  Nogo-­‐A  transgenic  zebrafish  were  generated  which  are  now  ready   for  tests  on  axonal  regeneration.  This  is  discussed  in  Part  II.  Part  I  of  this  thesis   explores   the   role   of  rtn4a   and  rtn4b   in   the   developing   zebrafish   brain   and   predominantly  its  intracellular  function.  

 

(10)

Specific  Introduction  to  Part  I  

 

Expression  and  function  of  rtn4a  and  rtn4b  in  zebrafish  embryos  

From  the  publication:  Pinzon-­‐Olejua  et  al:  Essential  roles  of  zebrafish  rtn4/Nogo   paralogues  in  embryonic  development.  Neural  Development  2014  9:8.    

In  addition  to  its  activity  as  an  inhibitor  of  axon  growth  in  the  adult  CNS,  recent   studies   in   mice   have   uncovered   functional   roles   of   Nogo-­‐A   in   neuronal   development  and  cortical  plasticity.  For  instance,  Nogo-­‐A  has  been  demonstrated   to  be  present  in  migrating  neuroblasts  and  immature  neurons  in  the  neural  tube,   as   well   as   on   radially   and   tangentially   migrating   neurons   of   the   developing   cortex,   affecting   their   motility   (Mingorance-­‐Le   Meur   et   al.,   2007,   Mathis   et   al.,   2010).   In   other   studies,   Nogo-­‐A   was   found   to   contribute   to   long-­‐term   potentiation  (LTP)  in  the  hippocampus,  ocular  dominance  column  formation  in   the   visual   system,   and   size   control   of   postsynaptic   densities   in   cerebellar   neurons  (McGee  et  al.,  2005,  Petrinovic  et  al.,  2013).  Collectively,  these  findings   suggest   that   Nogo-­‐A   negatively   regulates   neural   plasticity   in   the   mammalian   brain  (Schwab,  2010).  These  defects,  however,  do  apparently  not  interfere  with   fertility   and   viability   of   the   Nogo-­‐A-­‐knockout   mouse,   which   shows   no   striking   phenotype  at  birth  (Kim  et  al.,  2003,  Simonen  et  al.,  2003).  

Much  less  is  known  concerning  the  role  of  the  RTNs,  especially  RTN4/Nogo-­‐A,  in   the   neurodevelopment   of   non-­‐mammalian   species.   In   fish,   such   analysis   is   of   great  interest  because  axons  regenerate  successfully  in  the  teleost  CNS  (Attardi   and  Sperry,  1963,  Stuermer  and  Easter,  1984,  Becker  et  al.,  1997,  Abdesselem  et   al.,  2009)  and  because  neuronal  projections  in  the  peripheral  nervous  system  of   the   embryo   seem   to   develop   abnormally   when   rtn4a   is   downregulated   (Brosamle  and  Halpern,  2009).  

It   has   been   recognized   that   zebrafish   possess   two  rtn4   paralogues,  rtn4a   and   rtn4b  (Figure  2)  (Diekmann  et  al.,  2005,  Shypitsyna  et  al.,  2011).  Both  proteins   have  a  conserved  RHD,  the  hallmark  of  this  gene  family  (Oertle  et  al.,  2003),  but   very  different  N-­‐terminal  regions  (Shypitsyna  et  al.,  2011).  A  comparative  study  

(11)

Expression  and  function  of  rtn4a  and  rtn4b  in  zebrafish  embryos   Introduction    

revealed  that,  in  contrast  to  its  mammalian  counterpart,  the  Nogo-­‐66  region  in   the   RHD   of   zebrafish   Rtn4,   upon   binding   to   either   the   zebrafish   or   the   mouse   Nogo  receptor  (NgR),  promotes  neuronal  growth  (Abdesselem  et  al.,  2009).  The   N  terminus  of  zebrafish  Rtn4a  bears  no  resemblance,  in  sequence  or  in  length,  to   that  of  mammalian  RTN4,  but  four  short  motifs—termed  M1  to  M4  (Figure  2)—

were  found  to  be  conserved  between  the  N  terminus  of  Rtn4b  and  the  inhibitory   Nogo-­‐A-­‐specific  Delta  20  domain  of  mammalian  RTN4  (Shypitsyna  et  al.,  2011).  

To   elucidate   the   function   of   the   zebrafish   Rtn4b   N   terminus   and   its   M1   to   M4   motifs,   ongoing   studies   in   our   laboratory   aim   to   investigate   the   expression   pattern  of  Rtn4b  in  the  adult  CNS  and  its  potential  ability  to  inhibit  axon  growth.  

Previous   work   by   Brösamle   and   Halpern   (Brosamle   and   Halpern,   2009)   addressed  the  role  of  zebrafish  rtn4a  using  morpholino  (MO)-­‐based  knockdown   strategies  and  showed  that  downregulation  of  the  shortest  splice  form,  rtn4a-­‐γ   (Diekmann  et  al.,  2005)  (hereinafter  referred  to  as  rtn4a-­‐n),  led  to  misguidance   of  the  posterior  lateral  line  nerve  and  disorder  of  cranial  nerves  in  2-­‐  and  3-­‐day-­‐

old   embryos.   Their   work   further   suggested   that   Nogo–NgR   interactions   may   contribute   to   axon   guidance   and   to   development   of   the   zebrafish   PNS   by   channeling  axons  through  inhibitory  terrain.  

