• Keine Ergebnisse gefunden

Hyperons in Dense Matter

N/A
N/A
Protected

Academic year: 2021

Aktie "Hyperons in Dense Matter"

Copied!
139
0
0

Wird geladen.... (Jetzt Volltext ansehen)

Volltext

(1)

Vom Fa hberei h Physik

der Te hnis hen Universität Darmstadt

zur Erlangung des Grades

eines Doktors der Naturwissens haften

(Dr. rer. nat.)

genehmigte Dissertation von

Dipl.-Phys. Haris apo

aus Trebinje, Bosnia-Herzegovinia

Darmstadt 2009

(2)

Korreferent: Prof. Dr. R. Roth

Tag der Einrei hung: 02. 12. 2008

(3)

The hyperon-nu leon (

Y N

) low momentum ee tive intera tion (

V

lowk

) allows

for anextensivestudy of thebehavior ofhyperons indensematter,together with

an investigationof ee ts of the presen e of hyperons ondense matter. The rst

step towards this goalisthe onstru tionofthe matrix elementsfor the

hyperon-nu leonlowmomentum potential. In ontrasttothe nu leon-nu leonintera tion,

the available experimental data for the

Y N

intera tion are s ar e. As a onse-quen e, nounique

Y N

low-momentum potential

V

lowk

an be onstru ted from

the various bare potentials. Nevertheless we an still use these low-momentum

Y N

potentialstond out whatthesedieren es mean forthe properties ofdense matter.

Inordertoassessthedierentpropertiesofhyperonswithinthesepotentialswe

al ulatethehyperonsingle-parti lepotentialsintheHartree-Fo kapproximation

for all of the intera tions. Their dependen e on both momentum and density, is

studied. The single-parti le potentials are then used to determine the hemi al

potential of hyperons in neutron stars.

Fornu leoni properties,thenu leon-nu leon

V

lowk

anbeusedwiththe aveat

that the al ulation of the ground-stateenergy ofsymmetri nu learmatter does

not orre tly reprodu e the properties of matter at saturation. Even when

om-bined with the appropriate three-nu leon for es the results are still not

satisfa -tory. Additionally, with the nu leon-nu leon

V

lowk

one is unable to rea h the

densities needed for the al ulation of neutron star masses. To ir umvent this

problem we use two approa hes: in the rst one, we parametrize the entire

nu- leoni se tor. In the se ond one, we repla e only the three-body for e. The

former will enable us to study neutron star masses, and the latter for studying

the medium's response tothe external probe. In this thesis we take the external

probe tobe the neutrino.

By ombining this parametrization with the

Y N V

lowk

potential, we

al u-late the equation of state of equilibrated matter. Performing the al ulation in

the Hartree-Fo k approximation at zero temperature, the on entrations of all

parti les are al ulated. From thesewe an as ertain atwhi hdensities hyperons

appearforawiderangeofparameters. Finally,we al ulatethemassesofneutron

stars with these on entrations.

For the al ulation of the medium's response to an external probe, we

re-pla e the three-body for e with a density-dependent intera tion. This

(4)

these intera tions is a omplishedwith a ombinationof Fermi liquidtheory and

random phase approximation(RPA).The Fermi liquid theory is then used to

ob-tain the strength of the parti le-hole intera tions. The medium's response to

neutrinos is represented via hanges of the polarization fun tion in the random

phase approximation.

The properties of neutrinos in dense matter are studied in both,

Hartree-Fo k and random phase, approximation. To understand how the hanges in the

mediums response alter the behavior of neutrinos in dense matter, we al ulate

theneutrino rossse tionandtheneutrinomeanfreepath. Theneutrinosintera t

with baryons and leptonsthrough the weak intera tion, hen e we al ulatethese

forboth neutraland harged urrents. The omparisonbetween theHartree-Fo k

(5)

EineeektiveHyperon-Nukleon-(

Y N

)-We hselwirkungimBerei hkleiner Im-pulse,bekanntals

V

low-k

,ermögli hteineausgiebigeStudiedesHyperon-Verhaltens

in di hter Materie, sowie der Auswirkungen, die die Präsenz der Hyperonen auf

die Eigens haften di hter Materie hat. Dazu ist es zunä hst notwendig, die

MatrixelementedereektivenHyperon-Nukleon-We hselwirkungzukonstruieren.

Im Gegensatz zur Nukleon-Nukleon-We hselwirkung ist die

Y N

-We hselwirkung dur h die geringen experimentellen Daten kaum einges hränkt, so dass selbst

mit Hilfe des Renormierungsgruppenzugangs von

V

low-k

keine universelle

We h-selwirkung aus den vers hiedenen `na kten' an die Streudaten angepassten

Y N

-Potentialenextrahiertwerdenkann. Trotzdemlohntsi heinVerglei hderV

orher-sagen der unters hiedli hen eektiven We hselwirkungen zu den Eigens haften

di hter Materie.

UmdieEigens haften der Hyperonenfürdievers hiedenen We hselwirkungen

zu studieren, bere hnen wir die Hyperon-Einteil henpotentiale im Rahmen der

Hartree-Fo k-Näherungund untersu hen ihreImpuls- und Di hteabhängigkeiten.

Anhand der Einteil henpotentiale kann ans hlieÿend das hemis he Potentialder

Hyperonen ineinem Neutronenstern ermitteltwerden.

Da die Re hnungen stark vom Nukleonen-Sektor beeinusst werden, muss

au h für nukleonis he We hselwirkung eine angemessene Wahl getroen werden.

In diesemZusammenhang liefertdas universelleNukleon-Nukleon-

V

low-k

unglü k-li herweisekeinphysikalis hsinnvollesSättigungverhaltenfürKernmaterie. Selbst

beizusätzli her Verwendung einer Drei-Nukleon-We hselwirkungwerdendie

Sat-urationseigens haften derKernmaterieni ht völligkorrekt bes hrieben. Ein

weit-eres Problem besteht darin, dass

V

low-k

per Konstruktion ni ht bei den hohen

Di hten angewandt werdenkann, wel he zur Bere hnungder Massen von

Neutro-nensternenerforderli hsind. AlsAlternativenverwendenwir daherzweiAnsätze:

eine angepasste Parametrisierung des gesamten nukleonis hen Sektors, bzw. eine

Anpassung der Parameter der

3N

-We hselwirkung. Der erstgenannteZugang er-laubtdieUntersu hung vonNeutronenstern-Massen,währenddiezweiteMethode

zur Untersu hung der Antwort des Mediums auf externe Sonden  in unserem

FallNeutrinos verwendet werden kann.

DievollständigeParametrisierungder nukleonis hen We hselwirkung wird

zu-sammen mit den

Y N − V

low-k

zur Bere hnung der Zustandsglei hung von

Ma-terie im Glei hgewi ht verwendet. Die Re hnungen werden in der

(6)

den ans hlieÿendzur Bere hnugn der Neutronenstern-Masse eingesetzt.

Zur Untersu hung der Antwort des Mediums auf externe Sonden verwenden

wir eine

NN

-We hselwirkung zusammen mit einer angepassten di hteabhägigen Näherung für die

3N

-We hselwirkung. Als Hyperon-Nukleon-We hselwirkung kommtwiederum das

Y N − V

low-k

zum Einsatz. Auf dieserGrundlage bere hnen

wir dieIn-Medium-Eigens haften mit Hilfe einer Kombinationaus F

ermi-Liquid-Theorie und Random Phase Approximation (RPA). Die Fermi-Liquid-Theorie

liefertdieStärkeder Teil hen-Lo h-We hselwirkungen,während si hdieAntwort

des Mediums aufNeutrinosanhandvonÄnderungender Polarisationsfunktionin

der RPA bemerkbar ma ht.

