• Keine Ergebnisse gefunden

a new insight into non-extractable residue formation

N/A
N/A
Protected

Academic year: 2022

Aktie "a new insight into non-extractable residue formation"

Copied!
22
0
0

Wird geladen.... (Jetzt Volltext ansehen)

Volltext

(1)

K. M. Nowak

1,2

, C. Girardi

2

, A. Miltner

2

, A. Schäffer

1

, M. Kästner

2

Biotransformation of ibuprofen in soil:

a new insight into non-extractable residue formation

1 Dept. Environmental Biology and Chemodynamics, Institute for Environmental Research, RWTH Aachen University, Germany

2Dept. Environmental Biotechnology, UFZ - Helmholtz Centre for Environmental Research, Leipzig, Germany

(2)

INTRODUCTION EXPERIMENTAL RESULTS CONCLUSIONS PLANS…

INTRODUCTION

MASS BALANCE OF A XENOBIOTIC IN SOIL

Microbial biomass

Incorporation

CO

2

Xenobiotic

compound

Xenobiotic metabolites

SOM NER

NER structure??

Risk??

Simple systems!

Soils: mostly quantification!

1. Sequestered NER

Clay particle xenobiotic

xenobiotic binding

2. Chemically bound

(3)

INTRODUCTION EXPERIMENTAL RESULTS CONCLUSIONS PLANS…

INTRODUCTION

BioNER FROM A XENOBIOTIC IN SOIL

Incorporation

CO

2

Microbial biomass Xenobiotic

compound

Xenobiotic metabolites

SOM NER

BioNER pathways?

Biomass residues

Fixation

Starvation

SOM

NER

(4)

Page 4

INTRODUCTION RESULTS CONCLUSIONS PLANS…

INTRODUCTION

IBUPROFEN (IBU)

EXPERIMENTAL

 Anti-inflammatory and analgesic drug

 Most commonly consumed drug

 Detected in effluents and sewage sludge

 Biodegraded in soil

 High NER content NER structure?? Risk??

13

C

6

-Ibuprofen

M

w

- 206.28 g/mol

H

2

O solubility - 21 mg/L

log K

ow

- 3.5

(5)

INTRODUCTION RESULTS CONCLUSIONS PLANS…

INTRODUCTION

13 C 6 -IBU EXPERIMENT

EXPERIMENTAL

• Living biomass:

(PLFA and bioAA)

• Total in soil:

(non-living + living biomass:

tFA and tAA)

BioNER analyses

Extractable compound residues (parent compound +

primary metabolites)

Non-extractable residues (NER) (EA-C-IRMS)

GC/MS;

GC-C-IRMS

13

C

6

-IBU RESIDUES

• Darkness, 20ºC; 60% of WHC

13C6-IBU: 20 mg/kg

• 2, 4, 14, 28, 59 and 90 days

• 21% clay, 68% silt, 11% sand

• Abiotic, 13C-abundance controls

Labelled IBU

H2O Safety NaOH traps

trap pump

CO

2

(TIC;

GC-C-IRMS)

(6)

Page 6

INTRODUCTION CONCLUSIONS PLANS…

INTRODUCTION

C-MASS BALANCE ( C 6 -IBU)

EXPERIMENTAL RESULTS

incubation time (days)

0 20 40 60 80

% of applied 13 C (from ring-labeled ibuprofen) 0 20 40 60 80 100

mineralization extractable

ibuprofen and metabolites

non-extractable residues

extractable,

unknown composition

BIOTIC ABIOTIC

incubation time (days)

0 20 40 60 80

% of applied 13 C 6 ibuprofen 0 20 40 60 80 100

proteins mineralisation

extractable ibuprofen and metabolites

NER extractable,

unknown composition

• Mineralisation: high

• NER: high → bioNER?

13

C-IBU + metabolites:↓

• Mineralisation: low

• NER: low → time dependant

13

C-IBU + metabolites: high NER = microbial activity!