Our   goal   in   the   present   study   was   to   examine   the   expression   and   function   of   rtn4b  in  zebrafish  embryos,  particularly  in  light  of  the  similarity  between  the  N-­‐

terminal   region   and   that   of   mammalian   Nogo-­‐A/RTN4A   (Figure   2).   In   addition   we   comparatively   analyzed   the   expression   of   zebrafish  rtn4a   and   its   role   in   embryogenesis.  Interestingly,  and  in  contrast  to  the  Nogo-­‐knockout  mouse,  our   results   reveal   morphological   defects   in   the   formation   of   the   spinal   cord   and   brain.   In   rtn4b-­‐knockdown   embryos,   furthermore,   the   pectoral   fin   became   absent  or  reduced  and  the  lower  jaw  was  often  lost.  Together,  the  neuronal  and   non-­‐neuronal   defects   in  rtn4b   morphants   were   stronger   than   those   in  rtn4a,   ultimately  impairing  larval  motility  and  causing  death.  

 

(12)

Specific  Introduction  to  Part  II  

 

Transgenesis  to  study  the  function  of  genes  in  zebrafish    

A   transgene   is   a   DNA   constructed   piece   that   integrates   in   the   genome   of   a   recipient   organism.   To   achieve   stable   transgene   transmission,   the   DNA   constructed   piece   should   integrate   into   germ   cells   so   that   subsequent   generations   inherit   the   transgene.   Until   recently,   the   most   common   method   to   generate  transgenic  zebrafish  remained  the  injection  of  linearized  plasmid  DNA   into   the   cytoplasm   of   one   cell-­‐stage   embryos,   which   could   be   randomly   integrated   into   the   genome.   The   major   disadvantage   is   the   concatameric   DNA   integration  that  in  some  cases  can  reach  up  to  2000  copies  (Stuart  et  al.,  1988,   Iyengar   et   al.,   1996).   Nowadays,   Isce-­‐I   meganuclease   or   transposon-­‐mediated   transgenesis   have   facilitated   the   generation   of   zebrafish   transgenic   lines   by   increasing  the  integration  and  transmission  rates  of  the  transgenes  (Kawakami,   2007)   and   in   the   case   of   transposase-­‐mediated   transgenesis   integration   of   foreign  DNA  sequences  results  in  a  single  copy  insertion  (Figure  3).  

Figure   3.   Transgenesis   in   zebrafish.  (A)   The   structures  of  the  Tol2  transposable  element  and   the   minimal   Tol2   vector.   At   the   top   of   the   illustration   is   the   4,682   base   pair   (bp),   full-­‐

length   Tol2.   RNA   transcribed   from   Tol2  that   encodes  a  transposase  protein  is  shown  by  lines   (exons)   and   dotted   lines   (introns).   Black   boxes   and   gray   boxes   represent   coding   regions   and   untranslated   regions,   respectively.   Black   arrowheads  in  boxes  at  both  ends  indicate  12  bp   terminal  inverted  repeats  (TIRs).  The  lower  part   of  the  figure  shows  the  minimal  Tol2  vector  with   the   green   fluorescent   protein   (GFP)   expression   cassette.   The   minimal   Tol2  vector   contains   200   and  150  bp  of  DNA  from  the  left  and  right  ends.  

The   transposon   vector   can   carry   a   DNA   fragment,   for   example   the   GFP   expression   cassette  in  this  figure,  between  these  sequences.  

(B)   The   synthetic   transposase   mRNA   and   a   transposon   donor   plasmid   containing   a   Tol2   construct   with   a   promoter   and   the   gene   encoding   green   fluorescent   protein   (GFP)   are   co-­‐injected   into   zebrafish   fertilized   eggs.   The   Tol2   construct   is   excised   from   the   donor   plasmid   and   integrated   into   the   genome.   Tol2   insertions  created  in  germ  cells  are  transmitted  

(13)

Generation  of  Nogo-­‐A  transgenic  zebrafish   Introduction    

fish   are   mosaic,   and,   by   crossing   the   injected   fish   (founder)   with   wild-­‐type   fish,   nontransgenic   fish   and   transgenic   fish   heterozygous   for   the   Tol2  insertion   are   obtained.   In   this   figure,   the   promoter  is  tentatively  defined  as  a  spinal  cord  specific  enhancer/promoter  and  the  spinal  cord   of  the  embryo  is  depicted  in  green.  Taken  from  Kawakami,  2007.  

 

The  Cre/lox  system  in  zebrafish      

Spatio-­‐temporal  transgene  regulation  by  transgenic  recombinases  is  a  new  tool   for   genetic   research   in   zebrafish.  Engineered   transgenes   permit   testing   of   molecular   mechanism   such   as   the   function   of   a   specific   RNA   or   protein,   by   expressing  a  desired  gene  (with  a  detectable  marker)  at  different  developmental   stages  and  in  specific  cell  types  (Figure  4).  

The  most  applied  strategy  in  mouse  is  the  use  of  site-­‐specific  recombinases  such   as   Cre   (creates   recombination)   and   Flp   (flippase).   Cre   promotes   strand   exchanges  between  two  34  bp  loxP  target  sites  without  any  additional  cofactors.  

LoxP   sites   contain   two   13   bp   repeats   flanking   an   8   bp   asymmetric   spacer   sequence  that  confers  directionality.  Head  to  head  orientation  causes  inversion   of   the   DNA   between   the   two   sites,   whereas   head   to   tail   orientation   causes   the   irreversible  excision  of  the  DNA  sequence.    

 

Figure   4.   Cre-­‐mediated   recombination   in   the   red-­‐to-­‐green   reporter   line.   Scheme   of   the   recombination  event.  Ligand-­‐dependent  Cre-­‐mediated  recombination  in  cells  of  the  red-­‐to-­‐  green   reporter  line.  The  chimeric  CreERT2  recombinase  is  retained  in  the  cytoplasm  in  the  absence  of   the   ligand.   After   administration   of   tamoxifen   (TAM),   which   is   converted   to   the   active   ligand   4-­‐

(14)

OHT,   CreERT2   translocates   to   the   nucleus,   where   it   catalyzes   the   recombination   event.   As   a   readout   the   floxed   DsRed   is   excised   and   the   EGFP   together   with   the   gene   of   interest   (GOI)   are   expressed.  