Die Neutrino-Eigens haften in di hter Materie werden sowohl in der

Hartree-Fo k-Näherung als au h der RPA studiert. Um zu verstehen, wie si h

Änderun-gen des Mediums auf das Verhalten der Neutrinos auswirken, bere hnen wir

Wirkungsquers hnitte und mittlere freie Weglänge. Da Neutrinos mit Baryonen

und Leptonen s hwa h we hselwirken, betra hten wir in unseren Re hnungen

sowohl den neutralen als au h den geladenen Strom. Der Verglei h von

(7)

Contents vii Introdu tion ix 1 Hyperon-Nu leon intera tion 1 1.1 Low-momentum intera tion . . . 2 1.1.1 Constru tion of

V

lowk . . . 3 1.1.2 Bare potentials . . . 4

1.1.3 Results of the potential . . . 6

1.2 Low-energyobservables . . . 11

2 Innite nu lear matter 15 2.1 Hartree-Fo k approximation . . . 15

2.2 Single-parti lepotential . . . 17

2.2.1 Single-parti leenergy and the ee tive mass . . . 18

2.2.2 Symmetri nu lear matter . . . 20

2.3 Three-nu leon for e . . . 25

3 EOS and

β

-equilibrium 29 3.1 Equation of state . . . 30

3.1.1 Chemi al potential . . . 31

3.2 Parametri NN equationof state. . . 32

3.3

β

-equilibrium . . . 35

3.3.1 Compositionof matter . . . 36

3.3.2 Threshold densities . . . 39

3.4 Stru ture of neutron stars . . . 43

4 Landau Fermi liquid theory 47 4.1 Landau-Migdal parameters . . . 47

4.2 Density-dependent for e . . . 52

4.2.1 Equation of state . . . 53

(8)

4.3.1 Symmetri matter. . . 57

4.3.2

β

-equilibrium . . . 64

5 Neutrino intera tions 67 5.1 Weakintera tion . . . 68

5.2 Randomphase approximation . . . 72

5.2.1 Cross se tions withinthe randomphase approximation . . 73

5.3 Results . . . 74

5.3.1 The neutral urrent ross se tion . . . 74

5.3.2 The harged urrent ross se tion . . . 81

5.3.3 Mean free path . . . 83

6 Summary and Con lusion 91 A Appendix A 95 A.1 Lippmann-S hwingerequation . . . 95

A.2 Single parti lestates . . . 96

A.3 Plane waves . . . 96

A.4 Partial waves . . . 96

A.5 Change of basis (plane wave topartial wave) . . . 97

A.6 Lippmann-S hwingerequation inthe partial-wavebasis . . . 98

A.7 Numeri s . . . 99

B Appendix B 103 B.1 Hartree-Fo k ground-stateenergy . . . 103

B.1.1 Mass and kineti term . . . 104

B.1.2 Potentialterm . . . 104

C Appendix C 109 C.1 Cross se tion . . . 109

C.2 Charge urrent ross se tion . . . 109

C.2.1 Opti al theorem . . . 110

C.2.2 Invariantmatrix element . . . 111

C.2.3 Neutral urrent ross se tion . . . 113

C.3 Stru ture fun tion inthe Hartree-Fo k approximation . . . 114

C.4 Stru ture fun tions inthe RPA . . . 116

C.4.1 Single-parti le ase . . . 117

C.4.2 Neutral urrent ase . . . 118

C.4.3 Charge urrent ase . . . 119

(9)

The ore ollapsesupernovaeare some ofthe most spe ta ular events inthe

Uni-verse. Theseeventshavebeenstudiedformorethanthreede adesmainlythrough

numeri alsimulations. Despitethehugeamountofphysi sinvolvedandgreat

un- ertainties, a kind of "standard model" exists: the inner iron ore of a massive

star over omes itshydrodynami alstability limit(the Chandrasekhar mass) and

ollapses, in reasing the density inside up to many times nu lear saturation

den-sity; the stiness of nu lear matter then results in an elasti boun e of the ore,

reatingasho k-wave. Thiswavepropagatesthroughthestar,whilelosingenergy

bythe disso iationofnu leiand produ tionofneutrinos. Ifthiswavehad enough

energy to rea h the star's surfa e and to ause an explosion one would refer to

this asa "prompt"explosion me hanism. Unfortunately insimulationsthis wave

stalls at

200 km and doesnot lead toan explosion.

Inadditiontotheneutrinosprodu edbythesho k-wavethereisalsoa opious

amount of neutrinos produ ed deeper in the star behind the sho k-wave front.

Theseneutrinosareinitiallytrappedinthisproto-neutronstarbe ausetheirmean

free path is smaller than the radius of the proto-neutron star. This is a unique

situation for neutrinos as they are usually free toleave the system inwhi h they

are reated withoutobsta le due to their very weak intera tion with allforms of

matter.

Modern-day simulations of ore ollapse supernovae rely on these neutrinos

for asu essfulexplosion. On ethe neutrinos are nolonger trapped they start to

stream out of the proto-neutron star in enormous quantities. Even if only a tiny

fra tion of them deposits some of their energy in the sho k-wave, this ould be

su ient torevive the sho k-wave and enable it torea h the surfa e of the star,

thus ausing an explosion. Su h a me hanism of explosion is then referred to as

"delayed" be ause of the time lapse between the start of the sho k-wave and the

time at whi h neutrinos ease to be trapped. For re ent reviews of ore ollapse

supernova simulationssee [1,2℄ and referen es therein.

This makes the properties of neutrino intera tions in hot and dense matter

a fundamental part of understanding supernova events. It is important both

to understand how neutrinos behave inside a proto-neutron star as well as how

(10)

to these questionsone shouldthus determine what are the neutrino ross se tion

and mean free path insu h dense environments.

Of parti ular interest, from a nu lear physi s point of view, is the behavior

of neutrinos at densities above the saturation density of nu lear matter. It is

obvious,ifone onsidersthes alesinvolved,thatthestrongintera tionwillplayan

importantroleinthis ase sin e thepropertiesof baryons are hangedwhenthey

are in-medium. Thesein-mediummodi ations anbestudiedwithmean-eldor

Fermiliquidtheoriesandtherandom-phaseapproximation(RPA)[3,4,5℄;inthis

thesis we will use a ombination of Fermi liquid theories and RPA. In addition

to the des ription of neutrino transport properties, numeri al simulations of the

supernova evolution require knowledge of the equation of state of dense matter.

These twoaspe ts ofnu learphysi splay animportantrole inunderstanding the

physi s of the ore ollapse supernova.

Anotherintriguingaspe t ofdense matteristhen the inuen e ofmore exoti

forms of matter, other than nu leons. Among su h exoti a, whi h one expe ts

to appear at su h high densities, are the hyperons. Other possibilities in lude

pion and kaon ondensates, superuidity,and alsoquarks, f. [6℄. Sin ehyperons

are the lightest baryons after nu leons they are onsidered as prime andidates

for appearan e in neutron stars. It isexpe ted that they appear at aroundtwi e

the nu lear saturation density and form sizable on entrations in the inner ore

of neutron stars. On e they appear, hyperons introdu e a host of new possible

pro esses between them and the neutrinos in addition tothe ones whi h already

existbetween neutrinos and nu leons. These new pro esses an play asigni ant

role in the neutrino ross se tion be ause some of the nu leoni pro esses might

beforbidden due toPauliblo king.

In order to understand how hyperons, and strangeness in general, behaves

in dense matter, the understanding of the hyperon-nu leon (

Y N

) intera tion is essential. Unfortunately, the details of the

Y N

intera tion are determined very poorly by experiment and there are several dierent potentials available. This

then poses a hallenge to see what results these dierent potentials give. Our

approa h to this is the onstru tion of an ee tive low momentum intera tion

known as

V

lowk

from these dierent potentials. In this ase

V

lowk

oersa unique

possibility to study all of these potentials sin e it is relatively easy to perform a

Hartree-Fo k al ulationwiththem. Thisthenallowsforanextensive omparison

of the dierentresultsinvolvingthese intera tionsaswellasfor arobuststudy of

all possibilitiesthat an arise.

The formalism of the Fermi liquid theory in ombination with RPA an be

easily extended to the ase of hyperons. With this extension we will in lude

hyperons into the medium's response to the neutrino probe. Su h derived ross

se tionsand meanfreepathswillthen tellushowthe presen e ofhyperons inthe

(11)

matter.

