• Keine Ergebnisse gefunden

Production of docosahexaenoic acid by Aurantiochytrium sp. ATCC PRA-276

N/A
N/A
Protected

Academic year: 2022

Aktie "Production of docosahexaenoic acid by Aurantiochytrium sp. ATCC PRA-276"

Copied!
7
0
0

Wird geladen.... (Jetzt Volltext ansehen)

Volltext

(1)

Pleasecitethisarticleinpressas:FurlanVJM,etal.ProductionofdocosahexaenoicacidbyAurantiochytriumsp.ATCCPRA-276.BrazJMicrobiol.

h tt p : / / w w w . b j m i c r o b i o l . c o m . b r /

Food Microbiology

Production of docosahexaenoic acid by Aurantiochytrium sp. ATCC PRA-276

Valcenir Júnior Mendes Furlan

a,∗

, Victor Maus

b

, Irineu Batista

c

, Narcisa Maria Bandarra

c

aUniversidadeFederaldoPampa(UNIPAMPA),Itaqui,RS,Brazil

bInternationalInstituteforAppliedSystemsAnalysis(IIASA),Laxenburg,Austria

cPortugueseInstituteofSeaandAtmosphere(IPMA,I.P./DMRM),Lisbon,Portugal

a r t i c l e i n f o

Articlehistory:

Received3August2015 Accepted13October2016 Availableonlinexxx

AssociateEditor:RosaneFreitas Schwan

Keywords:

Carbonsource Docosahexaenoicacid Nitrogensource

Polyunsaturatedfattyacids Thraustochytrids

a bs t r a c t

The highcostsandenvironmentalconcernsassociatedwithusingmarineresourcesas sourcesofoils richinpolyunsaturatedfattyacidshaveprompted searchesforalterna- tive sources ofsuch oils. Some microorganisms, among them members of the genus Aurantiochytrium,cansynthesizelargeamountsofthesebiocompounds.However,various parametersthataffectthepolyunsaturatedfattyacidsproductionoftheseorganisms,such asthecarbonandnitrogensourcessuppliedduringtheircultivation,requirefurthereluci- dation.Theobjectiveofthisinvestigationwastostudytheeffectofdifferentconcentrations ofcarbonandtotalnitrogenontheproductionofpolyunsaturatedfattyacids,particularly docosahexaenoicacid,byAurantiochytriumsp.ATCCPRA-276.Weperformedbatchsystem experimentsusinganinitialglucoseconcentrationof30g/Landthreedifferentconcentra- tionsoftotalnitrogen,including3.0,0.44,and0.22g/L,andfed-batchsystemexperiments inwhich0.14g/Lofglucoseand0.0014g/Loftotalnitrogenweresuppliedhourly.Toassess theeffectsofthesedifferenttreatments,wedeterminedthebiomass,glucose,totalnitrogen andpolyunsaturatedfattyacidsconcentration.Themaximumcellconcentration(23.9g/L) wasobtainedafter96hofcultivationinthebatchsystemusinginitialconcentrationsof 0.22g/Ltotalnitrogenand30g/Lglucose.Undertheseconditions,weobservedthehigh- estlevelofpolyunsaturatedfattyacidsproduction(3.6g/L),withdocosahexaenoicacidand docosapentaenoicacid␻6concentrationsreaching2.54and0.80g/L,respectively.

©2017SociedadeBrasileiradeMicrobiologia.PublishedbyElsevierEditoraLtda.Thisis anopenaccessarticleundertheCCBY-NC-NDlicense(http://creativecommons.org/

licenses/by-nc-nd/4.0/).

Introduction

The search for nutraceutical products that can prevent and/ortreatdiseaseshasintensifiedduringthelastdecade.

Correspondingauthor.

E-mail:juniorfurlan@yahoo.com.br(V.J.Furlan).

Among these products, types ␻3 and ␻6 polyunsaturated fatty acids (PUFAs) havereceived a great dealof attention duetotheirhealthbenefitsandtheirextensiveapplications in the food and pharmaceutical industries.1 Docosahe- xaenoic acid (DHA, C22:6 ␻3), for example, is necessary for the brain development of newborn children and con- tributes to increasing their intelligence and verbal and reasoning skills.2 Furthermore, DHA is helpful in treating http://dx.doi.org/10.1016/j.bjm.2017.01.001

1517-8382/©2017SociedadeBrasileiradeMicrobiologia.PublishedbyElsevierEditoraLtda.ThisisanopenaccessarticleundertheCC BY-NC-NDlicense(http://creativecommons.org/licenses/by-nc-nd/4.0/).

1

2

3

4

5

6 7 8 9

10 11 12 13 14 15

16 17 18 19 20 21 22

23 24

25 26 27 28 29 30 31 32

(2)

Pleasecitethisarticleinpressas:FurlanVJM,etal.ProductionofdocosahexaenoicacidbyAurantiochytriumsp.ATCCPRA-276.BrazJMicrobiol.

atherosclerosis, rheumatoid arthritis, and Alzheimer’s disease,3 aswellasinpreventingbreastandcoloncancer.4 Docosapentaenoicacid(DPA,C22:5␻6)isanotherPUFAthatis importantforhumanhealth.DPAhasbeenfoundtohelppre- ventvariousdiseases,suchascardiovasculardisorders(such as myocardial infarction, thrombosis, and atherosclerosis), diabetes,asthma,inflammationandrheumatism(including arthritisandosteoporosis).5

Themaincommercialsourceofthesecompounds,partic- ularlyDHA,isoilobtainedfrommarinefish.6 However,the widespreadconsumptionoftheseoilsislimitedbymarine chemicalpollution,decliningfishstocks,seasonalvariations inthecompositionoffishoils,theirpooroxidativestability, typicalunpleasantodourandtaste,andthehighcostoftheir extractionand purification processes.7 Thisproblems have inspiredthedevelopmentofnewmethodsforthelarge-scale productionofoilsbysafeandhealthysources.1,8

Heterotrophic microorganisms that are members ofthe Thraustochytridgrouparealternative sourcesofthese oils.