Cre-­‐recombinase   controlled   Cre/lox   site-­‐specific   recombination   have   attracted   interest   in   the   zebrafish   field.   Although   its   conventional   use   is   a   powerful   technology   in   mouse,   initial   attempts   to   establish   the   Cre/lox   system   in   other   organisms  showed  its  functionality  in  zebrafish  (Langenau  et  al.,  2005,  Thummel   et   al.,   2005).   Nevertheless   the   recombination   efficiency   was   very   low   (le   2007,   Feng,   2007).  Very   recently   Hans   et   al   (2009)   by   using   transposon-­‐mediated   transgenesis  showed  that  Cre  is  in  fact  very  efficient  in  zebrafish,  indicating  that   the  method  by  which  transgenic  zebrafish  are  generated  might  be  critical  (Hans   et  al.,  2009,  Hans  et  al.,  2011).  It  is  now  believed  that  unambiguous  site-­‐specific   recombination   requires   single   copy   insertions,   which   can   only   be   achieved   by   transposon-­‐mediated   transgenesis   or   pseudotyped   retrovirus.   Due   to   the   observation   that   localization   of   proteins   can   be   controlled,   chimeric   Cre   recombinases,  fused  to  a  ligand-­‐binding  domain  of  a  steroid  receptor  hormone,   were  shown  to  offer  temporal  control  of  Cre-­‐mediated  recombination.  Fusion  of   Cre   to   the   mutated   human   ligand-­‐binding   domain   of   the   estrogen   receptor   (CreERT2),   retains   the   protein   in   the   cytoplasm,   but   after   administration   of   tamoxifen   (TAM),   or   its   active   metabolite   4-­‐hydroxy-­‐tamoxifen,   the   complex   is   internalized  into  the  nucleus  and  is  able  to  recombine  genomic  DNA.    

 

Myelin-­‐targeted  expression  of  rat  Nogo-­‐A  in  transgenic  zebrafish    

Myelination   in   zebrafish   is   carried   out   by   Schwann   cells   (PNS)   and   oligodendrocytes   (CNS),   as   in   all   other   vertebrate   classes   (Brosamle   and   Halpern,   2002).   There   are   several   myelin-­‐specific   proteins   which   function   in   structuring   the   myelin   sheath   around   the   axons.   One   of   them   is   myelin   basic   protein   (Mbp).   It   would   thus   be   optimal   to   express   Nogo-­‐A   under   the  mbp   promoter  so  that  the  transgene  specifically  emerges  in  oligodendrocytes  and  CNS   myelin.    

Therefore,   our   goal   in   the   present   study   was   to   target   the   expression   of   the   mammalian   Nogo-­‐A   to   zebrafish   oligodendrocytes.   In   order   to   achieve   site-­‐

(15)

Generation  of  Nogo-­‐A  transgenic  zebrafish   Introduction    

specific   recombination   we   use   the   Cre/lox   system,   which   has   been   recently   established   in   zebrafish   (Hans   et   al.,   2009).   The   advantage   of   this   approach   is   that   one   generates   separately   a   tissue-­‐specific   Cre   driver   line   and   an   effector   line,  which  contains  the  DsRed  reporter  silencing  the  expression  of  the  gene  of   interest   and   the   EGFP   reporter   (Figure   4).   In   the   absence   of   Cre   the  hsp70   promoter  drives  the  expression  of  DsRed2  but  changes  to  EGFP  after  successful   Cre-­‐mediated  recombination.  Following  this  background,  we  aimed  to  generate  a   CreERT2  driver  line  under  the  control  of  the  mbp  promoter  as  well  as  zebrafish   rtn4a  and   rat   Nogo-­‐A   effector   lines   under   the   control   of   the   temperature–

inducible  heat  shock  (hsp70)  promoter.  By  crossing  the  CreERT2  driver  line  with   the   rat-­‐Nogo-­‐A   effector   line   the   recombination   takes   place   only   in   the  mbp   specific   domain   (oligodendrocytes   and   Schwann   cells).   Moreover,   temporal   control  of  recombination  can  be  achieved  by  using  the  ligand-­‐inducible  CreERT2.   Site-­‐specific   recombination   only   occurs   upon   administration   of   the   drug   tamoxifen   (TAM)   or   its   active   metabolite,   4-­‐hydroxy-­‐tamoxifen   (4-­‐OHT).   In   addition,   because   the  hsp70   promoter   was   used   to   generate   the   effector   lines,   giving   heat   shocks   to   the   fish   can   temporally   control   the   expression   of   the   transgene.    

For   the   generation   of   CreERT2   driver   lines   we   inserted   the   mbp   promoter   fragment  into  a  Tol2  plasmid  carrying  a  mCherry-­‐T2A-­‐CreERT2.  The  effector  lines   were   established   by   inserting   the   rat   Nogo-­‐A   into   an   existing   Tol2   vector   that   carries   all   required   elements,   such   as   the   Kozak   sequences   important   for   the   initiation  of  the  translation  process,  as  well  as  the  polyadenilation  signal,  which   is  necessary  for  nuclear  export,  translation  and  stability  of  mRNA.    

Stable   transgenic   lines   were   successfully   generated   for   this   study   using   Tol2-­‐

mediated   transgenesis.   Coinjection   of   Tol2   vectors   in   combination   with   Tol2   transposase  mRNA,  resulted  in  random  insertion  of  the  Tol2-­‐flanked  transgene   into  the  zebrafish  genome.  Founders  were  screened  for  F1  transmission.  Three   positive  founders,  for  each  construct,  were  chosen  to  generate  stable  lines.  

