• Keine Ergebnisse gefunden

• Modeling received signal strength as R.V. X

N/A
N/A
Protected

Academic year: 2022

Aktie "• Modeling received signal strength as R.V. X"

Copied!
29
0
0

Wird geladen.... (Jetzt Volltext ansehen)

Volltext

(1)

Log‐Distance Path Loss Model

(2)

Considering Shadowing: Lognormal Model

(3)

Modeling the Time Varying Nature

• Consider mobile sender receiver pair

• Modeling received signal strength as R.V. X

• Considering probability P[X  · x] (the CDF)

• Example: Rayleigh Fading Model

– No line of sight

– Exponential distributed CDF

• Example: Ricean fading model

– Dominant line of sight

– Ricean distributed CDF

(4)

Modellbildung

Ein einfaches Energiemodell

(5)

Required Transmission Power

(6)

Zero Power with Infinite Relays?

• Direct transmission

• Transmission with n relays

s t

d

(7)

Additive Constant Power Consumption

• Direct transmission

• Transmission with n relays

s t

d

(8)

Modellbildung

Vereinfachte Graphmodelle

(9)

The Wireless Network Graph

• Wireless network as a graph G=(V,E) – V = set of nodes

– E = set of node pairs which can reach each other

Example:

(10)

Which Nodes are Connected?

• N

0

= environmental noise

• S

RX

= received signal strength

• Correct reception above certain BER:

• For constant N

0

follows correct reception iff

(11)

The Unit Disk Graph UGD(V)

• Nodes u and v connected iff |uv| ≤ R

• Example: transmission range of node u ?

u

R

(12)

Is this correct?

• Antenna radiation patterns

• Scattering, diffraction, 

refraction • Multipath propagation

• Interference

• Obstacles

u

Transmission range of u looks rather like:

(13)

0 30 60 90 120 150 180 210 240 270 300 330 360 0

30 60 90 120 150 180 210 240 270 300 330 360

0 30 60 90 120 150 180 210 240 270 300 330 360

0 30 60 90 120 150 180 210 240 270 300 330 360

Measurement: LQI

Stationary Node Moving Node

(14)

Measurement: Loss Probability

15

10

5

(15)

Three Regions of Communication 

(16)

A Generalization: Quasi UDG

Of particular interest:

r min r max

u

(17)

Lokale Netzalgortihmen

(18)

Large Scale Wireless Networks

 On board powered devices

 Wireless communication

 No network infrastructure

(19)

Large Scale Wireless Networks

Example: sensor networks

(20)

Large Scale Wireless Networks

Example: ad hoc networks

(21)

Large Scale Wireless Networks

Example: robotic networks

(22)

Large Scale Wireless Networks

 Limited comm. range

 Regulatory constraints

 Implied network graph

(23)

Large Scale Wireless Networks

Data communication:

unicast, multicast, broadcast, anycast,

geocast, …

(24)

Large Scale Wireless Networks

Topology control:

neighbor elimination, backbone con-

struction, virtual overlays, relocation,…

(25)

Localized Protocol Design

Localized: achieve a network wide objective with local decisions only Request neighbors

?

(26)

Localized Protocol Design

Localized: achieve a network wide objective with local decisions only Non-localized: Local change may require a network wide decision

Inform network

General hope that localized protocols:

save resources,

support arbitrary network scale, deal better with dynamics,

still work when full network view is not possible

(27)

Zusammenfassung

(28)

Quo Vadis

• In der Vorlesung betrachten wir die genannten Netze/Systeme – aus der Graphen‐Sicht und 

– unter vereinfachten Modellannahmen

• Pro: Beweisbare Aussagen

• Pro: Übersichtliche Algorithmen

• Contra: Algorithmen unter diesen Annahmen sind nicht praxistauglich!?!?

– Aber: Formalen Aussagen sagen uns was prinzipiell geht und was nicht

– Aber: Verfahren bilden eine gute Ausgangsbasis, um für die Praxis erweitert zu  werden

• Dennoch: ganze Thematik ist ein noch junges Forschungsfeld – Es klafft eine große Lücke zwischen Theorie und Praxis 

– Motivation für unsere Forschungsanstrengungen sowohl in der Theorie als auch in 

der Praxis

(29)

Vorlesungsabschnitte

• Generell: wir befassen uns mit lokalen Graphstrukturen – Knoten brauchen höchstens ihre k‐Hop‐Nachbarn zu kennen

– Besondere form: reaktive Verfahren, in denen gar kein Nachbar bekannt sein muss – Viele Lokale Verfahren setzen Positionsinformation voraus

• Vorlesungsplan

– Topologiekontrolle (Entfernen von Kanten, Entfernen von Knoten, Virtuelle Overlays) – Datenkommunikation (Unicast, Multicast, Broadcast, Geocast, Anycast)

– (Positionierung)

• In dieser Vorlesung befassen wir uns mit Theorie!!!  Formale Beweise

Referenzen

ÄHNLICHE DOKUMENTE

Methods Linking 34 year (1984–2017) time series at 2745 breeding bird survey (BBS) routes across the conterminous United States of America with remo- tely-sensed Landsat imagery,

These relationships are referred to as an area’s “relational assets” and are argued to be central local factors for rural development since they draw on social properties of

To test whether plas- ticity is required for the species to thrive in different habitats, samples were collected across its distribution in the Mongolian steppe, and a

[ 6 ] In the current paper we present brief analysis of the historical SIMBIOS ship-borne and AERONET island- based aerosol optical depth data, describe the concept of MAN, and

Scheme D operates on a territorial level with close interaction of the existing cultural infrastructure in visual arts in the metropolitan and a newly established art

This page was generated automatically upon download from the ETH Zurich Research Collection. For more information please consult the Terms

This page was generated automatically upon download from the ETH Zurich Research Collection. For more information please consult the Terms

The Local Area Network Support Program and Operating System/2 Extended Edition 1.1 provide equivalent adapter support software if any of the other Token-Ring Network adapters or