Theseoleaginousmicroorganismscanaccumulatemorethan 50%oftheir weightaslipids,with ahigh concentrationof DHA ofgreater than 25% ofthe total lipids.9 Furthermore, thelipidsofthraustochytridscontainaspecificPUFA(DHA) insteadofamixtureofPUFAs.Therefore,theiroilhasahigher levelofoxidativestabilitythanthatoffishoil.10 Theappro- priateconcentrationsofcarbonandnitrogenareessentialfor thraustochytridstobiosynthesizeandaccumulatepolyunsat- urated fatty acids.Theconcentration ofthe carbon source affects the synthesis of organic molecules and the avail- abilityofenergy,whereastheconcentrationofthenitrogen sourceaffectsthesynthesisofaminoacidsandnucleicacids.

Therefore,understanding theeffectsofthesesubstrateson cultivatedmicroorganismsiscrucialforoptimizingtheiroil production.Herein,wepresenttheresultsofastudyofthe effectofdifferentconcentrationsofcarbonandnitrogenon thePUFAsproductionofAurantiochytriumsp.ATCCPRA-276.

Materials and methods

Microorganism

Aurantiochytriumsp.ATCCPRA-276cellswereobtainedfrom theAmericanTypeCultureCollection(Manassas,VA,USA).

Preparingtheinoculum

Aurantiochytriumsp.ATCCPRA-276cellsgrownonpotatodex- troseagarandstoredat4Cweretransferredto500mLflasks containing100mLofculturemediumconsisting(g/L)ofyeast extract (1.0), peptone (15.0) and glucose (20.0) dissolved in seawater(1.5% w/v).Theglucosestock solutionwas steril- izedseparately.Thecellswereincubatedinanorbitalshaker (Ika,KS260B)rotatingat150rpmat30Cwithout lightfor 48h.11

Preparingtheculturemedia

Wecultivated the microorganismina Biostat®Bplusbiore- actor (Sartorius Stedim Biotech., Germany) containing a

5L borosilicate glass vessel and equipped with pressure flow meters and gas and liquid-flow controllers. We con- ducted batch and fed-batch experiments. For the batch systemexperimentsweusedamediumconsistingofKH2PO4

(0.3g/L),MgSO4·7H2O(5.0g/L),NaCl(10.0g/L),NaHCO3(0.1g/L), CaCl2·2H2O(0.3g/L),KCl(0.28g/L),glucose(30.0g/L)anddif- ferent total nitrogen (TN) concentrations: 3.0g/L (1.36g/L (NH4)2SO4,13.63g/Lyeastextractand13.63g/Lmonosodium glutamate), 0.44g/L (0.2g/L (NH4)2SO4, 2.0g/L yeast extract and 2.0g/Lmonosodiumglutamate),and 0.22g/L(0.1g/Lde (NH4)2SO4,1.0g/Lyeastextractand1.0g/Lmonosodiumglu- tamate). For the fed-batch system experiments, 0.14g/Lof glucoseand0.0014g/Loftotalnitrogenweresuppliedhourly (6.66×10−4g/Lhof(NH4)2SO4,6.66×10−3g/Lhofyeastextract and 6.66×103g/Lhof monosodiumglutamate). Theyeast extract,monosodiumglutamateandglucosesolutionswere separatelysterilizedbytreatmentat121Cfor15mininaCer- toClavCV-EL-18Lautoclave.Thebioreactorwassterilizedin anAJCUniclave77-127Lautoclavefor60min.Theothercom- ponentsofthemediumwerefiltered-sterilizedusing0.22␮m membranes(Millipore).

Aftersterilization,thedissolvedcomponentswereadded to the bioreactor along with the following metal solu- tions: MnCl2·4H2O (8.6mg/L), ZnCl2 (0.6mg/L), CoCl2·4H2O (0.26mg/L), CuSO4·5H2O (0.02mg/L), FeCl3·6H2O (2.9mg/L), H3BO3 (34.2mg/L), and Na2EDTA (30.0mg/L) and the fol- lowing vitamin solutions: thiamine (9.5mg/L) and calcium pantothenate(3.2mg/L),allofwhichhadbeensterilizedusing 0.22␮mmembranefilters(Millipore).Theinoculum(350mL) wasthenaddedtotheculturemedium(10%v/vrelativetothe totalvolumeoftheculturemedium).

Cultivation was performed at 23C with agitation at 100rpmand thepHofthemediaadjustedto6.0using4N NaOH.Duringthefirst120hofcultivation,theculturemedium was aeratedat2.5vvm.Afterthisperiod,airinjectionwas discontinued.

Biomassconcentration

Thebiomasswasdeterminedevery24husingthemethodof Min etal.12 Analiquot oftheculture mediumwasfiltered usingapreviouslyweighedglass-microfiberfilterpaper(GF/C:

1.2␮m, Whatman). Thebiomass retained in the filter was washedtwiceusingdistilledwateranddriedinanoven(Mem- mert)at60Cfor24h.Thebiomasscontentwascalculatedas thedifferencebetweentheinitialandfinalweights.