Nowak et al, 2013 Nowak et al, 2013

(7)

INTRODUCTION CONCLUSIONS PLANS…

INTRODUCTION

INCORPORATION OF 13 C INTO FA and AA

EXPERIMENTAL RESULTS

• PLFA: fast

• PLFA:↓

incubation time (days)

0 10 20 30 40 50 60 70 80 90

13 C in FA fraction (% of initial 13 C 6-IBU equivalents) 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

1.6 tFA

PLFA

FATTY ACIDS

Nowak et al, 2013

• bioAA: fast

• bioAA:↓

• tAA: 27%!

incubation time (days)

0 10 20 30 40 50 60 70 80 90

13 C in AA fraction (% of initial 13 C 6-IBU equivalents) 0 5 10 15 20 25 30

35 tAA

corrected biomass AA biomass AA

AMINO ACIDS

Nowak et al, 2013

(8)

• G

־

markers: initial degraders

• G

+

markers: later phase

• Starvation marker:↑over time

INTRODUCTION CONCLUSIONS PLANS…

INTRODUCTION

C INCORPORATION INTO BIOMASS

EXPERIMENTAL RESULTS

incubation time (days)

0 10 20 30 40 50 60 70 80 90

13 C-PLFA (% of initial 13 C 6-ibuprofen)

0.0 0.2 0.4 0.6 0.8 1.0

normal

methyl branched monounsaturated polyunsaturated cyclopropyl

PLFA

• Aspartate: initially → CO

2

fixation

• diverse bioAA: later phase

incubation time (days)

0 10 20 30 40 50 60 70 80 90

13 C-bioAA (% of initial 13 C 6-IBU equivalents) 0 1 2 3 4

ala gly thr val

-ala leu ile pro asp glu phe lys

bioAA

Nowak et al, 2013 Nowak et al, 2013

(9)

INTRODUCTION CONCLUSIONS PLANS…

INTRODUCTION

CALCULATION OF TOTAL BioNER

EXPERIMENTAL RESULTS

Incorporation of

13

C into the biomass of C. necator grown on

13

C

6

-2,4-D

tFA instable (Nowak et al, 2011)! THUS tAA → calculation

Conversion factor of ~ 2 for tAA (proteins) Name Incubation time (days) [% of

13

C

6

-2,4-D]

2 3 7 14

Biomass 9.2 ( ± 1.5) 10.0 ( ± 1.5) 14.5 ( ± 1.8) 17.4 ( ± 0.06) PLFA 0.5 ( ± 0.02) 0.6 ( ± 0.01) 0.8 ( ± 0.05) 0.6 ( ± 0.04) bioAA 4.7 ( ± 0.2) 6.1 ( ± 0.3) 7.3 ( ± 0.2) 8.1 ( ± 0.4)

Biomass/PLFA 18.4 17 18 29

Biomass/AA 1.9 1.6 2 2.1

13C6-2,4-D Cupriavidus necator JMP 134

GC/MS;

EA-C-IRMS GC-C-IRMS

13

C in PLFA and bioAA

• Total 13

C in biomass

Nowak et al, 2011

(10)

INTRODUCTION CONCLUSIONS PLANS…

INTRODUCTION

C-MASS BALANCE ( C 6 -IBU)

EXPERIMENTAL RESULTS

General mass balance New mass balance incl. BioNER

incubation time (days)

0 20 40 60 80

% of applied 13 C (from ring-labeled ibuprofen) 0 20 40 60 80 100

mineralization extractable

ibuprofen and metabolites

non-extractable residues

extractable,

unknown composition

incubation time (days)

0 20 40 60 80

% of applied 13 C (from ring-labeled ibuprofen) 0 20 40 60 80 100

proteins biogenic residues

mineralization extractable

ibuprofen and metabolites

non-extractable residues

extractable, unknown composition

Nearly all NER biogenic!

• extractable (unknown composition): bioNER?

