• Keine Ergebnisse gefunden

The formulation and estimation of random effects panel data models of trade

N/A
N/A
Protected

Academic year: 2022

Aktie "The formulation and estimation of random effects panel data models of trade"

Copied!
25
0
0

Wird geladen.... (Jetzt Volltext ansehen)

Volltext

(1)

Munich Personal RePEc Archive

The formulation and estimation of random effects panel data models of trade

Matyas, Laszlo and Hornok, Cecilia and Pus, Daria

Central European University

17 February 2012

Online at https://mpra.ub.uni-muenchen.de/36789/

MPRA Paper No. 36789, posted 20 Feb 2012 13:47 UTC

(2)

Working Paper 2012/2 Central European University Department of Economics

The Formulation and Estimation of Random Effects Panel Data Models of Trade

Laszlo Matyas

1

Central European University Cecilia Hornok

Central European University and

Daria Pus

Central European University

February 16, 2012

Abstract: The paper introduces for the most frequently used three-dimensional panel data sets several random effects model specifications. It derives appropriate estimation methods for the balanced and unbalanced cases. An application is also presented where the bilateral trade of 20 EU countries is analysed for the period 2001-2006. The differences between the fixed and random effects specifications are highlighted through this empirical exercise.

Key words: panel data, multidimensional panel data, random effects, error compo- nents model, trade model, gravity model.

JEL classification: C1, C2, C4, F17, F47.

Acknowledgement: Support by Australian Research Council grant DP110103824 is kindly acknowledged, as well as the hospitality of Monash University for Laszlo Matyas.

1 Corresponding author; Central European University, Department of Economics, Bu- dapest 1052, Nador u. 9, Hungary; matyas@ceu.hu

(3)

1. Introduction

The use of multidimensional panel data sets has received momentum the last few years. Especially, three dimensional data bases are becoming readily available and frequently used to analyze different types of economic flows, like capital flows (FDI) for example, or most predominantly trade relationships (for a recent reviews of the subject see Anderson [2010] or van Bergeijk and Brakman [2010]). Several model specifications have been proposed in the literature to deal with the heterogeneity of these types of data sets, but all of them considered these heterogeneity factors as fixed effects, i.e., fixed unknown parameters. As it is pretty well understood from the use of “usual” two dimensional panel data sets, the fixed effects formulations are more suited to deal with cases when the panel, at least in one dimension, is short.

On the other hand, for large data sets, the random effects specifications seems to be more suited, where the specific effects are considered as random variables, rather than parameters.

In this paper we present different types of random effects model specifications which mirror the fixed effects models used so far in the literature (some earlier versions were introduced in Davis[2002]), derive proper estimation methods for each of them and analyze their properties under some data problems. Finally, we present an interesting application.

2. Different Heterogeneity Formulations

The most widely used fixed effects model specifications have been proposed byBaltagi et al. [2003], Egger and Pfanffermayr [2003],Baldwin and Taglioni [2006], and Baier and Bergstrand[2007]. The straightforward direct generalization of the standard fixed effects panel data model (where the usual individuals are in fact the (ij) country pairs) takes into account bilateral interaction. The model specification is

yijtxijtijijt i = 1, . . . , N j = 1, . . . , N, t= 1, . . . , T

where the γij are the bilateral specific fixed effects. If the specification is used in a macro trade model, for example, with say 150 countries involved, this explicitly or implicitly, means the estimation of 150×150 = 22,500 parameters. This looks very much like a textbook over-specification case. Instead we propose, like in a standard panel data context, the use of the much more parsimonious random effects specification

yijtxijtijijt i= 1, . . . , N, j = 1, . . . , N, t = 1, . . . , T (1)

(4)

where E(µij) = 0, the random effects are pairwise uncorrelated, and E(µijµij) =

σ2µ i=i and j =j 0 otherwise

A natural extension of this model is to include time effects as well

yijtxijtijtijt i= 1, . . . , N j = 1, . . . , N, t= 1, . . . , T (2) where E(λt) = 0 and

E(λtλt) =

σλ2 t=t 0 otherwise

Another form of heterogeneity is to use individual-time-varying effects yijtxijtjtijt

The corresponding random effects specification now is

yijtxijt+ujtijt (3) where E(ujt) = 0, the random effects are pairwise uncorrelated, and