Glucoseconcentration

The glucosecontent ofthe culturesupernatant wasdeter- mined each 24h using the spectrophotometric method described byMiller,13 usingaUV/Visdualbeamabsorption spectrophotometer(AtiUnicamHeliosAlpha,UK).

Totalnitrogenconcentration

Thetotalnitrogen(definedandcomplexsources)contentof theculturesupernatantwasdeterminedeach24hfollowing theproceduredescribedbyFurlanetal.11

33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68

69

70 71

72

73 74 75 76 77 78 79 80

81

82 83

84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119

120

121 122 123 124 125 126 127

128

129 130 131 132

133

134 135 136

(3)

Pleasecitethisarticleinpressas:FurlanVJM,etal.ProductionofdocosahexaenoicacidbyAurantiochytriumsp.ATCCPRA-276.BrazJMicrobiol.

Fattyacidprofile

Culturesamplescollectedat24hintervalswerecentrifuged (Kubota,6800)at8742×gfor15minat4C,afterwhichthe biomass was washed with distilled water and centrifuged again. This process was repeated twice. Thebiomass was frozenat−20Canddriedfor48husingafreezedryer(Heto PowerDryLL3000).

Between 20 and 100mg ofthe lyophilized biomasswas weighedand added to50␮LoftheinternalC21:0 standard solution(10mg/mL)topermitexpressingtheresultsasgof fattyacids/goflyophilizedbiomass.

Methylestersofthefattyacidswere preparedbyesteri- ficationusingtheacidcatalysismethoddescribedbyCohen et al.14 A gas chromatography system (Varian, CP 3800) equippedwithanautosampler,injector,andflameionization detector(FID),bothofthelatterat250C,wasusedtoidentify themethylestersinthesamples.Themethylestersweresep- aratedusingaDB-WAXpolyethyleneglycolcapillarycolumn (Agilent,30mlong,0.25mminternaldiameter and0.25␮m thick)usingthefollowingprogram:heatingat180C(5min), graduallyincreasing at4C/min to 220C (and holding for 25min),andthengraduallyincreasingat20C/minto240C (andholdingfor15min).Themethyl esterswereidentified bycomparingtheirretentiontimeswiththoseofchromato- graphicstandards(Sigma–AldrichCo,St.Louis,MO,USA).

Theresultswere analyzedusingananalysisofvariance (ANOVA) and the mean values were compared using the Tukeytest,withthesignificancelevelsetat5%.Beforeper- formingtheANOVA,thenormalityofthedatadistributions

wereevaluatedusingtheKolmogorov–Smirnovtestandthe homoscedasticityofthedatawasevaluatedusingtheCochran test.15

Results

Growthkinetics,glucoseandtotalnitrogenconsumption

Fig.1showstheaveragebiomass,glucoseandtotalnitrogen concentrationsover timeinculturesofAurantiochytriumsp.

ATCCPRA-276growingunderfourdifferentconditions.

As shownin Fig. 1(A), inthe experimentsusing an ini- tial total nitrogen concentration of 3.0g/L, the maximum biomassconcentration(9.3g/L)wasreachedat120h,foran average yieldof0.07g/Lh ofbiomass. Theaverage glucose consumption rate in these experiments was 0.13g/Lh and 0.43gofbiomasswasproducedpergramofglucoseconsumed (YBiomass/Glucose).Theaveragetotalnitrogenconsumptionrate was0.0010g/Lh,resultinginasubstratetobiomassconversion factor(YBiomass/nitrogen)of65.8.

In the experiments using an initialnitrogen concentra- tion of0.44g/L,thehighestbiomassconcentration(17.0g/L) was obtained at 144h, foran average yield of 0.11g/Lh of biomass (Fig. 1(B)). The average glucose consumption rate was0.15g/Lh, resultinginaglucosetobiomassconversion factor (YBiomass/glucose) of 0.65. The average total nitrogen consumption rate was 0.0018g/Lh. Each gram of nitrogen that was consumed was converted into 50.7g of biomass (YBiomass/Nitrogen).

A

0 24 48 72 96 120 144 168 192 Culture time (h)

1 2 3 4 5 6 7 8 9 10

Biomass (g/L)

0 5 10 15 20 25 30

Glucose (g/L)

2.8 2.82 2.84 2.86 2.88 2.90 2.92 2.94 2.96 2.98 3.0

Total nitrogen (g/L)

B

0 24 48 72 96 120 144 168 192 Culture time (h)

2 4 6 8 10 12 14 16 18

Biomass (g/L)

0 5 10 15 20 25 30 35

Glucose (g/L)

0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45

Total nitrogen (g/L)

C

0 24 48 72 96 120 144 168 192 Culture time (h)

2 4 6 8 10 12 14 16 18 20 22 24 26

Biomass (g/L)

0 5 10 15 20 25 30

Glucose (g/L)

0,0 0.05 0.10 0.15 0.20 0.25 0.30

Total nitrogen (g/L)

D

0 24 48 72 96 120 144 168 192 Culture time (h)

2 4 6 8 10 12 14

Biomass (g/L)

0.0 0.5 1.0 1.5 2.0 2.5 3.0

Glucose (g/L)

0.0 0.05 0.10 0.15

Nitrogen total (g/L)

Biomass (g/L) Glucose (g/L) Total nitrogen (g/L)

Fig.1–Concentrationsofbiomass,glucoseandtotalnitrogenovertimeintheculturemediaofAurantiochytriumsp.ATCC PRA-276.Thegraphsshowthedataobtainedusingdifferenttreatments,asfollows:abatchsystemwithan(A)initial nitrogenconcentrationof3.0g/L,(B)initialnitrogenconcentrationof0.44g/Lor(C)initialnitrogenconcentrationof0.22g/L or(D)afed-batchsystemwith0.14g/Lofglucoseand0.0014g/Lofnitrogensuppliedhourly.