The   use   of   appropriate   controls   in   these   experiments   will   be   crucial.   For   instance,  studying  axon  growth  and  regeneration  in  the  zf-­‐mbp:rat-­‐Nogo-­‐A    line   will   tell   us   whether   rat   Nogo-­‐A   is   inhibitory   under   similar   conditions   as   in  

(16)

mammals   (i.e.   when   Nogo-­‐A   is   expressed   in   myelinating   cells   of   the   CNS).  In   addition,   studying   axon   regeneration   in   the  zf-­‐mbp:zf-­‐rtn4a   line   will   help   us   confirm   the   non-­‐inhibitory   properties   of   zebrafish   rtn4   and   exclude   the   possibility  that  the  inhibition  eventually  observed  in  the  zf-­‐mbp:rat-­‐Nogo-­‐A  line   is  somehow  due  to  the  choice  of  promoter  used,  rather  than  to  rat  Nogo-­‐A  itself.  

Finally,   a   transgenic   line   expressing   only   the   EGFP   protein   was   considered   in   order   to   control   for   unspecific   effects   by   the   fluorescent   protein,   and   also   as   a   future  experimental  tool  to  visualize  myelination,  or  even  remyelination,  in  real   time.  

 

(17)

         Aims  of  the  work    

Aims  of  the  work  

 

In   sum,   the   work   described   in   this   thesis   aims   to   examine   the   expression   and   function   of  rtn4a  and  rtn4b   in   zebrafish   embryogenesis,   particularly   in   light   of   the   similarity   between   the   zebrafish   Rtn4b   N-­‐terminal   region   and   that   of   mammalian   Nogo-­‐A/RTN4A,   and   to   generate   transgenic   fish   expressing   mammalian   Nogo-­‐A   in   order   to   analyze   the   influence   of   the   expression   of   the   protein   and   to   functionally   characterize   the   effect   of   Nogo-­‐A   on   axon   regeneration.      

 

Thus,  we  aim  to:  

Part  I:  Explore  the  expected  and  yet  unidentified  functions  of  Nogo-­‐A  paralogues   in  fish  development,  not  related  to  axonal  growth  inhibition.    

Part   II:   Generate   stable   transgenic   fish   lines   expressing   rat-­‐Nogo-­‐A   in   oligodendrocytes   and   Schwann   cells   by   Cre/lox   recombination   and   transposon   mediated   transgenesis.   This   fish   will   be   suitable   to   analyze   their   axon   regeneration  potential  after  an  optic  nerve  lesion.  

   

(18)

Material  and  Methods      

Part  I:  Expression  and  function  of  rtn4a  and  rtn4b  in  zebrafish  

From  the  publication:  Pinzon-­‐Olejua  et  al:  Essential  roles  of  zebrafish  rtn4/Nogo   paralogues  in  embryonic  development.  Neural  Development  2014  9:8.    

 

Zebrafish  husbandry  

Zebrafish  (Danio  rerio)  were  maintained  at  28°C  under  a  14-­‐hour  light,  10-­‐hour   dark   cycle   (Westerfield,   1995).   Developmental   stages   are   indicated   based   on   those   described   by   Kimmel  et  al.   (Kimmel   et   al.,   1995)   and   in   hours   and   days   postfertilization   (hpf   and   dpf,   respectively).   Some   embryos   were   raised   in   fish   water  containing  0.003%  1-­‐phenyl  2-­‐thiourea  to  prevent  pigmentation  (Karlsson   et   al.,   2001).   A   zebrafish   reporter   line   expressing   GFP   under   the   control   of   the   sonic   hedgehog   gene   promoter   tg(shh:gfp)   was   obtained   from   Max-­‐Planck-­‐

Institute   Developmental   Biology   (Tübingen,   Germany).   tg(hb9:gfp)-­‐transgenic   zebrafish  expressing  GFP  in  motor  axons  were  provided  by  D  Meyer  (University   of   Innsbruck,   Austria).  tg(Isl1:gfp)   zebrafish   expressing   GFP   in   cranial   motor   neurons   were   provided   by   S   Higashijima   (Okazaki   Institute   for   Integrative   Bioscience,   Higashiyama,   Japan)   and   tg(brn3c:mgfp)   zebrafish   expressing   membrane-­‐targeted  GFP  in  retinal  axons  were  provided  by  H  Baier  (University   of  California,  San  Francisco,  USA).  

Whole-­‐mount  in  situ  hybridization  

Whole-­‐mount   in   situ   hybridization   was   performed   as   described   previously   (Westerfield,  1995).  We  cloned  1.3  kb  of  rtn4a-­‐l,  1  kb  of  rtn4a-­‐m  and  0.9  kb  of   rtn4a-­‐n   (including   the   full   open   reading   frames   (ORFs)   and   393   bp   from   the   3′UTR  and  1.5  kb  from  the  rtn4b  N  terminus,  including  the  M1  to  M4  motifs)  in   pCRII  TOPO  (Invitrogen,  Carlsbad,  CA,  USA)  and  used  them  as  templates  for  the   synthesis  of  two  independent  RNA  in  situ  hybridization  probes  with  the  DIG  RNA   Labeling   Kit   (Roche   Applied   Science,   Penzberg,   Germany).   Transcription  

(19)

Material  and  Methods    

patterns  were  visualized  using  an  Axioplan  2  compound  microscope  (Carl  Zeiss   Microscopy,   Oberkochen,   Germany)   using   Nomarski   (differential   interference   contrast)  optics,  photographed  with  a  Zeiss  Color  Axiocam  and  further  processed   using  Adobe  Photoshop  12.0  software  (Adobe  Systems,  San  Jose,  CA,  USA).  