Additionally, the baryoni equation of state (EoS) is the fundamental input

forthe al ulationofneutron starproperties. Itisparti ularlyimportanttoknow

howthe EoS behaves atdensitiesabove saturationdensity sin ethis willplaythe

most importantroleindeterminingthemaximumallowedmassof aneutron star.

At about twi e the saturation density one expe ts strange baryons to appear as

new hadroni degrees offreedom. Unfortunatelythenu leon-nu leon(

NN

)

V

lowk

is not wellsuited for the study of neutron star masses. The reason forthis lies in

the introdu tion of a s ale that separates the low and high momenta. This s ale

imposes a limit on the densities whi h an be studied with

NN V

lowk

and these

are too low for the study of neutron star masses. However

Y N V

lowk

, thanks to

the higher masses and lower on entrations of hyperons, an rea h the densities

of interestin neutrons stars. Hen e we willrepla e the nu leoni part of the EoS

with a parameterization and use it in ombination with

Y N V

lowk

to study the

masses of neutron stars.

Itisinterestingtopointoutthatmanyofthefeaturesmentionedin onne tion

with neutrinos omingfrom neutron stars an be measured pra ti allyany given

day, with a bit of lu k. Should an o urren e similar to that of the supernova

explosion SN1987A repeat itself, present day dete tors would olle t a sizable

amount of data. It is not unreasonable to assume this will happen in the near

futureasitisknownfromgalaxysurveysthatonaveragethereare

3−4

supernova per100 years ingalaxies similar toour own. Even ba k in1987 enough datawas

olle ted to dis ern some of the properties of supernova neutrinos. Today, after

three de ades of building ever larger neutrino dete tors, a supernova explosion

in our galaxy would provide enough information to dis riminate between many

modelpredi tions.

The stru ture of this thesis is as follows. Chapter 1 is devoted to the

on-stru tion of the low momentum ee tive hyperon-nu leon intera tions and the

dis ussion ofthe resultingmatrixelements. Wealsoshowand dis usssomeofthe

low-energyobservables dire tly al ulatedfrom the intera tion.

In hapter 2 we introdu e the on ept of innite nu lear matter and use it

in ombinationwith aHartree-Fo k approximation to al ulatethe ground-state

energy. Toa hievethisgoalwedeneandinvestigatethesingle-parti lepotential.

This willenable us to des ribe the in-medium properties of baryons. The failure

to reprodu e the properties of nu lear matter by pure two-body for es leads to

the introdu tionof three-bodyfor es.

Chapter 3 dis usses the equation of state for equilibrated matter. In this

ontext we use the parametrization of the nu leoni part of equation of state

to investigate the inuen e of hanges in parameters onthe hyperon se tor. We

on ludethis hapterby al ulatingthepropertiesofneutronstarswithhyperons.

(12)

use the Landau Fermi liquidtheory in order to al ulatethe Landau-Migdal

pa-rameters. In this hapter we also introdu e the density-dependent for e aimed

at repla ing the three-body for e whi h did not produ e the orre t values for

saturation density.

Chapter5isdevotedtothe al ulationof neutrinopropertiesindense matter.

Results for the ross se tion and mean free path in symmetri and equilibrated

matter are shown.

In hapter6 we summarize the results and oer anoutlook of possible

exten-sions of this work.

The appendi es are devoted to the details of the expressions used. In

Ap-pendix A we explain the details of the onstru tion of the

V

lowk

potential,

in- luding the transition from the plane-wave basis to the partial-wave basis. In

Appendix B we present the al ulation of the Hartree-Fo k ground-state energy

in innite nu lear matter. Neutrino ross se tions are al ulated in Appendix C.

Additionally,weuse Appendix Ctoshowthe al ulationofthe RPA polarization

(13)

One ofthe greatestissues ofnu leartheory isthatfromanumeri alpointof view

the bare nu lear for es are ill behaved. This omes from the inability of

many-bodyte hniquestotreatinastraightforward way thehard- ore thatbarenu lear

potentials have. This hard ore is too strong to be treated perturbatively and

makesadire tself- onsistentapproa himpossible. Howeverthe nu leoninnu lei

or nu lear matter do not feel this bare intera tion but an ee tive intera tion

whi h arises when one onsiders all many-body ee ts present. This ee tive

intera tion is mu h better behaved and allows for the appli ation of standard

many-body methods.

Onesu hee tiveintera tionwhi hhasappearedre ently isthe

V

lowk

[7℄. By

requirementofphaseshiftequivalen e

V

lowk

reates,fromseveraldierentstarting

potentials, a pra ti ally unique

NN

intera tion. This gives the impression of universality of the ee tive intera tions.

We extend this idea of onstru ting an ee tive potential to the ase of the

hyperon-nu leon(

Y N

)intera tion. Themotivationistwofold: ifthe

NN V

lowk

is

souniversalthensoshouldthe

Y N V

lowk

beandthestandardmany-bodymethods

an thenbeappliedtothe

Y N

intera tion. Unfortunately,thereexistonlyavery limited amount of s attering and phase shift data for the ase of the

Y N

. This data isnotsu ienttouniquely onstrainthe

Y N

potentials. Thusdierentbare potentials, for the

Y N V

lowk

onstru tion,exhibit dierent phaseshift results. It

isthennot unexpe tedthatatpresentitisnot possibleto onstru taunique

Y N

low-momentumee tive intera tion.

Howeverforth omingexperimentsatthe planned J-PARCand FAIRfa ilities

are expe ted to add new data to the existing ones. This would then allow for

a better treatment of the

Y N

intera tion. Additionally, rst latti e QCD sim-ulations of the

Y N

intera tion have been performed [8℄. This, ombined with the motivation to use many-body methods, has inspired us to develop the

Y N

V

lowk

inspite ofthe largeun ertainties present today. Be ause on ethereis

su- ient data to onstru t a high-quality

Y N

potentialthe method for onstru ting the

V

lowk

from it willbe readily available. This thesis is thus mainly devoted to

the onstru tion and omparison of various

V

lowk

Y N

intera tions in the dense

(14)

The outline of this hapter is as follows. The

NN

low-momentum ee tive intera tion is presented in Se . 1.1 as anintrodu tionfor the onstru tionof the

Y N V

lowk

whi h is done in Se . 1.1.1. Se . 1.1.2 dis uses the bare potentials

used while Se . 1.1.3presents the results ofthe matrixelementsof the

Y N V

lowk

in several partial wave hannels. In Se . 1.2 we show some of the low-energy

observables dire tly al ulated from the matrix elements of the potentials.

1.1 Low-momentum intera tion

V

lowk

is supposed to represent a universal low-momentum ee tive intera tion.

It is derived by performing the renormalization group(RG) de imation starting

from a bare intera tion. In the ase of the nu leon-nu leon(NN) intera tion, as

shown in [9℄, this is indeed the ase. This agreement is shown in Fig. 1.1. By

using several dierent modern NN intera tions alowmomentum intera tion was

onstru tedandtheagreementisobvious. Forallpartialwavestheresulting

V

lowk

potentialsshow ex ellent agreement.

0.5 1.0 1.5 2.0 -2 -1 0 Paris Bonn A Nijmegen I Nijmegen II Argonne v 18 CD Bonn Idaho A 1 S 0 0.5 1.0 1.5 2.0 -2 -1 0 3 S 1 0.5 1.0 1.5 2.0 0.00 0.08 0.16 3 D 1 0.5 1.0 1.5 2.0 -0.45 -0.30 -0.15 0.00 h e r m i t i a n V l ow k ( k , k ) [ f m ] 3 S 1 -3 D 1 0.5 1.0 1.5 2.0 0.000 0.175 0.350 1 P 1 0.5 1.0 1.5 2.0 -0.4 -0.2 0.0 3 P 0 0.5 1.0 1.5 2.0 0.0 0.1 0.2 0.3 3 P 1 0.5 1.0 1.5 2.0 -0.2 -0.1 0.0 3 P 2 0.5 1.0 1.5 2.0 -0.03 -0.02 -0.01 0.00 3 F 2 0.0 0.5 1.0 1.5 2.0 0.00 0.03 0.06 3 P 2 -3 F 2 0.5 1.0 1.5 2.0 -0.10 -0.05 0.00 k [fm -1 ] 1 D 2

Figure 1.1: Diagonal momentum-spa e matrix elements of the hermitian

V

lowk

obtained from the dierent potential models for a ut-o

Λ = 2.1

fm

−1

. Results

(15)

The basi idea behind the

V

lowk

is that the short-range physi s whi h is

rep-resented by a hard ore an beintegrated out. The advantage istwofold. Firstly,

sin e this partof the intera tionis notwell onstrainedby phaseshifts,removing

itwillredu ethe un ertainty. Se ondly,any ee tthatthe hard orehas on

long-range (low-momentum) physi s will be preserved. A further advantage is that

on e reated, su h an intera tion simplies many nu lear stru ture al ulations

byvirtueofthe signi antlysmallermomentumrangethatneedstobetaken into

a ount.