137

138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165

166 167 168

169

170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189

(4)

Pleasecitethisarticleinpressas:FurlanVJM,etal.ProductionofdocosahexaenoicacidbyAurantiochytriumsp.ATCCPRA-276.BrazJMicrobiol.

25

20

15

10

Biomass (g/L)

PUFAs (mg/g) PUFAs (g/L)

5

0

0 24 48 72

Culture time (h)

96 120 144 168

0 50 100 150 200

4.0

3.0

2.0

1.0

0.0

PUFAs (mg/g):

3.0 (g/L) TN 0.44 (g/L) TN 0.22 (g/L) TN Fed-batch

Biomass (g/L):

3.0 (g/L) TN 0.44 (g/L) TN 0.22 (g/L) TN Fed-batch

PUFAs (g/L):

3.0 (g/L) TN 0.44 (g/L) TN 0.22 (g/L) TN Fed-batch

Fig.2–PUFAsconcentrationsinthebiomassofAurantiochytriumsp.ATCCPRA-276cultivatedunderdifferentconditions.

PUFAs,polyunsaturatedfattyacids;TN,totalnitrogen.

Intheexperimentsusinganinitialnitrogenconcentration of0.22g/L,thehighestbiomassconcentration(23.9g/L)was observedat96h(Fig.1(C)),foramaximumyieldof0.23g/Lhof biomass.Intheseexperiments,theaverageglucoseconsump- tionratewas0.17g/Lhandtheglucosetobiomassconversion factor (YBiomass/Glucose) was1.28. Theaverage nitrogencon- sumptionratewas0.0022g/Lh,resultinginaYBiomass/Nitrogen

conversionfactorof104.7,meaningthat 104.7gofbiomass wasproducedpergramofnitrogenconsumed.

When the fed-batch cultivation process was used, the highestbiomassconcentration(13.2g/L)wasreachedat120h (Fig.1(D)),foramaximumyieldof0.10g/Lhofbiomass.The average glucose consumption rate was 0.13g/Lh, resulting inaglucosetobiomassconversionfactor(YBiomass/Glucose)of 0.64.Usingthis cultivationprocess,theaveragetotalnitro- genconsumptionratewas0.0016g/LhandtheYBiomass/Nitrogen

conversionfactorwas49.15,meaningthat49.15gofbiomass wasproducedpergramofnitrogenconsumed.

Fattyacidprofile

Fig.2showstheaveragePUFAsconcentrationsinthebiomass thatwerereachedthroughoutAurantiochytriumsp.ATCCPRA- 276cultivationinthedifferentexperiments.

EvaluatingthePUFAsconcentrationsinthebiomass(g/L) showed that there were significant differences among the valuesatdifferenttimesthroughoutcultivationinallofthe experiments.ThehighestPUFAsconcentration(3.6g/L)was

observedat96hofcultivationintheexperimentsusingan initialnitrogen concentrationof 0.22g/L. Thesecond high- est PUFAs concentration (2.85g/L) was obtained at 168h of cultivation in the experiments using an initial nitro- gen concentrationof 0.44g/L. Inthe fed-batch culture, the maximal PUFAs concentration of 1.89g/L was reached at 144h of cultivation. In the experiments using an initial nitrogen concentration of 3g/L, the maximal PUFAs con- centration of 0.84g/L was reached at 120h of cultivation (Fig.2).

Fig.3showsthefattyacidprofileatthetimepointwhenthe highestPUFAsyieldwasobtainedineachexperiment(g/L).

Intheexperimentsusinganinitialnitrogenconcentration of3.0g/L,9%(w/w)ofthebiomasswascomposedofPUFAsat 120hofcultivation,ofwhich20%wasDPA␻6(Fig.3),which represented1.8%ofthebiomass(0.17g/L).AsshowninFig.3, DHAaccountedfor61.3%ofthePUFAspresent,i.e.,5.5%ofthe biomass(0.51g/L).

Using an initial nitrogen concentration of 0.44g/L, 18%

(w/w)ofthebiomasswascomposedofPUFAsat168hofcul- tivation,ofwhich22%wasDPA␻6,i.e.,3.9%ofthebiomass (0.63g/L). We alsoobserved that DHA accounted for 69.2%

ofthePUFAs,whichwas12.5%ofthetotalbiomass(1.97g/L) (Fig.3).

Intheexperimentsusinganinitialnitrogenconcentration of0.22g/L,15%(w/w)ofthebiomasswascomposedofPUFAsat 96hofcultivation,ofwhich22.3%wasDPA␻6(Fig.3),account- ingfor3.34%ofthetotalbiomass(0.80g/L).Wealsoobserved

190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207

208

209 210 211 212 213 214 215

216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243

(5)

Pleasecitethisarticleinpressas:FurlanVJM,etal.ProductionofdocosahexaenoicacidbyAurantiochytriumsp.ATCCPRA-276.BrazJMicrobiol.