Cloning  full-­‐length  rtn4a  and  rtn4b  cDNAs  

The  rtn4a   full   coding   sequence   was   amplified   by   RT-­‐PCR   from   1-­‐dpf   zebrafish   embryo   total   RNA   with   the   following   primers:   forward   rtn4a-­‐fw   5′-­‐

atgcagccgcaggagtacat-­‐3′  and  reverse  rtn4a-­‐rv  5′-­‐ggctgccgggtcacgact-­‐3′.  The  rtn4b   cDNA  was  amplified  with  forward  primer  rtn4b-­‐fw  5′-­‐gtcctgagctgcgctatttc-­‐3′  and   reverse  primer  rtn4b-­‐rv  5′-­‐gttatttagtaggcagcggtgtg-­‐3′  by  RT-­‐PCR  from  total  RNA   extracted   from   adult   zebrafish   optic   nerve.   First-­‐strand   cDNA   was   synthesized   under   standard   conditions   with   the   SuperScript   First-­‐Strand   Synthesis   System   (Invitrogen)   using   an   oligo(dT)   primer.   All   of   the   above-­‐mentioned   PCR   experiments   were   done   with   Phusion   High-­‐Fidelity   DNA   Polymerase   (Finnzymes/Thermo   Fisher   Scientific,   Espoo,   Finland).   Full-­‐length   cDNAs   were   cloned  into  a  PCR2.1  TOPO  vector  (Invitrogen)  and  sequenced.  

Morpholino  knockdowns  and  mRNA  rescue  

The  following  MOs  were  purchased  from  Gene  Tools  (Philomath,  OR,  USA)  and   designed  to  target  independent  sequences  at  the  5′  UTRs  and  the  start  codon  of   the   zebrafish  rtn4a   and   rtn4b,   including   known   splice   variants   based   on   the   following  sequence  data  obtained  from  the  GenBank  database.    

rtn4a-­‐l,   5′-­‐taaagtaacttcaagatgcgccgga-­‐3′   (position   on   mRNA   −55/−30)   and     5′-­‐tcgtggagcttatttgatcatccat-­‐3′  (position  on  mRNA  1/25)  [GenBank:AY555039.1];  

rtn4a-­‐m,   5′-­‐cgtgcatcggtcatatatccagtca-­‐3′   (position   on   mRNA   −18/+7)   and   5′-­‐

ttatctgaattggcgtgcatcggtc-­‐3′   (position   on   mRNA   −5/+20)   [GenBank:AY555042.1];   rtn4a-­‐n,   5′-­‐ctcgctcattctgcgatcagacagcc-­‐3′   (position   on   mRNA   −25/0)   and   5′-­‐gctccaccacttgtttggaatccat-­‐3′   (position   on   mRNA   1/25)   [GenBank:AY555043.1];   rtn4b,   5′-­‐ccactgcgggagaactcagaacagc-­‐3′   (position   on   mRNA   −81/−57,   for   better   distinction,   rtn4b-­‐MO-­‐1)   and   5′-­‐

(20)

gctcgttctgtgtcctccatcggga-­‐3′   (position   on   mRNA   −5/+20,   rtn4b-­‐MO-­‐2)   [RefSeq:NM_001040335.1];  control,  5′-­‐aacgaacgaacgaacgaacgaacgc-­‐3′  

In   addition   to   ATG-­‐targeting   MOs,   as   described   by   Brösamle   and   Halpern   (Brosamle  and  Halpern,  2009),  we  used  MOs  directed  against  5′UTR  sequences   of  the  rtn4a  splice  variants.  

All   microinjections   were   performed   at   early   cleavage   stages   (one-­‐   to   four-­‐cell   stage)  using  a  manual  micromanipulator  (Narishige,  Tokyo,  Japan)  coupled  to  a   Transjector   5246   (Eppendorf,   Hamburg,   Germany)   under   a   Stemi   2000   stereomicroscope   (Carl   Zeiss   Microscope).   After   running   specificity   and   dose-­‐

dependency  controls,  MOs  were  injected  at  a  concentration  of  0.5  or  1.0  ng/nl  in   13  Danieau  buffer  (58  mM  NaCl,  0.7  mM  KCl,  0.4  mM  MgSO4,  0.6  mM  Ca(NO3)2,   5.0   mM   2-­‐[4-­‐(2-­‐hydroxyethyl)piperazin-­‐1-­‐yl]   ethanesulfonic   acid   [pH   7.6])   and   0.125%  Phenol  Red  (Sigma-­‐Aldrich,  St  Louis,  MO,  USA).  

For   MO   rescue   experiments,  rtn4a-­‐l   was   cloned   in   frame   with   GFP   into   the   EcoRI/ApaI  restriction  sites  of  pGFP-­‐N1.  Rtna-­‐l-­‐gfp,  rtn4a-­‐l  and  rtn4b  ORF  cDNAs   were   subcloned   into   the   EcoRI/XbaI   (rtn4al-­‐gfp),   EcoRI/XbaI   (rtn4a-­‐l)   or   EcoRI/StuI  (rtn4b)  restriction  sites  of  pCS2+  (provided  by  Z  Varga,  University  of   Oregon,   Eugene,   OR,   USA)   and   transcribed   in   vitro   using   the   mMESSAGE   mMACHINE  SP6  kit  (Ambion,  Austin,  TX,  USA).  