In this hapter we generalize the onstru tion of the

V

lowk

to the

Y N

inter-a tion. Ideallysu h apotentialwould retainallof the advantages whi hthe

NN

V

lowk

has. As we shall show, however, while the short range ee ts and the

sim-pli ationremainas bonuses, the universality of the

Y N V

lowk

simplydoesnot

exist. Thereasonsforthisla kofagreementbetween various

Y N V

lowk

potentials

shall bedis ussed indetail later.

1.1.1 Constru tion of

V

low k

The startingpointforthe onstru tionofthe

V

lowk

isthehalf-on-shell

T

-matrix,

T (q

, q; q

2

)

,whi hisdeterminedbythe nonrelativisti Lippmann-S hwinger

equa-tion Eq. (A.6) in momentum spa e. The on-shellenergy is denoted by

q

2

and

q

,

where

q

are the relative momenta between a hyperon and a nu leon. An ee -tive low-momentum

T

lowk

-matrix is then obtained by introdu ing a ut-o

Λ

in the Lippmann-S hwingerkernel,thusintegratingtheintermediatestate momenta

up to this ut-o. At the same time, the bare potential in the oupled- hannel

partial wave Lippmann-S hwinger equation is repla ed with the orresponding

low-momentum potential

V

lowk

.

Thus fromthe usual Lippmann-S hwinger

equa-tion Eq. (A.22) we get:

T

low

α

α

k,y

y

(q

, q; q

2

) = V

α

α

low

k,y

y

(q

, q)+

2

π

X

β,z

P

Λ

Z

0

dl l

2

V

α

β

low

k,y

z

(q

, l)T

βα

low

k,zy

(l, q; q

2

)

E

y

(q) − E

z

(l)

.

(1.1)

The ee tive low-momentum

V

lowk

is then dened by the requirement that the

T

-matri esare equivalent for allmomenta below this ut-o

T

α

α

(q

, q; q

2

) = T

low

α

α

k

(q

, q; q

2

) ,

q

, q ≤ Λ .

(1.2)

Thus the obtained

V

lowk

is non-hermitian, nevertheless a phase-shift

equiva-lent hermitian low-momentum

Y N

intera tions an be obtained. Sin e the low-momentum

T

-matrix

T

lowk

must be ut-o-independent, i.e.

dT

lowk

/dΛ = 0

, an

(16)

RGow equation forthe

V

lowk an immediatelybe derived:

dV

lowk

(k

, k)

=

2

π

V

lowk

(k

, Λ)T (Λ, k; Λ

2

)

1 − k

2

2

.

(1.3)

Insteadofsolvingthisowequationwithstandardnumeri almethods(e.g.

Runge-Kutta)dire tly,the so- alledALS iterationmethod,pioneered byAndreozzi, Lee

and Suzuki, is used [10, 11, 12℄. This iteration method is based on a similarity

transformation and its solution orresponds to solving the ow equation. Details

about the onvergen e of the ALSiterationmethod,appliedtothe oupled

han-nel

Y N

intera tion, an befound in[13, 14℄. Forthe hyperon-nu leon intera tion with strangeness

S = −1

two dierentbases, the isospin and the parti lebasis of the bare potentials, are available.

While in the

NN

ase the only oupling whi h appears is that of angular momentum arisingdue tothe tensor for e, inthe

Y N

ase we have a more om-pli ated situation. One dieren e is that there exists a singlet-triplet oupling

between dierent spin states Eq. (A.24). However, this is pra ti allyidenti al to

the tensor ouplings. So the in rease in omplexity is not signi ant. A mu h

biggerdieren eariseswhenwe onsidertheisospinspa e. Inthe aseofthe

on-stru tion of the

Y N V

lowk

there isanadditionallevel of omplexity, as ompared

to the

NN

ase, be ause now we have a oupling whi h we did not en ounter in the

NN

ase. Eq. (A.25) des ribes the situation if we onsider all parti les separately. This is the parti le basis whi h we use. The biggest onsequen e of

this dieren eisthat whensear hingfor the solutionofthe Lippmann-S hwinger

equation Eq. (1.1) we have to keep in mind that this entire matrix has to be

on-shell.

1.1.2 Bare potentials

In order to solve the ow equation Eq.(1.3) a bare potential as initial ondition

for the ow must be hosen. In this work several initial

Y N

potentials, the originalNijmegen soft oremodelNSC89 [15℄, the series ofmodels NSC97a-f [16℄

also by the Nijmegen group and a re ent model proposed by the Jüli h group

[17℄, labeled as J04 in the following, are used. All above mentioned models are

formulatedin the onventional meson-ex hange (OBE) framework. They involve

a set of parameters whi h have to be determined from the available s attering

data. Thesearethe oupling onstantsofthe orrespondingbaryon-baryon-meson

verti es and ut-o parameters for the vertex form fa tors. Due to the limited

Y N

s attering datathese parameters annotbe pre iselyxed as opposed tothe

NN

intera tionwherealotofs atteringdataisavailable. Inorderto onsistently onstru t onventional OBE modelsfor the

Y N

intera tion, one usually assumes avor

SU(3)

onstraints or

G

-parity arguments on the oupling onstants, and

(17)

in some ases even the

SU(6)

symmetry of the quark model and adjusts their size by ts to

NN

data. The major on eptual dieren e between the various onventional OBE models onsists in the treatment of the s alar-meson se tor,

whi h plays an important role in any baryon-baryon intera tion at intermediate

ranges. In ontrast to the pseudos alar and ve tor meson se tors, it is still an

open issue whi h are the a tual members of the lowest lying s alar-meson

SU(3)

multiplet, what are the masses of the ex hange parti les and how, if at all, the

relations for the oupling onstant, obtained by

SU(3)

avor symmetry, should be applied. For example, in the older versions of the

Y N

models by the Jüli h group [18, 19℄ a  titious

σ

meson with amass of roughly 550 MeV arising from orrelated

ππ

ex hange was introdu ed. The oupling strength of this meson to the baryons was treated as a free parameter and nally tted to the rare

data. However, in the novel Jüli h

Y N

potential [17℄ a mi ros opi modelof the orrelated

ππ

and

K ¯

K

ex hangeisestablishedinorder toxthe ontributions in the s alar

σ

-andve tor

ρ

- hannel. Thisnewmodelin orporatesalsothe ommon one-bosonex hangepartsofthe lowestpseudos alarandve tormesonmultiplets.

The orresponding oupling onstantsare determinedby

SU(3)

avor symmetry and theso- alled

F/(F + D)

ratiosarexedtothepseudos alarandve tormeson multipletsby invoking

SU(6)

symmetry.

In the Nijmegen

Y N

models, NSC89 [15℄, NSC97 [16℄ and in the re ently extended soft ore model for strangeness

S = −2

ESC04 [20, 21℄ this intera -tion is generated by a genuine s alar

SU(3)

nonet meson ex hange. Besides this s alar meson nonet two additional nonets, the pseudos alar and ve tor

SU(3)

avor nonets, are onsidered in all Nijmegen models. Additionally, the Pomeron

ex hangeisalsoin ludedwhi hprovidesanadditionalshort-rangerepulsion.

Nev-ertheless, thereare afew on eptualdieren es in thevariousmentionedmodels.