C14:0 C15:0 C16:0 C16:1ω9 C18:1ω9 C16:2ω4 C20:4ω6 C20:5ω3 C22:5ω6 (DPA) C22:5ω3

C22:6ω3 (DHA) Other fatty acids 3.0 (g/L)

0.44 (g/L)

0.22 (g/L)

Fed-batch

0 10 20 30

Total fatty acids, %

40 50 60 70 80 90

Fig.3–Fattyacidprofilesofthebiomassof

Aurantiochytriumsp.ATCCPRA-276whenbatch-cultured for120husinganinitialnitrogenconcentrationof3.0g/L totalnitrogen,at168hwhenbatch-culturedusinganinitial nitrogenconcentrationof0.44g/L,at96hwhen

batch-culturedusinganinitialnitrogenconcentrationof 0.22g/L,andat144hwhenculturedusingthefed-batch process.

thatDHAcomprised70.5%ofthePUFAs(Fig.3),i.e.,10.62%of thebiomass(2.54g/L).

After144hofcultivationusingthefed-batchsystem,14.9%

(w/w)ofthebiomasswascomposedofPUFAs,ofwhich23.1%

wasDPA␻6(Fig.3),i.e.,3.43%ofthetotalbiomass(0.44g/L).

Inaddition,DHAaccountedfor70.5%ofthePUFAs(Fig.3),i.e., 10.5%ofthetotalbiomass(1.33g/L).

Discussion

Intheexperimentsusinganinitialnitrogenconcentrationof 3g/L,thecellsconsumedtheleastamountofTN(0.0010g/Lh), resultinginthelowestcellyield(0.07g/Lh).Thisresultcould beduetothelowC/N substrateratiointheculture(4). An excess of nitrogen may have inhibited the growth of the evaluatedstrain. Chenet al.16 conductedastudy inwhich theyoptimizedthenitrogensourcesforAurantiochytriumsp.

BR-MP4-A1andobtainedamaximumbiomassconcentration (9.27g/L)bysupplying2.4g/LofTN(asmonosodium gluta- mate,yeastextract,and tryptone),whichresultedinaC/N ratio (5). In the experiments in which we used an initial nitrogenconcentrationof3g/L,asimilarmaximumbiomass concentrationof9.3g/Lwasreached(Fig.1(A)).

Using an initial TN concentration of 0.44g/L to culti- vate Aurantiochytrium sp.BR-MP4-A1, Li et al.17 obtained a maximum biomass concentration of 14.5g/L, whereas we observeda maximum biomass concentrationof 17.0g/L in culturesofAurantiochytriumsp.ATCCPRA-276(Fig.1(B)).This

differenceisduetothesubstratetobiomassconversionrate (YBiomass/Glucose)being0.53inthepreviousstudy,whereasin thisstudy,eachgramofglucoseconsumedwasconcertedto 0.65g/Lofbiomass.Thedifferenceintheconversionratecan beattributedtotheuseofdifferentspeciesinthestudies.

Cultivation using aninitial TNconcentration of0.22g/L (Fig. 1(C)) resulted in higher substrate consumption rates (0.17g/Lhglucoseand0.0022g/LhTN)andhighercellbiomass productivity(0.23g/Lh)comparedwiththoseobtainedusing the other TN concentrations tested in this study. In addi- tion, the glucose to biomass conversion factor (1.28) was higher undertheseconditionsthan underthe other tested conditions,whichalsoresultedalsoinahighercellconcentra- tion(23.9g/L).GanuzaandIzquierdo18usedSchizochytriumsp.

G13/2Stostudytheeffectofsubstratelevelsonlipidaccumu- lation.Theseauthorsfoundthatusinginitialconcentrations of0.30g/LofTNand40g/Lofglucoseresultedinabiomass yieldof15.7g/L.

Intheexperimentsusingfed-batchsystem(Fig.1(D)),the concentration of TN decreased over time because its con- sumptionratewashigher(0.0016g/LhofTN)thanitssupply rate(0.0014g/LhofTN).Theconcentrationofglucoseinthe culturemediumdecreaseduntil144hofcultivationandsub- sequentlyincreased.Thisphenomenoncanbeexplainedby theglucosesupplybeinggreaterafter144hthanthatrequired forcelldevelopmentandmaintenance.

Thefattyacidprofilesobservedinourexperiments(Fig.3) aresimilartothosepreviouslyobtainedbyZhuetal.19 and Furlan et al.20 using Schizochytrium limacinum OUC88 and Thraustochytrium sp. ATCC 26185, respectively. Zhu et al.19 foundC14:0(3.8–9.6%),C15:0 (2.1–10.1%),C16:0 (32.6–43.3%), DPA ␻6 (7.1–8.2%)and DHA (29.8–36.5%) as the mainfatty acids. Furlan et al.20 found C14:0 (1.5–9%), C15:0 (21–35%), C16:0 (5–33%), DPA ␻6 (7–9%) and DHA (20–31.5%) as the main fatty acids. These results are similar to our results:

C14:0(1.8–16%),C15:0(5–16%),C16:0(9–32.5%)andthepolyun- saturated, including DPA ␻6 (6.5–14%) and DHA (20–43%).

Therefore,thefattyacidsproducedbymembersoftheThraus- tochytriidaefamilyarelikelytobemainlyC14:0,C15:0,C16:0, DPA␻6andDHA.

Lietal.17studiedthecompositionoftheAurantiochytrium sp.BR-MP4-A1biomassandconcludedthatDPA␻6andDHA comprised6.6%and28.9%,respectively,ofthetotalfattyacids.