For   mRNA   synthesis,   DNA   templates   were   linearized   with   BssHII.   After   synthesis,   template   DNA   was   removed   by   DNaseI   digestion   of   the  rtn4a-­‐l   and   rtn4b   mRNAs.  rtn4a-­‐l   or  rtn4b   MO   at   1.0   ng/nl   in   13   Danieau   buffer   were   coinjected  with  capped  mRNAs  at  20  or  100  pg/nl  at  a  1:1  ratio  in  0.05  M  KCl  and   0.125%   Phenol   Red.   For   overexpression   experiments,   mRNAs   were   microinjected   at   100   pg/nl.   At   least   200   embryos   per   experiment   were   microinjected  (5-­‐nl  injection  volume)  and  kept  in  E3  medium  (5  mM  NaCl,  0.17   mM   KCl,   0.33   mM   CaCl2   and   0.33   mM   MgSO4)   at   28°C.   Quantification   of   phenotypes  was  carried  out  on  200  embryos  per  experiment,  from  among  which   a   smaller   number   were   selected   for   detailed   analysis.   Images   were   acquired   using   a   SteREO   Lumar.V12,   Axioplan   2   or   confocal   laser   scanning   microscope  

(21)

Material  and  Methods    

LSM   710   (Carl   Zeiss   Microscopy).   Images   were   further   processed   using   Adobe   Photoshop  12.0  software.  

Immunohistochemistry  

Anesthetized  embryos  (6  to  24  hpf)  were  fixed  in  4%  paraformaldehyde  (PFA)  in   phosphate-­‐buffered   saline   (PBS)   for   2   hours   at   room   temperature   (RT)   or   overnight   at   4°C.   Embryos/larvae   older   than   48   hpf   were   fixed   in   PFA   for   30   minutes   at   RT,   washed   in   PBS-­‐Tween   20   (PBST)   and   permeabilized   in   acetone   for  7  minutes  at  −20°C.  The  following  antibodies  and  concentrations  were  used   for   whole-­‐mount   immunohistochemistry:   polyclonal   anti-­‐neurolin,   1:500   (Diekmann   and   Stuermer,   2009);   monoclonal   antiacetylated   tubulin,   1:1,000   (Sigma-­‐Aldrich)   and   the   monoclonal   anti-­‐HuC/HuD   neuronal   protein   (16A11)   1:1,000  (Molecular  Probes,  Sunnyvale,  CA,  USA).  For  staining  with  the  polyclonal   Rtn4a   antibody   (IK964,   which   was   generated   in   our   laboratory)   diluted   1:250   (Abdesselem   et   al.,   2009),   PFA   fixation   was   not   used.   Instead,   embryos   were   incubated   on   ice   in   50%   methanol   in   PBS,   pH   7.4   (2   minutes),   100%   MeOH   (5   minutes)  and  50%  MeOH  in  PBS  (2  minutes).  To  generate  a  polyclonal  antibody   against   zebrafish   Rtn4b,   the  rtn4b-­‐M1-­‐M4   region   (Shypitsyna   et   al.,   2011)   was   amplified  by  PCR  from  a  pCR2.1  TOPO  vector  containing  the  rtn4b  ORF.  Forward   rtn4b-­‐M1-­‐fw   5′-­‐GGGAATTCTAGCCCGTCTCCAGACCTGCTCCAGGA-­‐3′   and   reverse   rtn4b-­‐M4-­‐rv   5′-­‐GGGTCGACCTA-­‐CTGCAGACCCTGGAGCAGCTCTGCC-­‐3′   primers   containing  EcoRI  and  SalI  restriction  enzyme  sites  were  designed  to  amplify  490   bp,  including  the  M1  to  M4  motifs.  The  PCR  product  was  digested  with  EcoRI  and   SalI  and  cloned  in  frame  into  the  pGEX-­‐4T-­‐3  glutathione  S-­‐transferase  expression   vector   (GE   Healthcare   Life   Sciences,   Freiburg,   Germany)   after   the   thrombin   cleavage   site.   The   recombinant   protein   was   used   to   immunize   a   rabbit   to   produce   the   polyclonal   antibody   K1121.   The   immunopurified   Rtn4b   antibody   was  used  at  a  dilution  of  1:500.  

Nuclei  were  counterstained  with  100  ng/ml  DAPI,  together  with  the  secondary   antibody,   for   30   minutes   at   RT.   The   secondary   antibodies   were   cross-­‐purified   with  fluorophore-­‐conjugated  goat  anti-­‐rabbit  and  cyanine  3  or  Alexa  Fluor  488–

coupled  anti-­‐mouse  antibodies  in  which  specimens  were  incubated  overnight  at  

(22)

4°C.   For   analysis   of   Rtn4   expression   levels,   embryos   were   dechorionated,   deyolked,   lysed   and   analyzed   by   Western   blotting.   Blots   were   exposed   to   polyclonal   Rtn4a   antibody   (IK964;   diluted   1:10,000)   and   polyclonal   Rtn4b   antibody   (K1121;   diluted   1:1,000)   and   to   a   monoclonal   antibody   against   GFP   (diluted  1:2,000  to  detect  Rtn4al-­‐GFP;  Roche  Applied  Science).  

Bromodeoxyuridine  labeling  

To   label   cells   in   the   S-­‐phase,   embryos   were   immersed   in   10   mM   BrdU   (Sigma-­‐

Aldrich)  in  1%  dimethyl  sulfoxide  in  E3  medium.  Embryos  were  incubated  for  1   hour  at  28°C  and  washed  in  E3  medium  (three  timer  for  5  minutes),  fixed  in  4%  

PFA   overnight   at   4°C   and   dehydrated   in   methanol   at   −20°C.   After   gradual   rehydration,   embryos   were   permeabilized   with   proteinase   K   (10   μg/ml)   followed   by   postfixation   with   4%   PFA,   washed   with   PBST,   blocked   with   10%  

normal   goat   serum   in   PBST   for   at   least   2   hours   at   room   temperature   and   incubated   with   mouse   anti-­‐BrdU-­‐fluorescein   isothiocyanate   antibody   (1:200;  

Sigma-­‐Aldrich)  in  4%  blocking  solution  overnight  at  4°C.  