In the NSC97 models the strength parameter for the spin-spin intera tion, the

magneti

F/(F + D)

ratio is left as an open parameter and takes six dierent valuesinarangeof

0.4447

to

0.3647

forthe sixdierentmodelsNSC97a-f. Inthe originalNijmegen SC89 modelthis parameter is onstrainedby weak de ay data.

Furthermore, the NSC97 models in lude additional

SU(3)

avor breaking whi h is based onthe so- alled

3

P

0

model[22℄.

The predi tions of the above mentioned models are ompared with another

approa h, the so- alled hiral ee tive eld theory (

χ

EFT ) of nu lear inter-a tions whi h is based on hiral perturbation theory. For re ent reviews see

e.g. [23,24,25℄. Themajorbenetofthe

χ

EFT istheunderlyingpower ounting s heme, proposed by Weinberg [26, 27℄, that allows one to improve the

al u-lations systemati ally by going to higher orders in the expansion. Additionally,

higher two- and three-body for es an bederived onsistently in this framework.

Furthermore, the ee tive potential is expli itly energy-independent in ontrast

(18)

Within

χ

EFT the

NN

intera tionhas been analyzedre entlytoa high pre i-sion (N

3

LO) [28℄. To leading order (LO) the

NN

potential is omposed of pion ex hangesandaseriesof onta tintera tionswithanin reasingnumberofderiv

a-tiveswhi hparameterize the singularshort-range part ofthe

NN

for e. In order to remove the high-energy omponents of the baryoni and pseudos alar meson

elds a ut-o

Λ

dependent regulator fun tion in the Lippmann-S hwinger (LS) equation is introdu ed. Then with this regularized LS equationobservable

quan-tities an be al ulated. The ut-o range is restri ted from below by the mass

of the pseudos alar ex hange mesons. Notethat in onventional meson-ex hange

modelstheLSequationisnotregularizedand onvergen eisa hievedby

introdu -ingformfa tors with orresponding ut-omasses forea hmeson-baryon-baryon

vertex.

So far, the

Y N

intera tion has not been investigated in the ontext of the

χ

EFT as extensively as the

NN

intera tion. A re ent appli ation to the

Y N

intera tion by the Jüli h group an be found e.g. in [29℄. Analogous to the

NN

ase, the

Y N

potential, obtained in LO

χ

EFT, onsists of four-baryon onta t terms andpseudos alar meson(Goldstoneboson)ex hanges whi h areallrelated

by

SU(3)

f

symmetry. Forthe

Y N

intera tion typi alvalues forthe ut-o liein the range between 550 and 700 MeV (see e.g. [28℄). At LO

χ

EFT and for a xed ut-o

Λ

and pseudos alar

F/(F + D)

ratio there are ve free parameters. The remaining intera tion in the other

Y N

hannels are then determined by

SU(3)

f

symmetry. A next-to-leading order (NLO)

χ

EFT analysis of the

Y N

s attering and ofthe hyperon massshiftsinnu learmatterwasperformedin[30℄. However,

inthisanalysisthepseudos alarmesonex hange ontributionswerenottakeninto

a ount expli itlybut the

Y N

s attering data ouldbedes ribed su essfully for laboratory momenta below 200 MeV using 12 free parameters. One ambiguity

in this approa h for the

Y N

intera tion is the value of the

η

oupling whi h is identied with the o tet

η

8

meson oupling and not with the physi al

η

meson. The inuen e of this ambiguity onthe data des ription an be disregarded[31℄.

Sin e data on

Y N

s attering is s ar e, it has not been possible yet to deter-mine uniquely the spin stru ture of the

Y N

intera tion. Nevertheless, all of the above mentioned OBE models are onsistent with the measured

Y N

s attering observables. Additionally,allofthesepotentialsin ludethe

ΛN − ΣN

onversion pro ess.

1.1.3 Results of the potential

Here we will present the result of the onstru tion of the

V

lowk

.

The hyperon

nu leon s attering of the form,

Y + N → Y

+ N

, will be shown in the partial

wave basis for several of the most dominant and representative ases. In general

(19)

but as an be seen in the following gures the S-wave is the most dominant one

and already the D-wave is almostan orderof magnitude weaker.

For all ases shown here we have used the ut-o

Λ = 500

MeV . We have hosenthis parti ular ut-o, be auseitisexpe ted thatthe

V

lowk

isonlyweakly

dependent onthe ut-ointherangefrom

∼ 200

MeVto

∼ 600

MeV. Essentially atthisvaluetheshortrange(highmomentum)ee tshavealreadybeenintegrated

out while at the same time the pion ontribution remains largely un hanged in

this interval.

Inallguresofthepotentialweshowboth,thebarepotentialandtheresulting

V

lowk

potential. The bare potentials are shown with points while the

V

lowk are indi ated by lines.

-8

-6

-4

-2

0

2

4

6

8

0

100

200

300

400

500

V(k,k) [10

-6

MeV

-2

]

k [MeV]

1

S

0

,

Σ

-

n

NSC89

NSC97a

NSC97c

NSC97f

J04

χ

EFT600

-3

-2

-1

0

1

2

3

4

5

0

100

200

300

400

500

V(k,k) [10

-6

MeV

-2

]

k [MeV]

3

P

0

,

Σ

+

p

NSC89

NSC97a

NSC97c

NSC97f

J04

χ

EFT600

Figure1.2: Bare and

V

lowk potentials for

1

S

0

, Σ

n

(left)and

3

P

0

, Σ

+

p

(right).

Fig. 1.2 shows the bare and

V

lowk

potentialsfor the

1

S

0

, Σ

n

hannel on the left handsideandthe

3

P

0

, Σ

+

p

hannelontheright-handside. Thepotentialsfor the

V

Σ

n

and

V

Σ

+

+

p

are almost the same in all partial wave hannels, the onlysmalldieren e omesfromthedierentredu edmassesofthesesystems. As

one an see, most of the

V

lowk

potentials are the same inthese hannelsshowing

that

V

lowk

an produ eauniquepotentialforthehyperons. This impliesthatthe

ambiguoussituationwhi h we willmeet later on inthe other hannels isnot the

failing of the

V

lowk

method. Essentially as soon as there are enough onstraints

on the phase shifts,

V

lowk

works well in al ulating the orre t low-momentum

potential.

(20)

by itself is not a realisti potential but a theoreti ally onstru ted potential. As

a result, information regarding phase shifts annot be used as dire tly as for the

other potentials. Thus for the

χ

EFT

600

, though some degree of improvement an bemade onthe theoreti al side, ultimatelyitis alsotted,so in reased data

quality wouldbringimprovements. Howeversin e

χ

EFT isalsoalow-momentum potential, applying the

V

lowk

does not hange it by mu h. This an be observed

in Fig. 1.2. The points of the bare

χ

EFT

600

and the lines of the

V

lowk

are seen

to be very lose. A very simple explanation for this is that the ut-o of the

χ

EFT is

600

MeV while the ut-o of the

V

lowk

is

500

MeV so there are not so many high momentum ee ts whi h an be transferred to the lowmomentain

the RG de imationpro edure.

-6

-4

-2

0

2

4

6

8

10

0

100

200

300

400

500

V(k,k) [10

-6

MeV

-2

]

k [MeV]

1

S

0

,

Λ

n

NSC89

NSC97a

NSC97c

NSC97f

J04

χ

EFT600

-2

-1

0

1

2

3

4

5

6

7

0

100

200

300

400

500

V(k,k) [10

-6

MeV

-2

]

k [MeV]

3

P

0

,

Λ

p

NSC89

NSC97a

NSC97c

NSC97f

J04

χ

EFT600

Figure1.3: Bare and

V

lowk potentialsfor

1

S

0

, Λn

(left)and

3

P

0

, Λp

(right).

Fig.1.2alsoshows thatinboth hannelsthe

V

lowk

ismoreattra tivethan the

orrespondingbare potential. This servestoshowthatinthebarepotentialsome

of the attra tion would be provided by the momentum states above the

V

lowk

ut-o. It should also be said that these two gures show the simplest hannel

in the

Y N

se tor sin e there is no ouplingto any other hannel. In general this would not bethe asesin e most hannelsare oupled, eitherinthe isospinspa e

or inthe angular momentum spa e.