TheseauthorsalsoobservedthattheDPA␻6(18%)andDHA (78%)levelswerehigherthanthoseoftheotherPUFAsthat werequantitated,similartotheresultsobtainedinthisstudy (Fig.3).

WealsoobservedareductioninPUFAsproductionrela- tivetothatofthetotalfattyacidswhentheTNconcentration decreased.Incontrast,C16:1␻9andC18:1␻9productionwas increasedbecausethesefattyacidsaretheprecursorsusedfor PUFAssynthesis.Therefore,thesmallerthefractionsofC16:1

␻9andC18:1␻9,thehigherthefractionofPUFAs(Fig.3).

AmongthemajorfattyacidsthatarePUFAs,thecontent ofDPA␻6(20–23.1%)variedlittle,whereasthecontentofDHA (61.3–70.5%)variedgreatly. Highconcentrationsofavailable totalnitrogenintheculturemediumfacilitatethesynthesis ofother fattyacids inadditiontoDHA andDPA ␻6,which formasignificantfractionofthePUFAspresent.Forexample, C16:2␻4,C20:5␻3andC22:5␻3comprised5.19%,4.84%and

244 245 246 247 248 249 250

251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268

269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328

(6)

Pleasecitethisarticleinpressas:FurlanVJM,etal.ProductionofdocosahexaenoicacidbyAurantiochytriumsp.ATCCPRA-276.BrazJMicrobiol.

Table1–TotalfattyacidcontentoftheAurantiochytriumsp.ATCCPRA-276biomasswiththehighestPUFAs concentrationundereachexperimentalcondition.

Totalnitrogen 3.0g/L 0.44g/L 0.22g/L Fed-batchb

C/N 4 27 54 100

Culturetime(h) Totalfattyacids(mg/g)a

120 129.15±0.15

168 448.47±0.05

96 455.62±0.09

144 526.20±0.20

a Meanvalues±standarddeviation.

b 0.14g/Lofglucoseand0.0014g/Loftotalnitrogensuppliedeachhour.

2.06%,respectively,ofthefattyacidsobservedinthebiomass obtainedinculturesgrownusinganinitialnitrogenconcentra- tionof3g/LTNandC16:2␻comprised1.95%ofthefattyacids observedinculturesgrownusinganinitialnitrogenconcen- trationof0.44g/L(Fig.3).

The main commercial sources of PUFAs are species of fatty fish,suchasherring,mackerel, salmonand sardines.

TheAurantiochytriumstrainusedinthis studyaccumulated higherconcentrationsofPUFAs(28–70%)thanthosereported in sardineoil (31.1%) by Morais.21 The DHA concentration (20–43%)producedbythisoleaginousmicroorganismwas2- to4-fold higherthan that foundinthe sardineoil(11%).21 CultivatedAurantiochytriumsp.ATCCPRA-276isapromising alternativesourceofoilrichinPUFAs.Usingfishforthelarge- scaleproductionofsuchoilislimitedbythechangesinthe lipidcompositionsandcontentsandthefattyacidprofilesof fish,whichareaffectedbytheseasonsandtheirspecies,sex, size,reproductivestatus,catchlocation,dietandnutritional status.22Moreover,fishoilexhibitsagreatdiversityoffatty acidswithdifferentchainlengthsanddegreesofunsatura- tionandthus,requiresexpensiveextractionandpurification processes.8

Cultivatingan oleaginous microorganism in the labora- toryundercontrolledenvironmentalconditionsreducesthe risk ofcontamination and can increase fatty acid produc- tionatalowcost. Inthisstudy,weobservedthatthetotal fattyacidcontentofthebiomass(%,w/w)increasedasthe TNconcentrationwasdecreased.Thisphenomenonoccurred becauselipids generallyaccumulateinoleaginousmicroor- ganismswhenthemediumcontainsanexcessofthecarbon sourceandalimitedamountofnitrogen(highC/Nratio).In thepresenceoflow-levelnitrogen,thesynthesisofproteins andnucleicacids islimitedbythe enhancedconversionof carbontooil.23,24 Thisprocesswasobservedinthe experi- mentsusingafed-batchsystem,inwhichC/Nratiowashigh, eventuallyleadingtotheaccumulationofahighleveloftotal fattyacids(526.20mg/g)inthebiomass(Table1).However,fed- batchculturesexhibitedlowerPUFAsproduction(1.89g/L)and consequentlylowerDPA␻6(0.44g/L)andDHA(1.33g/L)pro- ductionthanthoseofthebatchculturesbecausetheyieldsof thesefattyacidsaredependentontheaccumulationofPUFAs inthetotallipidsaswellasontheaccumulationofoilsinthe biomass.Additionally,thefattyacidyieldwasalsorelatedto thecellconcentrationatagiventime.

For example, in the experiments using an initial TN concentrationof0.22g/L,therewasahighersubstratecon- sumptionrate,increasedbiomassproductivityandahigher

C/N ratio (54), which resulted in higher yields of DPA ␻6 (0.80g/L)andDHA(2.54g/L).

Ganuza and Izquierdo18 observedgreater DPA␻6(3.85%

w/w) and DHA(15.4% w/w)accumulation bySchizochytrium sp. G13/2S cells grown using initial nitrogen and glucose concentrationsof0.30g/Land40g/L,respectively,than was observedinourexperiments(3.34%w/wDPA␻6,and10.62%

w/wDHA)usinganinitialnitrogenconcentrationof0.22g/L.