Acridine  orange  staining  

To   get   an   impression   of   the   extent   of   apoptosis,   1-­‐dpf   live   embryos   were   incubated  in  2  μg/ml  acridine  orange  (Sigma-­‐Aldrich)  for  30  minutes,  followed   by   three   rinses   in   E3   medium.   Embryos   were   anesthetized   in   0.016%   Tricaine   methanesulfonate  (MS-­‐222;  Sigma-­‐Aldrich)  and  photographed  (Zeiss  Lumar.V12   stereomicroscope).  

Motility  tests  

To  evaluate  the  escape  response,  3-­‐dpf  embryos  were  touched  with  the  tip  of  a   fine   needle   twice   at   the   dorsal   tip   of   the   tail.   Embryos   that   did   not   react   were   classified  as  nonmotile.  Three  groups  of  at  least  50  embryos  were  tested  in  each   experiment.  

   

(23)

Material  and  Methods    

Quantifications  

To   quantify   total   cell   numbers   and   axon   branching   of   motor   neurons   in   tg(hb9:gfp),   control   and   rtn4b-­‐MO1-­‐injected   embryos,   six   representative   specimens   from   each   group   were   fixed   at   1   and   2   dpf,   respectively,   and   their   trunk  regions  were  scanned  by  confocal  microcopy.  All  fluorescent  cells  (trunk   segments  15  to  18)  and  axonal  projections  (trunk  segments  5  to  8  and  15  to  18)   were   counted   in   z-­‐stack   confocal   reconstructions.   Embryos   exhibiting   aberrant   branching   and   mistakes   in   pathfinding   of   their   motor   axons   were   classified   as   mild,   and   those,   which   in   addition   showed   defasciculation   were   categorized   as   strong.  The  size  of  the  eye  and  the  area  covered  by  RGCs,  as  well  as  the  areas  of   the   optic   tectum,   forebrain   and   neuropil,   were   determined   in  tg(Brn3c:mgfp)   control,   rtn4a-­‐l   and   rtn4b   MO1-­‐injected   embryos,   with   10   representative   specimens   at   3   and   5   dpf.   Areas   were   measured   in   ImageJ   software   (National   Institutes   of   Health,   Bethesda,   MD,   USA)   by   using   ventral   and   dorsal   z-­‐plane   projections   of   the   head.   Data   are   represented   as   mean   values,   and   error   bars   indicate   the   standard   error   of   the   mean.   Data   were   analyzed   using   analysis   of   variance   (ANOVA)   and   paired   t-­‐test   was   used   after   determining   whether   the   sample   datasets   conform   to   a   normal   distribution.   P-­‐values   are   indicated   as   follows:  *P≤0.05.  **P≤0.01.  

   

(24)

Part  II:  Rat-­‐Nogo  transgenic  Zebrafish      

Germ  line  transformation  

For   germ   line   transformation,   plasmid   DNA   and   Tol2-­‐transposase   mRNA   were   injected   into   fertilized   eggs   (F0),   raised   to   adulthood   and   crossed   to   wild-­‐type   zebrafish  from  the  AB  line,  which  is  the  primary  background  of  all  transgenic  and   mutant   fish   that   come   from   the   Zebrafish   International   Resource   Stock   Center   (ZIRC),   in   Oregon,   USA.   The   red-­‐to   green   reporter   and   the   neuronal   Cre   driver   lines  were  kindly  provided  by  Dr.  Stefan  Hans  from  the  Brand’s  Lab  in  the  CRTD-­‐

Dresden  (Hans  et  al.,  2009,  Hans  et  al.,  2011).    

 

Bacterial  artificial  chromosomes  (BAC)  recombineering    

All   necessary   regulatory   regions   were   obtained   by   screening   the   CHORI   BAC   library.   The   zebrafish   BAC   clones   CH73-­‐343K20   and   CH211-­‐22D6   containing   rtn4a   and  mbp   respectively,   were   identified.   Mapping   the   BAC   clones   onto   the   zebrafish  genome  confirmed  that  the  BACs  contained  95,1  Kb  upstream  of  mbp,   and   18,5   kb   upstream   of  rtn4a.   To   create   the   appropriate   DNA   vectors   for   fish   transgenesis,   we   modified   the   relevant   BAC   clones   via   Escherichia   coli-­‐based   homologous   recombination   and   Flp-­‐FRT-­‐mediated   site-­‐specific   recombination   approaches  (Sarov  et  al.,  2006).  During  this  process,  the  genes  of  interest  were   inserted  downstream  of  the  regulatory  region.  

 

Generation  of  driver  line  

To   create   the   pTol   mbp:mCherry-­‐T2A-­‐CreERT2   plasmid,   5   kb   of   the   mbp   regulatory   region   were   amplified   by   PCR   with   restriction   sites   EcoNI   at   the   5’  

end   and   FseI   at   the   3’   end.   PCR   products   were   sequentially   subcloned   into   the   EcoNi-­‐FseI  site  of  the  pTol:mCherry-­‐T2a-­‐CreERT2  (Hans  et  al.,  2009).    

For   the   mbp:CreERT2   line,   F1   embryos   were   screened   by   PCR   using   mbp(ttgccaacgttgtaggctactacc)   and   Cre(tagagcctgttttgcacgttcacc)-­‐specific   primers   that   result   in   an   867   base   pair   fragment.   Positive   embryos   were   examined  under  a  fluorescent  microscope  and  positive  embryos  were  raised.  Out  

(25)

Material  and  Methods    

of   16   PCR-­‐positive   F0   fish   8   lines   showed   a   distinctive   CreERT2   expression   pattern.  Three  lines  were  established  and  carriers  were  identified  by  either  PCR   or  cross  to  the  red-­‐to-­‐green  reporter  line.  