In Fig. 1.3 we show the bare and

V

lowk

potentials for the

1

S

0

, Λn

hannel on the left-handside and the

3

P

0

, Λp

hannelonthe right-handside. As an beseen here, the resulting

V

lowk

do not show agreement with one another, although the

(21)

be auseof the la k ofdata onphase shiftswith whi h one ould onstru t ahigh

quality

Y N

potential. Inthis aseaswell,isospinsymmetrygivesusapra ti ally identi al potentialfor

Λp

and

Λn

forall partialwaves.

-8

-6

-4

-2

0

2

4

6

0

100

200

300

400

500

V(k,k) [10

-6

MeV

-2

]

k [MeV]

3

S

1

,

Σ

-

p

NSC89

NSC97a

NSC97c

NSC97f

J04

χ

EFT600

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

0

100

200

300

400

500

V(k,k) [10

-6

MeV

-2

]

k [MeV]

3

S

1

,

Σ

0

n

NSC89

NSC97a

NSC97c

NSC97f

J04

χ

EFT600

Figure1.4: Bareand

V

lowk potentialsfor

1

S

0

, Σ

p

(left) and

3

D

1

, Σ

0

n

(right).

These hannels are oupled inthe isospin, but not in the angular momentum

spa e. What is interesting to note isthat sin e this is a oupled hannel, greater

attra tion whi h we an observe in the ase of the

V

lowk

ompared to the bare

potentials, an also ome fromtheo diagonalelementssu h asthe

V

ΛpΣ

+

n

. This givesusamu hmore ompli atedsituationtointerpret, sin e thestatementthat

hangesinthe

V

lowk

ofthe

V

ΛpΛp

omeonlyfromhighermomentum ontributions inthis hannelisnolongertrue. MostobviouslyfortheNSC97f,this omplex

on-ne tion between the diagonal and non-diagonalelements for the

1

S

0

, Λn

hannel will give rise toan attra tive

V

lowk

potentialfrom a repulsive bare potential.

Fig. 1.4 shows the bare and

V

lowk

potentials for the

1

S

0

, Σ

p

hannel on the left-handside andthe

3

P

0

, Σ

0

n

hannelontheright-handside. Inthis hannelwe have both oupling of the isospin as well as oupling of the angular momentum.

We an see that the ut-o ee ts are morepronoun edhere thanthey are inthe

other hannels. One interesting feature of the

3

D

1

hannel is the non-zero value for the

J04

and

χ

EFT

600

potentialsatzero momentum. This an beinterpreted as the presen e of a bound state in these potentials in this hannel whi h is not

present in the other hannels. The repulsion of the

3

S

1

hannel whi h an be seen for

χ

EFT

600

, whereas the other potentialsare attra tive, willlater lead to a profound dieren ein the value of the

Σ

single-parti lepotential.

(22)

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

0

100

200

300

400

500

V(k,k) [10

-6

MeV

-2

]

k [MeV]

1

P

1

,

Σ

+

n

NSC89

NSC97a

NSC97c

NSC97f

J04

χ

EFT600

-4

-3

-2

-1

0

1

2

3

0

100

200

300

400

500

V(k,k) [10

-6

MeV

-2

]

k [MeV]

3

P

1

,

Σ

+

n

NSC89

NSC97a

NSC97c

NSC97f

J04

χ

EFT600

Figure1.5: Bareand

V

lowk potentialsfor

1

P

1

, Σ

+

n

(left)and

3

P

1

, Σ

0

p

(right).

Fig. 1.5 shows the bare and

V

lowk

potentials for the

1

P

1

, Σ

+

n

hannel on the left-hand side and the

3

P

1

, Σ

0

p

hannel onthe right-hand side. Like the previous ase this is a fully oupled ase, but now in addition to the isospin oupling we

have a spin oupling. This hannel is than parti ularly interesting be ause su h

a oupling annot existin the nu leon-nu leon ase. What we noti e here in this

partial wave, and whi h forms a trend that applies also to the higher waves, is

thatthedieren es betweenthebarepotentialandthe

V

lowk

potentialaresmaller

ompared to the S-wave. This is understandable be ause relativetothe S-waves,

these waves will have a smaller magnitude. Sothere will be less ee ts athigher

momentumwhi hwouldleadtodieren esbetween bareand

V

lowk

potentialsdue

to RG de imation.

Overall these results showhow the onstru tionof the

V

lowk

hanges the

Y N

potential ompared to the bare ase on produ ing an ee tive low-momentum

potential. The resultsthemselvesare onlyasgoodasthe startingbare potentials

and they are heavily dependant on the quality and quantity of phase shift data

available for their onstru tion. The few ases where we see agreement between

dierent models show that given a high-quality potential, the

V

lowk

pro edure

ould produ e the same uniqueness of the potential in the

Y N

se tor as in the

NN

se tor. Unfortunately, with the situation being what it is, we will have to ontend with the disagreementbetween models throughout this work.

(23)

1.2 Low-energy observables

In order to obtain further insight into the separation of s ales for the evolution

of the low-momentum

V

lowk

we investigate its ut-o dependen e. A ommon

feature of all

Y N

potentials is the long-range one-pion ex hange (OPE) tail. In general,theRGde imationeliminatestheshort-distan epartofthebarepotential

and preserves the model-independentimpa tof the high-momentum omponents

onlow-momentumobservables. Inthis sense, the ambiguitiesasso iatedwith the

unresolved short-distan e parts of the intera tion disappear and a universal

low-momentum

Y N

intera tion

V

lowk

an be onstru ted fromphase shiftequivalent

bare

Y N

potentials.

The mentioned hierar hy of s ales an be seen e.g. in the

Σ

n

hannel, see

Fig.1.6. The

V

lowk

matrixelementsforvanishingmomentaareshownasfun tions

ofthe ut-o

Λ

forthe

1

S

0

partialwave. When

Λ

isde reased,theresulting

V

lowk

be omesmore and more attra tive. For

1

S

0

and a ut-o

Λ ∼ 500 − 250

MeV the

V

lowk

be omes ut-o independent. De reasing the ut-o further below the

ex hange threshold, whi h orresponds to a momentum

k ≈ 280

MeV, the ut-o insensitivity disappears sin e the pion ontributions are nally integrated

out.

-25

-20

-15

-10

-5

0

0

100

200

300

400

500

V

Λ

low k

(0,0)[10

-6

MeV

-2

]

Λ

[MeV]

1

S

0

,

Σ

-n

NSC89

NSC97a

NSC97c

NSC97f

J04

χ

EFT600

-2

0

2

4

6

8

10

0

100

200

300

400

500

V

Λ

low k

(0,0)[10

-6

MeV

-2

]

Λ

[MeV]

3

S

1

,

Σ

-n

NSC89

NSC97a

NSC97c

NSC97f

J04

χ

EFT600

Figure 1.6: Left:

V

lowk

Λ

(0)

in

1

S

0

partial wave for various bare potentials as a fun tion of the ut-o

Λ

in the

Σ

n

hannel. Predi tion from ee tive range

theory (lines)are added. Right:

V

lowk

Λ

(0)

for the

3

S

1

hannel.

Inthe opposite dire tion,i.e.for

Λ → ∞

nou tuations have been integrated and the

V

lowk

tends to the bare potential.

The limit

Λ → 0

should yield the s attering length. In the limit of small ut-os ananalyti solutionobtainedinthe framework ofthe ee tivetheory, see

(24)

[32℄, is given by

V

y

(0) =



2

µ

y

a

0

− 2

Λ

π



−1

for

Λ → 0 ,

(1.4)

wherewehavesimpliedournotationinanobviousmanner. Here, the s attering

length

a

0

isneeded asaninputwhi hwehave al ulatedinthe standardee tive range approximation dire tly from the

T

-matrix for the

1

S

0

hannel from the

V

lowk

potential. In this approximation the

T

-matrix for

q ≤ Λ

an beexpanded as

q cot δ

0

= −

1

y

T

y

(q, q; q

2

)

= −

1

a

0

+

1

2

r

0

q

2

,

(1.5)

where

r

0

is the ee tive range. The results for the dierent

Y N

avor hannels andforallpotentialsusedinthiswork(bareOBEpotentialsand

χ

EFT potentials with ut-os between

550

and

700

MeV) are listed in Tab. 1.1 for the s attering length

a

0

in unitsof fm and inTab. 1.2 forthe ee tive range

r

0

alsoin fm.