E(uijujt) =

σu2 j =j and t=t 0 otherwise

Or alternatively we can also have the following random effects specification

yijtxijt+vitijt (4) where E(vit) = 0, the random effects are pairwise uncorrelated, and

E(vitvit) =

σ2v i=i and t =t 0 otherwise

The random effects specification containing both the above forms of heterogeneity now is

yijtxijt +vit+ujtijt (5) The model specification which encompasses all above effects is

yijtxijtijitjtijt

(5)

The corresponding random effects specification now is

yijtxijtij +vit+ujtijt (6) where E(µij) = 0, E(ujt) = 0, E(vit) = 0, all random effects are pairwise uncorrelated, and

E(µijµij) =

σµ2 i=i and j =j 0 otherwise

E(ujtujt) =

σu2 j =j and t =t 0 otherwise

E(vitvit) =

σv2 i=i and t =t 0 otherwise

In order to estimate efficiently these random effects models their corresponding covariance matrices need to be derived

3. Covariance Matrices of the Different Random Effects Specifications The standard way to estimate these models is with the Feasible GLS (FGLS) estimator. First, we need to derive the covariance matrix of each of the models introduced in Section 2, then the unknown variance components of these matrices need to be estimated.

For model (1) let us denote

uijtijijt (7)

So for all t observations

uijij⊗lTij

E

uijuij

=E[(µij⊗lT) (µij⊗lT)] +E ǫijǫij

µ2JTǫ2IT

wherelT is the (T ×1) vector of ones,JT is the (T ×T) matrix of ones and IT is the (T ×T) identity matrix. In all the paper matrix J will denote the matrix of ones, with the size in the index, and I the identity matrix, also with the size in the index.

Now for individuali

uii⊗lTi

E

uiui

=E[(µi⊗lT) (µi⊗lT)] +E[ǫiǫi]

µ2IN ⊗JT2ǫIN T

(6)

And combining all these results we get for the covariance matrix of model (1) u =µ⊗lT

E uu

=E[(µ⊗lT) (µ⊗lT)] +E[ǫǫ]

2µIN2 ⊗JTǫ2IN2T = Ω Deriving likewise the covariance matrix for model (2)

uijij ⊗lT +λ+ǫij

E

uijuij

=E

ij⊗lT) (µij⊗lT)

+E[λλ] +E ǫijǫij

µ2JTλ2ITǫ2IT and

uii⊗lT +lN ⊗λ+ǫi

E uiui

=E

i⊗lT) (µi⊗lT) +E

(lN ⊗λ) (lN ⊗λ)

+E[ǫiǫi]

µ2IN ⊗JTλ2JN ⊗IT2ǫIN T

so we obtain

u =µ⊗lT +lN2 ⊗λ+ǫ E

uu

=E

(µ⊗lT) (µ⊗lT) +E

(lN2 ⊗λ) (lN2 ⊗λ)

+E[ǫǫ]

µ2IN2 ⊗JTλ2JN2 ⊗IT2ǫIN2T = Ω

Let us turn now to models (3) and (4) which can be dealt with in the same way as they are completely symmetric

uijt =ujtijt (8)

uij =ujij

E uijuij

=E ujuj

+E ǫijǫij

2uITǫ2IT

ui =u+ǫi

E uiui

=E[uu] +E[ǫiǫi] =σu2IN T2ǫIN T u =lN ⊗u+ǫ

E uu

=E[(lN ⊗u) (lN ⊗u)] +E[ǫǫ] =σu2JN ⊗IN Tǫ2IN2T = Ω

(7)

Using the same approach, the covariance matrix for model (5) is uijt =ujt+vitijt

uij =uj+viij

E uijuij

=E ujuj

+E[vivi] +E ǫijǫij

2uIT2vIT2ǫIT

ui =lN ⊗vi+u+ǫi

E uiui

=E[(lN ⊗vi) (lN ⊗vi)] +E[uu] +E[ǫiǫi] =

2vJN ⊗ITu2IN T2ǫIN T

and so E uu

2v(IN ⊗JN ⊗IT) +σ2u(JN ⊗IN T) +σǫ2IN2 = Ω And finally the covariance matrix of the all encompassing model (6) is

uijtij+ujt+vitijt (9)

uijij⊗lT +uj +viij

E uijuij

=E[(µij⊗lT) (µij⊗lT)] +E ujuj

+E[vivi] +E ǫijǫij

µ2JTu2ITv2ITǫ2IT

uii⊗lT +lN ⊗vi+u+ǫi

E uiui

=E[(µi⊗lT) (µi⊗lT)] +E[(lN ⊗vi) (lN ⊗vi)] +E[uu] +E[ǫiǫi] =

µ2IN ⊗JT2uIN Tv2JN ⊗IT2ǫIN T

and so E uu

µ2(IN2 ⊗JT) +σu2(JN ⊗IN T) +σv2(IN ⊗JN ⊗IT) +σǫ2IN2T = Ω

(8)