 

Generation  of  effector  lines  

Rat  Nogo-­‐A  was  amplified  by  PCR  with  Fw:  Rv:  primers  including  SalI  and  SpeI   restriction  sites.  The  PCR  product  was  digested  with  the  appropriate  restriction   enzymes   and   further   ligated   into   pCR4BLUNT-­‐TOPO-­‐EGFP-­‐T2A-­‐ntr   previously   digested   with   XhoI   and   XbaI.   Positive   clones   were   sequenced.   The   new   EGFP-­‐

T2A-­‐Nogo-­‐A   was   digested   with   restriction   enzymes   StuI   and   AscI   and   ligated   with  the  pTol:hsp70-­‐DsRed-­‐2-­‐EGFP  (Hans  et  al.,  2009),  previously  digested  with   SmaI   and   AscI   restriction   enzymes.   The   pTol-­‐hsp70-­‐DsRed-­‐rtn4-­‐T2A-­‐EGFP   plasmid  was  generated  in  the  same  manner.  

F1   embryos   were   examined   under   a   fluorescent   microscope   and   positive   embryos  were  raised.  This  way,  ten  independent  F0  were  identified  and  tested   for   recombination   in   the   presence   of   Cre.   As   they   all   showed   efficient   recombination,  the  strongest  allele  was  chosen  to  establish  the  rat-­‐Nogo-­‐A-­‐red-­‐

to-­‐green  transgenic  line,  which  now  shows  efficient  recombination  in  the  third   generation.    

 

PCR   analysis   of   transposase   mediated   transgenesis   -­‐   Micro-­‐injection   and   excision  assay  

Transposase  mRNA  was  synthesized  as  described  previously  (Kawakami  2004;  

Kawakami   et   al.   2004b).   Approximately   1   nanoliter   of   a   DNA–RNA   solution   containing  25  ng/ml  circular  DNA  of  a  transposon-­‐donor  plasmid  and  25  ng/ml   transposase  mRNA  were  injected  into  fertilized  eggs.  Approximately  24  h  after   the   injection,   DNA   samples   were   prepared   from   the   injected   embryos   and   the   transient   excision   assay   was   performed   as   described   (Kawakami   and   Shima   1999;  Kawakami  2004).  The  excision  products  were  amplified  by  using  primers   Tp-­‐Fw  (gctactacatggtgccattcct)  and  Tp-­‐Rv  (ggcacgacaggtttcccgac).    

   

(26)

Pharmacological  treatments  and  heat  induction  

For   pharmacological   treatments   the   following   stock   solutions   were   made   and   stored   at  -­‐20°C:   50   mM   tamoxifen   (TAM;   Sigma,   T5648)   in   DMSO;   25   mM   4-­‐

hydroxy-­‐tamoxifen   (4-­‐OHT;   Sigma,   H7904)   in   ethanol.   For   embryo   treatments,   dilutions   of   these   chemicals   were   made   in   embryo   medium   as   follows:   TAM:   5   and  0.5;  4-­‐OHT:  0.5  mM.  At  mid-­‐gastrulation  (8  hpf)  or  at  30  hpf  embryos  were   transferred   into   petri   dishes   containing   the   treatment   solution.   Larvae   (5   dpf   onwards)   were   incubated   overnight   in   4-­‐OHT.   For   control   treatments,   sibling   embryos   were   incubated   in   corresponding   dilutions   of   DMSO   and   ethanol.   All   incubations   were   conducted   in   the   dark.   For   heat   induction,   embryos   were   transferred   into   fresh   petri   dishes.   After   removal   of   excess   embryo   medium,   42°C  embryo  medium  was  added  and  the  petri  dishes  were  kept  for  two  hours  in   a  39°C  incubator.  Afterwards,  embryos  were  returned  to  the  28.5°C  incubator.    

 

GFP  expression  in  embryos  

GFP   expression   in   embryos   was   analyzed   by   using   a   fluorescence   stereo-­‐

microscope  Lumar  (Zeiss),  and  photos  were  taken.  

 

Referenzen

ÄHNLICHE DOKUMENTE

Consistent with these findings were Igf1r stainings of small intestinal and colonic tissue sections of control Villin-TRE-IGF1R mice in the present study which showed that

Whereas soluble ER- resident proteins bear a specific retrieval signal (KDEL in mammals, HDEL in yeast) that mediate interaction with the KDEL receptor (ERD2 in yeast and the

In respect to the collinear expression of homeotic genes in Drosophlila, Welcome Bender and colleagues (Peifer et al., 1988), suggested the “open‐for‐business”

Recently, studies using microsomes and the unspecific inhibitor glycyrrhetinic acid (GA) suggested that ȕ-HSD1 metabolizes the antidepressant drug bupropion to

We focused on the migratory behavior of the anterior extramural stream (AES) that contributes to the brainstem pontine nuclei (PN), the main relay between cortex and

In neurons, mTORC1 activity can be triggered by various stimuli, including neurotrophic factors (e.g. BDNF, brain-derived neurotrophic factor), cytokines (e.g. leptin), Ca 2+

ATF, activating transcription factor; BCL-2, B-cell leukemia/lymphoma-2; Bref.A., brefeldin A; CHOP, C/EBP homologous protein; DTT, dithiothreitol; EC, endothelial cells;

This finding is in agreement with the results on deletion and point mutants as well as with a ribosome display assay (Lauren et al., 2007; Schimmele and Pluckthun, 2005). In case