Λp

Λn

Σ

0

p

Σ

0

n

Σ

+

p

Σ

+

n

Σ

p

Σ

n

NSC97a -0.71 -0.76 -2.46 -1.74 -6.06 -0.04 0.41 -6.13 NSC97b -0.90 -0.96 -2.47 -1.72 -5.98 -0.04 0.41 -6.06 NSC97 -1.20 -1.28 -2.41 -1.70 -5.90 -0.03 0.41 -5.98 NSC97d -1.70 -1.82 -2.38 -1.68 -5.82 -0.03 0.41 -5.89 NSC97e -2.10 -2.24 -2.38 -1.68 -5.82 -0.03 0.41 -5.90 NSC97f -2.51 -2.68 -2.45 -1.74 -6.07 -0.05 0.42 -6.16 NSC89 -2.70 -2.72 -2.12 -1.57 -4.79 -0.09 0.23 -4.85 J04 -2.14 -2.11 -2.24 -1.63 -4.68 -0.18 0.04 -4.75

χ

EFT550 -1.80 -1.79 -1.76 -1.15 -3.82 0.12 0.31 -3.88

χ

EFT600 -1.80 -1.80 -1.25 -0.92 -2.70 0.10 0.20 -2.72

χ

EFT650 -1.80 -1.80 -1.43 -1.02 -3.06 0.09 0.21 -3.10

χ

EFT700 -1.80 -1.80 -1.50 -1.07 -3.19 0.06 0.20 -3.24 Table 1.1: S attering lengths

a

0

of

V

lowk

for dierent avor hannels in fm for

the

1

S

0

partial wave.

AsisvisibleinFig.1.6forsmall ut-os

Λ

thereisgoodagreementbetweenthe analyti alexpansionand the full

V

lowk

solutionobtained fromtheowequation.

Unfortunately,nogeneralquantitative on lusion anbedrawn fromTab. 1.1

and Tab. 1.2 due to the bad experimental situation for the

Y N

data. The

Y N

intera tion isyet largely unknown. However, agreement of the s attering lengths

(25)

Λp

Λn

Σ

0

p

Σ

0

n

Σ

+

p

Σ

+

n

Σ

p

Σ

n

NSC97a 5.87 6.12 4.58 0.60 3.28 -6602 24.8 3.27 NSC97b 4.93 5.10 4.68 0.59 3.29 -8491 25.0 3.28 NSC97 4.11 4.23 4.79 0.57 3.30 -10670 25.4 3.29 NSC97d 3.46 3.53 4.91 0.54 3.30 -17115 25.4 3.29 NSC97e 3.19 3.24 4.90 0.52 3.29 -17326 25.2 3.29 NSC97f 3.03 3.09 4.60 0.51 3.25 -6341 24.1 3.24 NSC89 2.86 2.98 5.76 0.74 3.35 -1478 58.0 3.33 J04 2.93 3.09 3.76 1.04 3.32 -329 1232.0 3.30

χ

EFT550 1.73 1.84 6.10 -2.96 2.70 -825 34.1 2.68

χ

EFT600 1.77 1.88 5.32 -2.12 3.40 -780 10.2 3.39

χ

EFT650 1.75 1.86 5.10 -2.28 3.08 -1210 27.6 3.05

χ

EFT700 1.74 1.86 4.91 -2.17 2.97 -2450 34.8 2.95 Table 1.2: Ee tive range

r

0

of

V

lowk

for dierent avor hannels in fm for the

1

S

0

partial wave.

deviation is related to the dierent ts of the magneti

F/(F + D)

ratio in the Nijmegen potentials [16℄. The remaining two potentials, NSC89 and J04, have

dierent but omparable values to those of the NSC97 ones. Unfortunately, the

dieren e between these potentialsand the

χ

EFT is large.

The right part of Fig. 1.6shows the same as the left panel forthe

3

S

1

partial wave. Unlikethe

1

S

0

hannel,

V

lowk

forthe

3

S

1

hannelremains ut-odependent. On the one hand, in the

1

S

0

hannel, the potential has a strongly repulsive ore andontheotherhand,inthe

3

S

1

hannel,ithasastronglyattra tive ore. Hen e, during the RG de imation towards smaller ut-os the potential gets more and

(26)
(27)

Innite nu lear matter represents a hypotheti al system without surfa e ee ts

and Coulombintera tion,whoserelevantdegreesoffreedomarenu leons, ormore

generally baryons. It is a system that annot be studied experimentally in a

laboratory, but it is nevertheless avery useful and broadlyused on ept be ause

ofitssimpli ityandits onne tionwiththeinnerpartofatomi nu leiandneutron

stars. Neutron starssupportthemselvesagainstthe gravitational ollapsemainly

by the degenera y pressure of neutrons. However, as the density of the system

in reases one must onsider the inuen e of the nu lear intera tion aswell asthe

appearan e of other degrees of freedom likehyperons, oreventually even quarks.

Ifwewishtoexaminethepropertiesofinnitenu learmatteritisappropriate

to onsider the single-parti le wave fun tions as plane waves. This is onvenient

sin e they are already the solutions in the Hartree-Fo k approximation. This is

another motivation for using innite nu lear matter, be ause the starting wave

fun tions are known and simple.

Inthe following,inSe .2.1, we willrst present theHartree-Fo k

approxima-tion whi h isused to al ulatethe ground state ofdense matter. The al ulation

itself and the results for the single-parti le potential as well as several other

re-lated quantities is presented in Se . 2.2. The results follow in Se . 2.2.2. At the

end we will onsider the in lusion of three-body for es in Se . 2.3.

2.1 Hartree-Fo k approximation

The main featureof the Hartree-Fo k methodis that the intera tions among the

baryons an be represented by an average potential felt by ea h of the baryons

due to the presen e of all other baryons. In the Hartree-Fo k approximation the

groundstateisrepresentedbyaSlaterdeterminantwhi hisbuiltfromthe

single-parti le wave fun tionsof allparti les. Thus, insteadof a ompli ated orrelated

set of many-bodystates we havea simple produ tof the states.

Wenow onsideranintera tingsystemofparti lesdes ribed byaHamiltonian

ˆ

(28)

where

M

ˆ

isthe massoperator,

T

ˆ

the kineti energyoperatorand

V

ˆ

thetwo-body intera tion. Thetotalenergy

E

ofthis systemisthenobtainedastheexpe tation value of the Hamiltonianwith respe t tothe groundstate:

E = hΦ| ˆ

H |Φi = hΦ| ˆ

M |Φi + hΦ| ˆ

T |Φi + hΦ| ˆ

V |Φi .

(2.2)

In the ase of a homogenous innite system, the appropriate single-parti le

states are plane-wave states, f. Eq. (B.3). This property is the main appeal of

this approximation. The starting single-parti le wave fun tions are known and

simple, whi h is not the ase otherwise, su h asfor nu lei oratoms.

If we assume that the temperature of the system is equal to zero we an use

these states to derive the usual onne tion between the density of the states and

the Fermi momentum of the parti les:

ρ

sm

s

tm

t

=

1

2

p

3

F

smstmt

.

(2.3)

In this expression spin is

sm

s

=↑, ↓

and isospin is

tm

t

= p, n, Λ, Σ

, Σ

0

, Σ

+

. The

total baryoni density of the system is dened asthe sum over allstates.

ρ

B

=

X

sm

s

tm

t

ρ

sm

s

tm

t

.

(2.4)

We note that in this thesis we will not deal with polarized matter, hen e all

densities and momentaof parti les with dierent spins willbe equal. This yields

ρ

tm

t

=

1

2

p

3

F

tmt

,

(2.5)

ρ

B

=

X

tm

t

ρ

tm

t

.