4. Estimation of the Variance Components and the Feasible GLS Estimator

Turning now to the estimation of the variance components of the different models, let us start with model (1)

Eh u2ijti

=Eh

ijijt)2i

=E µ2ij

+E ǫ2ijt

2µǫ2 (10) and let us introduce the appropriate Within transformation

uijt,within=uijt−u¯ijijt−¯ǫij (11) where ¯ǫij = 1/T P

tǫijt and ¯uij = 1/T P

tuijt, so we get Eh

uijt−u¯ij

2i

=Eh

ijt−¯ǫij)2i

=E

ǫ2ijt−2ǫijt

1 T

T

X

t=1

ǫijt+ 1 T

T

X

t=1

ǫijt

!2

=E ǫ2ijt

−2E

"

ǫijt

1 T

T

X

t=1

ǫijt

# +E

 1 T

T

X

t=1

ǫijt

!2

ǫ2− 2

ǫ2+ 1

2ǫǫ2− 1

ǫ2ǫ2T −1 T

Let ˆu be the OLS residual of model (1) and ˆuwithin the Within transformation of this residual. Then we can estimate the variance components as

ˆ

σ2ǫ = T

T −1uˆwithinwithin ˆ

σ2µ= 1 N2T

N

X

i=1 N

X

j=1 T

X

t=1

ˆ

uijt2 −σˆǫ2

These estimators naturally should be adjusted to the actual degrees of freedom.

Continuing with model (2) Eh

u2ijti

=Eh

ijtijt)2i

=E µ2ij

+E λ2t

+E ǫ2ijt

µ22λǫ2 E

 1 T

T

X

t=1

uijt

!2

=E

 1 T

T

X

t=1

µijtijt

!2

=E µ2ij

+ 1 T2E

" T X

t=1

λ2t

# + 1

T2E

" T X

t=1

ǫ2ijt

#

µ2 + 1

λ2+ 1 T σǫ2

(9)

and Eh

uijt−u¯ij−u¯t+ ¯u2i

=Eh

ijt−¯ǫij −¯ǫt+ ¯ǫ)2i

=E ǫ2ijt

+E

 1 T

T

X

t=1

ǫijt

!2

+

+E

 1 N2

N

X

i=1 N

X

j=1

ǫijt

2

+E

 1 N2T

N

X

i=1 N

X

j=1 T

X

t=1

ǫijt

2

−

−2E

"

ǫijt

1 T

T

X

t=1

ǫijt

#

−2E

ǫijt

1 N2

N

X

i=1 N

X

j=1

ǫijt

+

+ 2E

ǫijt

1 N2T

N

X

i=1 N

X

j=1 T

X

t=1

ǫijt

+ 2E

 1 T

T

X

t=1

ǫijt· 1 N2

N

X

i=1 N

X

j=1

ǫijt

−

−2E

 1 T

T

X

t=1

ǫijt· 1 N2T

N

X

i=1 N

X

j=1 T

X

t=1

ǫijt

−2E

 1 N2

N

X

i=1 N

X

j=1

ǫijt· 1 N2T

N

X

i=1 N

X

j=1 T

X

t=1

ǫijt

ǫ2+ 1

2ǫ + 1

N2σǫ2+ 1

N22ǫ − 2

T σǫ2− 2 N2σǫ2+

+ 2

N2ǫ2+ 2

N22ǫ − 2

N2ǫ2− 2

N22ǫ =

ǫ2(N −1)(N + 1)(T −1) N2T

This leads to the estimation of the variance components ˆ

σǫ2 = N2T

(N −1)(N + 1)(T −1)uˆwithinwithin

ˆ

σµ2 = 1 N2T(T −1)