Nowak et al, 2013 Nowak et al, 2013

(11)

INTRODUCTION EXPERIMENTAL RESULTS CONCLUSIONS PLANS…

INTRODUCTION

BioNER FROM CO 2 FIXATION

Incorporation

CO

2

Microbial biomass Xenobiotic

compound

Xenobiotic metabolites

SOM NER

BioNER pathways?

Biomass residues

Fixation

Starvation

SOM

NER

(12)

INTRODUCTION RESULTS CONCLUSIONS PLANS…

INTRODUCTION

CO 2 FIXATION EXPERIMENT

EXPERIMENTAL

• Living biomass:

(PLFA)

BIONER analyses

GC/MS;

GC-C-IRMS

13

C-LABEL ANALYSES

CO2 CO2

CO2

HCL

Na2CO3 Unlabelled 2,4-D

(20 mg/kg) H2O

Labelled 2,4-D Safety NaOH traps trap

pump

13

CO

2

experiment

13

C

6

-2,4-D experiment

INCUBATION

(13)

13

CO

2

fixation (day 16)

• PLFA: decline

INTRODUCTION CONCLUSIONS PLANS…

INTRODUCTION

INCORPORATION OF 13 C INTO PLFA

EXPERIMENTAL RESULTS

incubation time (days)

0 10 20 30 40 50 60

13 C-label distribution in soil (%)

0.0 0.1 0.2 0.3 0.4 0.5 0.6

13CO2 fixation

13C6-2,4-D 13

C-incorporation into PLFA

(

13

C

6

-2,4-D and

13

CO

2

experiments)

incubation time (days)

0 10 20 30 40 50 60

% of applied 13 C (from ring-labeled 2,4-D) 0 20 40 60 80 100

mineralization

extractable, 2,4-D and meta- bolites

non-extractable residues extractable,

unknown composition

13

C-mass balance in

13

C

6

-2,4-D experiment

Nowak et al, 2011

Nowak et al, 2011

(14)

INTRODUCTION CONCLUSIONS PLANS…

INTRODUCTION

C IN PLFA CLASSES

EXPERIMENTAL RESULTS

• G

-

markers: initially

incubation time (days)

0 10 20 30 40 50 60

13 C-PLFA (% of initial 13 CO2)

0.0 0.1 0.2 0.3

0.4 normal

methyl branched monounsaturated polyunsaturated cyclopropyl

incubation time (days)

0 10 20 30 40 50 60

13 C-PLFA (% of initial 13 C 6-2,4-D)

0.0 0.1 0.2 0.3 0.4 0.5 0.6

normal

methyl branched monounsaturated polyunsaturated cyclopropyl 13

CO

2

experiment

13

C

6

-2,4-D experiment

• G

+

markers: initially

Nowak et al, 2011 Nowak et al, 2011

(15)

INTRODUCTION PLANS…

INTRODUCTION

FINAL REMARKS

EXPERIMENTAL RESULTS CONCLUSIONS

 NER from

13

C

6

-IBU biogenic = no risk!

 NER in abiotic soil low

 tAA high

 bioNER from xenobiotic and CO

2

HOWEVER:

 no biodegradation → xenobiotic NER

 bioNER → biodegradation (↑CO

2

) → SOM formation

(16)

INTRODUCTION PLANS…

INTRODUCTION

SOM FORMATION

EXPERIMENTAL RESULTS CONCLUSIONS

Decay

Cell wall fragments

Cell wall fragments formation cycle

Growth

Plant

material Patchy fragments on

mineral surfaces

SOM

Starvation

Xenobiotic compound

Miltner et al, 2012

(17)

INTRODUCTION PLANS…

INTRODUCTION

FINAL REMARKS

EXPERIMENTAL RESULTS CONCLUSIONS

AND:

 Biotic vs abiotic NER formations (3 types of NER)!

 NER from

13

C

6

-IBU biogenic = no risk!