(2.6)

We an use the states dened by Eq. (B.3) dire tly to al ulate the mass

(Eq. (B.7)) and the kineti (Eq. (B.8)) part of Eq. (2.2). As for the potential

part, we annot use the plane wave states dire tly sin e the potential is usually

given in partial waves. Thus, we need to hange our basis rst, whi h is done

(29)

resulting Hartree-Fo k ground-state energy is nallygiven by

E =

π

2

M

Λ

p

3

F

Λ

3

+

X

N

M

N

p

3

F

N

3

X

Σ

M

Σ

p

3

F

Σ

3

!

+

2

p

5

F

Λ

5M

Λ

+

X

N

p

5

F

N

5M

N

+

X

Σ

p

5

F

Σ

5M

Σ

!

+

π

2

X

t

1

m

t1

X

t

2

m

t2



M

m

t

1

m

t1



3

p

Ft1mt

1

Z

0

dp

1

p

2

1

1

Z

−1

dt

q

max

Z

q

min

dqq

2

X

SM

S

X

LM

L

X

J

2L + 1

(L − M

L

)!

(L + M

L

)!



L

S

J

M

L

M

S

M

L

+ M

S



2

(P

M

L

L

(t))

2

h

V

di

(LS)Jt

1

m

t1

t

2

m

t2

(q) − (−1)

1−S+L

V

x

(LS)Jt

1

m

t1

t

2

m

t2

(q)

i

,

(2.7)

with the integration limitsderived in Appendix B.

Whenusingthe

V

lowk

potentialinEq.(2.7),weneedtokeepinmindthatitis

limited to the maximal momentum value of

q = 500

MeV orslightly more in the ase ofheavier hannels, bythe sharp uto. Thisputs arestri tiononthe values

of the densities we an have when using the

V

lowk

. In pure neutron matter this

limitwillbearound

∼ 3ρ

0

whileforsymmetri nu learmatteritwould be

∼ 6ρ

0

. These restri tions ome from onsidering the Fermi momentum of the neutron

whi h is usually the highest. We also need to keep in mind that the ee ts of a

sharp ut-oshowupbeforetherelativemomentum

q

rea hes thevalueof ut-o. Thus it isbest tokeep the relative momentum somewhat lower.

2.2 Single-parti le potential

Generally,the single-parti lepotentialis dened asthe diagonalpart inspin and

isospin spa e of the proper self-energy for the single-parti le Green's fun tion in

theHartree-Fo kapproximation. Itrepresentstorst-ordertheintera tionenergy

ofaparti lewithin omingmomentum

p

andgiven spinandisospinwiththelled Fermi sea. For an intera tion

V

the single-parti le potential

U

t

1

m

t1

(p)

des ribes the behavior of the in oming parti le with momentum

p

in the dense medium, i.e. its intera tion with a lled Fermi sea of all other parti les. Pi torially, the

(30)

+

U=

Figure2.1: Goldstone diagramsfor single-parti lepotential.

Inthe Hartree-Fo k approximationthe single-parti lepotentialis dened as

U

t

1

m

t1

(~p

1

) =

1

2

X

s

1

m

s1

X

s

2

m

s2

t

2

m

t2

Z

d

3

~p

2

(~p

1

, s

1

m

s

1

, t

1

m

t

1

; ~p

2

, s

2

m

s

2

, t

2

m

t

2

| V |~p

1

, s

1

m

s

1

, t

1

m

t

1

; ~p

2

, s

2

m

s

2

, t

2

m

t

2

) ,

(2.8) where the spin-averaging was performed to remove the spin-dependen e of the

single-parti le potential. We have done this sin e we will not be dealing with

spin-polarizedmatter and the ontributions from the spin-up

and spin-down

states are the same.

Justasinthe aseofthepotentialpartoftheground-stateenergyinEq.(2.8),

we need to make a basis transformation fromplane waves to partial waves. The

single-parti le potential

U

t

1

m

t1

(p

1

)

for a parti le with momentum

p

1

= |~p

1

|

is obtained fromthe diagonalelementsof the potentialmatrix, where,as beforefor

the ground-state energy, wehave two ontributions the (dire t) Hartree- and the

(ex hange) Fo k-term [33℄

U

t

1

m

t1

(p

1

) =

X

t

2

m

t2

1

Z

−1

dt

q

max

Z

q

min

dqq

2

X

SM

S

X

LM

L

X

J

2L + 1

(L − M

L

)!

(L + M

L

)!



L

S

J

M

L

M

S

M

L

+ M

S



2

(P

M

L

L

(t))

2

h

V

di

(LS)Jt

1

m

t1

t

2

m

t2

(q) − (−1)

1−S+L

V

x

(LS)Jt

1

m

t1

t

2

m

t2

(q)

i

,

(2.9)

with the integration limitsbeing the same as forthe ground-stateenergy.

2.2.1 Single-parti le energy and the ee tive mass

The single-parti le energy for the states dened by Eq.(B.2) is

ǫ

sm

s

tm

t

(~p) = M

sm

s

tm

t

+

p

2

2M

sm

s

tm

t

(31)

0

100

200

300

400

500

0

1

2

3

4

5

6

-40

-20

0

20

40

60

80

100

120

140

U

Λ

(p) [MeV]

NSC97f

p[MeV]

ρ

B

[

ρ

0

]

U

Λ

(p) [MeV]

0

100

200

300

400

500

0

1

2

3

4

5

6

-16

-14

-12

-10

-8

-6

-4

-2

0

U

Σ

-

(p) [MeV]

NSC97f

p[MeV]

ρ

B

[

ρ

0

]

U

Σ

-

(p) [MeV]

Figure 2.2: Momentum and density dependen e of

U

Λ

(p)

(left), and for

U

Σ

(p)

(right), for symmetri nu lear matter. The NSC97f has been used as the bare

potential.

Mostly we will perform our nu lear matter al ulations at zero or very low

temperatures, at least ompared to the Fermi energy, hen ethe potentialwillbe

inuen ed mostbythe momentaatandaroundFermimomentum. This givesrise

to the quadrati approximation of the single-parti leenergy:

ǫ

sm

s

tm

t

(~p) = M

sm

s

tm

t

+

p

2

2M

sm

s

tm

t

+ ˜

U

sm

s

tm

t

(p

F

smstmt

) ,

(2.11) where

M

sm

s

tm

t

is the ee tive mass. The advantage of su h an approximation is twofold. It retainsthe shape of the freesingle-parti le energy spe trum and

U

˜

is independentof themomentum

p

. Thiswillenableustoperformsomeof thelater al ulations analyti ally withoutlosing mu h a ura y.

The ee tive mass an than be al ulated as

1

M

sm

s

tm

t

=

1

p

F

smstmt

∂ǫ

sm

s

tm

t

(~p)

∂p

p=p

Fsmstmt

=

2

ǫ

sm

s

tm

t

(~p)

∂p

2

p=p

Fsmstmt

,

(2.12) and

U

˜

is

˜

U

sm

s

tm

t

(p

F

smstmt

) =

p

2

F

smstmt

2



1

M

sm

s

tm

t

M

1

sm

s

tm

t



+ U(p

F

smstmt

).

(2.13)

Referenzen

ÄHNLICHE DOKUMENTE

Although those channels suffer from the drawback of final state interaction of the decay products, their large branch- ing ratios might make them better suited for the investigation

In order to suitably describe the low-energy regime governed by spontaneous symmetry breaking, we identified the relevant low-energy effective degrees of freedom based on the

Chapter 4 contains a study of the critical properties of net-baryon-number fluctuations at the chiral restoration transition in a medium at finite temperature and net baryon

In this paper, we presented an experiment aiming at testing the expressive potentialities of the MILE as a standard for computational lexicons. The fundamental

In this dissertation, I have developed a new framework that allows for the calculation of the electron-impact ionization cross section in transient states of nonisothermal warm

We have calculated the following properties of symmetric and asymmetric nuclear matter and pure neutron matter: energy density, pressure, binding energy, symmetry energy, e

But instead, the ghost waited for the group to get closer to the official order — to get within the official as such, as symbolized by the refuge — before

The effects of this configuration of forces became clear to me when members of the group of IDPs I followed in Bogota began to tell me that a ghost had begun to