N

X

i=1 N

X

j=1

T

X

t=1

ˆ uijt

!2

T

X

t=1

ˆ uijt2

ˆ

σλ2 = 1 N2T

N

X

i=1 N

X

j=1 T

X

t=1

ˆ uijt2

−σˆ2µ−σˆ2ǫ

Turning now to models (3) and (4) Eh

u2ijti

=Eh

(ujtijt)2i

=E u2jt

+E ǫ2ijt

2uǫ2 (12)

(10)

and the appropriate Within transformation now is

uijt,within =uijt−u¯jtijt−¯ǫjt (13) where ¯ujt = 1/NP

iuijt and ¯ǫjt = 1/N P

iǫijt and Eh

uijt−u¯jt2i

=Eh

ijt−¯ǫjt)2i

=E

ǫ2ijt−2ǫijt

1 N

N

X

i=1

ǫijt+ 1 N

N

X

i=1

ǫijt

!2

=E ǫ2ijt

−2E

"

ǫijt

1 N

N

X

i=1

ǫijt

# +E

 1 N

N

X

i=1

ǫijt

!2

2ǫ − 2

ǫ2+ 1

ǫ2ǫ2− 1

ǫ22ǫN −1 N And the estimators for the variance components are

ˆ

σ2ǫ = N

N −1uˆwithinwithin ˆ

σ2µ= 1 N2T

N

X

i=1 N

X

j=1 T

X

t=1

ˆ

uijt2 −σˆǫ2 Now for model (5) the Within transformation is

uijt,within = (uijt−1/NX

i

uijt−1/NX

j

uijt+ 1/N2X

i

X

j

uijt) (14) so we get

Eh

uijt−u¯jt−u¯it+ ¯ut

2i

=Eh

ijt−¯ǫjt−¯ǫit + ¯ǫt)2i

=E ǫ2ijt

+E

 1 N2

N

X

i=1

ǫijt

!2

+E

 1 N2

N

X

j=1

ǫijt

2

+E

 1 N4

N

X

i=1 N

X

j=1

ǫijt

2

−

−2E

"

ǫijt

1 N

N

X

i=1

ǫijt

#

−2E

ǫijt

1 N

N

X

j=1

ǫijt

+ 2E

ǫijt

1 N2

N

X

i=1 N

X

j=1

ǫijt

+

+ 2E

 1 N2

N

X

i=1

ǫijt N

X

j=1

ǫijt

−2E

 1 N3

N

X

i=1

ǫijt N

X

i=1 N

X

j=1

ǫijt

−2E

 1 N3

N

X

j=1

ǫijt N

X

i=1 N

X

j=1

ǫijt

=

ǫ2+ 1

ǫ2+ 1

ǫ2+ 1

N2σǫ2− 2

2ǫ − 2

ǫ2+ 2

N2σ2ǫ + 2

N2σǫ2− 2

N2σǫ2− 2 N2σǫ2 =

ǫ2

1− 2 N + 1

N2

ǫ2

N2−2N + 1 N2

ǫ2(N −1)2 N2

(15)

(11)

And, also,

Eh u2ijti

=Eh

(ujt+vitijt)2i

2uv2ǫ2 E

 1 N

N

X

i=1

uijt

!2

=E

 1 N

N

X

i=1

(ujt+vitijt)

!2

=E u2jt

+ 1 N2E

" N X

i=1

vit2

# + 1

N2E

" N X

i=1

ǫ2ijt

#

u2+ 1

v2+ 1 Nσ2ǫ

(16)

The estimators of the variance components therefore are ˆ

σǫ2 = N2

(N −1)2withinwithin ˆ

σu2 = 1 N2T(N −1)

N

X

j=1 T

X

t=1

N

X

i=1

ˆ uijt

!2

N

X

i=1

ˆ uijt2

ˆ

σv2 = 1 N2T

N

X

i=1 N

X

j=1 T

X

t=1

ˆ

u2ijt−σˆ2ǫ −σˆ2u

Finally, to derive the estimators of the variance components for model (6), we need first the appropriate Within transformation

uijt,within= (uijt−1/T X

t

uijt−1/NX

i

uijt−1/NX

j

uijt+ 1/N2X

i

X

j

uijt

+ 1/(N T)X

i

X

t

uijt+ 1/(N T)X

j

X

t

uijt−1/(N2T)X

i

X

j

X

t

uijt) Carrying out the derivation as earlier, we get to the following estimators

ˆ

σǫ2 = N2T

N(N −1)(T −1) + 1uˆwithinwithin ˆ

σv2 = 1 N2T(N −1)

N

X

i=1 T

X

t=1

N

X

j=1

ˆ u

2

N

X

j=1

ˆ u2

ˆ

σu2 = 1 N2T(N −1)

N

X

j=1 T

X

t=1

N

X

i=1

ˆ u

!2

N

X

i=1

ˆ u2

ˆ

σ2µ = 1 N2T

N

X

i=1 N

X

j=1 T

X

t=1

ˆ

u2ijt−σˆ2ǫ −σˆv2−σˆu2

(12)

Now we have all the tools to properly use the FGLS estimators.