However, their DPA ␻6 (0.6g/L) and DHA (2.42g/L) produc- tionrateswerelowerthanours,whichcanattributedtothe highermaximumbiomassconcentration(23.9g/L)obtainedin ourexperimentscomparedwiththatreportedbyGanuzaand Izquierdo18(15.7g/L).

UsingasimilarculturemediumwithaninitialTNconcen- trationof0.44g/LtogrowSchizochytriumsp.ATCC20889,Jiang etal.8observedthatDHAaccountedfor26%ofthetotalfatty acids after120hofcultivation,whichisverysimilartothe 25.5%DHAlevelinthetotalfattyacidsobservedinourstudy.

Inourstudy,theaccumulatedbiomassconsistedofapproxi- mately12.5%(w/w)DHA,whichishigherthanthevalue(8.8%) reportedbyJiangetal.8

Burjaetal.24 evaluatedtheeffectofdifferentconcentra- tionsofnitrogenonfattyacidproductionbyThraustochytrium sp. ONC-T18. Using aninitial TNconcentrationof 0.75g/L, these authors obtained 0.04g/L of DHA, corresponding to 0.53%(w/w)ofthebiomass,andreportedalowbiomasscon- centration (7.5g/L) and alow levelofDHA inthe biomass.

Burjaetal.24alsoobservedthatusingahigherinitialTNcon- centration(1.23g/L),1.56g/LofDHAwasobtained,whichis approximately3timestheDHAconcentration(0.51g/LDHA) observedinourexperimentsusinganinitialTNconcentration of3.0g/L.

Conclusions

Herein,wepresentedthe resultsofastudy oftheeffectof differentconcentrationsofcarbonandnitrogenonPUFAspro- ductionbyAurantiochytriumsp.ThePUFAsproductionofthis microorganism dependson the accumulationoftotal fatty acidsandontheconcentrationofthebiomass.Therefore,the culturemediumshouldfacilitatethegrowthofthismicroor- ganismandprovideanadequatenitrogensupplywithrespect totheC/Nratiobecauseitaccumulates oilswhenthetotal nitrogensupplyislimited.

ThemainpolyunsaturatedfattyacidsfoundintheAuran- tiochytriumsp.ATCCPRA-276biomasswereDPA␻6(20–23.1%)

329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375

376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407

408 409 410 411 412 413 414 415 416 417 418

(7)

Pleasecitethisarticleinpressas:FurlanVJM,etal.ProductionofdocosahexaenoicacidbyAurantiochytriumsp.ATCCPRA-276.BrazJMicrobiol.

and DHA(61.3–70.5%). Themaximum cellconcentration of 23.9g/L (with45.5% of its weight consisting offatty acids) wasobservedat96hofcultivation usinginitialconcentra- tionsof30g/Lofglucoseand0.22g/Loftotalnitrogen.Under these conditions, the highest PUFAs concentration (3.6g/L) wasreached,withtheDHAandDPA␻6concentrationsbeing 2.54and0.80g/L,respectively.

TheresultsofthisstudyshowedthatthegrowthofAuran- tiochytriumsp.ATCCPRA-276anditsaccumulationofPUFAs, particularly DHA, are dependent on the concentrations of thecarbonandnitrogensubstrates.Theresultsalsodemon- stratedthatthecultivationperiodisanimportantvariablefor PUFAsproductionbyAurantiochytriumsp.ATCCPRA-276.

Aurantiochytriumsp.ATCCPRA-276iscapableofproducing highlevelsofPUFAs.Therefore,developingnewtechniques forcultivatingthismicroorganismcouldreducethecostand increasetheproductionofoilsforuseinfoodandmedicines.

Conflicts of interest

Theauthorsdeclarenoconflictsofinterest.

Acknowledgements

This study was supported by the Coordenac¸ão de Aperfeic¸oamento de Pessoal de Nível Superior of Brazil (CAPES)anddevelopedatthePortugueseInstituteofSeaand Atmosphere(IPMA)inLisbon,PT,withtheaidofascholarship grant awarded to the first author by the Doctoral in the CountrywithInternshipAbroadProgramme(PDEE)(grantno.

6906/10-9).TheauthorsalsothanktheALGAENEProjectand DepsiextractaBiologicalTechnologies,Lda.fortheirsupport.

references

1.SijtsmaL,SwaafDeME.Biotechnologicalproductionand applicationsofthe␻-3polyunsaturatedfattyacid docosahexaenoicacid.ApplMicrobiolBiotechnol.

2004;64:146–153.

2.Shwu-TzyW,Shih-TsungY,Liang-PingL.Effectofculture conditionsondocosahexaenoicacidproductionby Schizochytriumsp.S31.ProcBiochem.2005;40:3103–3108.

3.SimopoulosAP,KiferRR,MartinRE,BarlawSM.Health effectsofomega3polyunsaturatedfattyacidsinseafoods.

WorldRevNutrDiet.1991;66:1–592.

4.CorsinoviL,BiasiF,PoliG,LeonarduzziG,IsaiaG.Dietary lipidsandtheiroxidizedproductsinAlzheimer’sdisease.

MolNutrFoodRes.2011;55:S161–S172.

5.NaurothJM,LiuYC,ElswykMV,etal.Docosahexaenoicacid (DHA)anddocosapentaenoicacid(DPAn-6)algaloilsreduce inflammatorymediatorsinhumanperipheralmononuclear cellsinvitroandpawedemainvivo.Lipids.2010;45:375–384.