 NER in abiotic soil low

 tAA high

 bioNER from xenobiotic and CO

2

HOWEVER:

 no biodegradation → xenobiotic NER

 bioNER → biodegradation (↑CO

2

) → SOM formation

(18)

INTRODUCTION PLANS…

INTRODUCTION

NER CLASSIFICATION

EXPERIMENTAL RESULTS CONCLUSIONS

 type I: sequestered NER:

- reversible

- remobilisation → risk for the environment

Clay particle

 type III: bioNER

- biomolecules (amino acids, fatty acids) → SOM - no risk

 type II: chemically bound (covalent bonding)

- irreversible

- low risk for environment

xenobiotic binding

(19)

BIOTIC AND ABIOTIC NER FORMATION

INTRODUCTION PLANS…

INTRODUCTION

ABIOTIC vs BIOTIC NER FORMATION

EXPERIMENTAL RESULTS CONCLUSIONS

ABIOTIC

Covalent binding entrapment

RISK

SOM xenobiotic NER

(type I and II) Xenobiotic

compound

Xenobiotic metabolites

Incorporation

Living biomass

Starvation

Biomass residues

Stabilisation

BIOTIC

CO

2

Fixation

=

SOM BioNER (type III)

low

high no

Kästner et al, in press

(20)

 BioNER from other contaminants

(different structure, slower degradation)

 AA: 50%, FA: 5% of BioNER: other components?

 New risk assessment including bioNER formation

INTRODUCTION INTRODUCTION

FURTHER RESEARCH

EXPERIMENTAL RESULTS CONCLUSIONS PLANS…

(21)

THANK YOU FOR

YOUR ATTENTION!

(22)

EXTRACTION OF BIONER

• Total in soil:

(non-living + living biomass:

tFA and tAA)

FATTY ACIDS AMINO ACIDS

• Living biomass:

(PLFA)

• Living biomass:

(bioAA)

Purification: silica gel  PLFA (CH3Cl, ACN, MeOH)

• Total in soil:

(non-living + living biomass:

tFA and tAA)

Phospholipids (PLFA)

• Neutral lipids

• Glycolipids

Extraction:

PB/MeOH/CH3Cl (0.8/2/1, v:v)

Derivatization:

MeOH/TMCS; 9:1, v:v

GC/MS;

GC-C-IRMS Derivatization:

(MeOH/TMCS; 9:1, v:v )

Purification: silica gel (diethyl ether)

Biomass extraction:

chelating cation exchange resin+

sodium deoxycholate/Polyethylenglycol 600 (0.1%/2.5%)

Hydrolysis: 6M HCl, 110ºC

Purification: DOWEX 50W-X8 (oxalic acid, 0.01M HCl, H2O, 2.5M NH4OH)

Derivatization:

(Isopropanol/acetylchloride;

DCM/Trifluoroacetic acid anhydride)

Purification:

(PB:CH3Cl)

Referenzen

ÄHNLICHE DOKUMENTE

used the Polish Notation for the first pocket calculator , the HP-35 , because the company realized that the Lukasiewicz method was superior to standard algebraic ( 1 ) expressions

Hence we will work here under the following assumption: any heap is assumed to have the same probability to occur, and the new element is stochastically

Model I assumes that every heap has the same probability to occur, and that the element tobe inserted is equally likely tobe in one of the N intervals which

The incidence of dynamic recrystallization increases at increased strain rates and higher elongations ( ~10% [3, 9]. According to these values, it would be difficult for

Assuming that p is a polynomial of degree k with k simple roots and only one inflexion point between any three consecutive roots we conclude, by Theorems A and B, that the

In this way one gets an ellipsoidal density model that is very elose to an equilibrium configuration, the deviations from hydrostatic equilibrium being only of

A s magnetostrictive effects not only are very much smaller but can also be separated experimentally, it appears to be necessary to interpret the observed phenomena by inter-

The soil ability for K release and fixation ( b ) is a parameter characterizing the soil release and fixation capacity deduced from sorption–desorption experiments performed at the