6.ManikanV,KalilMS,HamidAA.Responsesurface optimizationofculturemediumforenhanced docosahexaenoicacidproductionbyaMalaysian thraustochytrid.SciRep.2015;5:1–8.

7.QuL,RenL-J,LiJ,etal.Biomasscomposition,lipid characterization,andmetabolicprofileanalysisofthe fed-batchfermentationprocessoftwodifferent

docosahexanoicacidproducingSchizochytriumsp.strains.

ApplBiochemBiotechnol.2013;171:1865–1876.

8.JiangY,FanKW,WongRT,ChenF.Fattyacidcomposition andsqualenecontentofthemarinemicroalgaSchizochytrium mangrovei.JAgricFoodChem.2004;52:1196–1200.

9.RaghukumarS.Thraustochytridmarineprotists:production ofPUFAsandotheremergingtechnologies.MarBiotechnol.

2008;10:631–640.

10.KendrickA,RatledgeC.Lipidsofselectedmoldsgrownfor productionofn-3andn-6polyunsaturatedfattyacids.Lipids.

1992;27:15–20.

11.FurlanVJM,PauloMC,BatistaI,BandarraNM,SantoMLE, PrenticeC.Effectoftheconcentrationofglucoseinthe docosahexaenoicacid(DHA)productionbyThraustochytrium sp.ATCC26185.AdvJFoodSciTechnol.2012;4:257–264.

12.MinKH,LeeHH,AnbuP,ChaulagainBP,HurBK.Theeffects ofcultureconditionsonthegrowthpropertyand

docosahexaenoicacidproductionfrom

ThraustochytriumaureumATCC34304.KoreanJChemEng.

2012;29:1211–1215.

13.MillerGL.Useofdinitrosalicylicacidreagentfor

determinationofreducingsugar.AnalChem.1959;31:426–428.

14.CohenZ,VonshakA,RichmondA.Effectofenvironmental conditionsonfattyacidcompositionoftheredalgae Porphyridiumcruentum:correlationtogrowthrate.JPhycology.

1988;24:328–332.

15.TriolaMF.Introduc¸ãoàestatística.10thed.RiodeJaneiro:Ltc;

2008.

16.ChenGQ,FanKW,LuFP.Optimizationofnitrogensourcefor enhancedproductionofsqualenefromThraustochytrid Aurantiochytriumsp.NewBiotechnol.2010;27:382–389.

17.LiQ,ChenGQ,FanKW,LuFP,AkiT,JiangY.Screeningand characterizationofsqualene-producingThraustochytrids fromHongKongmangroves.JAgricFoodChem.

2009;57:4267–4272.

18.GanuzaE,IzquierdoMS.LipidaccumulationinSchizochytrium G13/2Sproducedincontinuousculture.ApplMicrobiol Biotechnol.2007;76:985–990.

19.ZhuL,ZhangX,JiL,SongX,KuangC.Changesoflipid contentandfattyacidcompositionofSchizochytrium limacinuminresponsetodifferenttemperaturesand salinities.ProcBiochem.2007;42:210–214.

20.FurlanVJM,PauloMC,MausVW,FerreiraJ,BatistaI, BandarraNM.Productionofdocosahexaenoicacid(DHA) fromThraustochytriumsp.ATCC26185usingdifferents nitrogenconcentrations.BCentPesquiProcA.2014;32:

1–10.

21.MoraisMM.Estudodoprocessoderefinodoóleodepescado.

Brasil:RioGrande;2000:100[MScDissertation.Engenhariae CiênciadeAlimentos,FURG].

22.Gonc¸alvesAA.Tecnologiadopescado:ciência,tecnologia, inovac¸ãoelegislac¸ão.SãoPaulo:Atheneu;2011.

23.RatledgeC,WynnJP.Thebiochemistryandmolecular biologyoflipidaccumulationinoleaginousmicroorganisms.

AdvApplMicrobiol.2002;51:1–51.

24.BurjaAM,RadianingtyasH,WindustA,BarrowCJ.Isolation andcharacterizationofpolyunsaturatedfattyacidproducing Thraustochytriumspecies:screeningofstrainsand

optimizationofomega-3production.ApplMicrobiolBiotechnol.

2006;72:1161–1169.

419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435

436

437 438 439 440 441 442 443 444 445

446

447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466

467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529

Referenzen

ÄHNLICHE DOKUMENTE

We obtain externality adjusted TFPG estimates by subtracting from output growth, the contribution of the un- paid part of energy which is associated with CO 2 emissions created

Fatty acid composition after expression of different DGAT sequences in Arabidopsis wild type and tag1-1 mutant seeds ...108  Figure 30.. (n-3)-PUFA amounts in Arabidopsis seeds

Anyhow, those technologies are into a development phase, and a transition phase will be required to transform a Hydrogen production market based on fossils with CO 2 emissions to

Experimental determination of phytoplankton growth (net primary production) and respiration parameters was performed through long-term (24 hours) light-dark kinetics of

Munich Personal RePEc Archive. The production

Total production is estimated as a function of the previous year output, a time trend and lagged price ratio.. Ideally one would like to include longer lags to allow

Werden die Ölsaaten zu diesem Preis eingekauft, verteuert sich die Kraftfuttermischung nicht. • Zu

Using a dataset on manufacturing, this paper presents empirical evidence support- ing both effects: better contractual enforcement raises relatively more the labor share of sectors