5. Unbalanced Data

Like in the case of the usual panel data models, just more frequently, one may be faced with a situation when the data at hand is unbalance. In our framework of analysis this means that for all models (1)-(6) in general t = 1, . . . , Tij, P

i

P

jTij = T and Tij often is not equal to Tij. For this unbalanced data case, as we did when the data was balanced, we need to derive the covariance matrices of the models and the appropriate estimators for the variance components.

For model (1), using decomposition (7) we get uijij ⊗lTijij

E

uijuij

=Eh

µij ⊗lTij

µij⊗lTiji +E

ǫijǫij

=

µ2JTijǫ2ITij

and ui = ˜µii

E

uiui

=E

˜ µiµ˜i

+E[ǫiǫi]

µ2A+σ2ǫIPN j=1Tij

where µ˜i =

 µi1

... µi1

µi2

... µi2

... µiN

... µiN

, A=

ITi1 0 . . . 0 0 ITi2 . . . 0 ... ... . .. ... 0 0 . . . ITiN

of size

N

X

j=1

Tij ×

N

X

j=1

Tij

and finally for the complete model

u = ˜µ+ǫ E

uu

=E[˜µ˜µ] +E[ǫǫ]

2µB+σǫ2IT

(13)

where µ˜=

 µ11

... µ11

µ12

... µ12

... µij

... µij

... µN N

... µN N

, B =

JT11 0 . . . 0 0 JT12 . . . 0 ... ... . .. ... 0 0 . . . JTN N

of size (T ×T)

Continuing with model (2)

uijij ⊗lTij +λ+ǫij

E

uijuij

=Eh

µij ⊗lTij

µij⊗lTij

i

+E[λλ] +E ǫijǫij

µ2JTijλ2ITijǫ2ITij

ui = ˜µi+ ˜λii where

λ˜i = (λ1, λ2, . . . , λTi1, . . . , λ1, λ2, . . . , λTiN) E

uiui

=E

˜ µiµ˜i

+Eh

λ˜iλ˜i

i

+E[ǫiǫi]

µ2A+σ2λDiǫ2IPN j=1Tij

u = ˜µ+ ˜λ+ǫ E

uu

=E[˜µ˜µ] +Eh

˜λλ˜i

+E[ǫǫ]

µ2B+σ2λE+σǫ2IT

with

E(E11, E12, . . . , E1N, . . . , EN1, EN2, . . . , EN N)

(14)

Eij =

MT11×Tij

MT12×Tij

... MTN N×Tij

and Di =

ITi1 MTi1×Ti2 . . . MTi1×TiN

MTi2×Ti1 ITi1 . . . MTi2×TiN

... ... . .. ... MTiN×Ti1 MTiN×Ti2 . . . ITiN

where

MTij×Tlj =

1 0 . . . 0 0 . . . 0 0 1 . . . 0 0 . . . 0

... ... . .. ... ... ...

0 0 . . . 1 0 . . . 0

if Tlj > Tij

and

MTij×Tlj =

1 0 . . . 0 0 1 . . . 0 ... ... . .. ...

0 0 . . . 1 0 0 . . . 0 ... ... . .. ...

0 0 . . . 0

if Tlj < Tij

Doing the same exercise for model (3) using decomposition (8) we end up with uij =ujij

E uijuij

=E ujuj

+E ǫijǫij

u2ITijǫ2ITij

ui =u+ǫi

E uiui

=E[uu] +E[ǫiǫi] =σ2uIPN

j=1Tijǫ2IPN j=1Tij

u = ˜u+ǫ and so for the complete model we get

E uu

=E[˜uu˜] +E[ǫǫ] =σ2uC+σǫ2IT

where

˜

u = (u11, . . . , u1T11, . . . , uN1, . . . , uN T1N, . . . , u11, . . . , u1TN1, . . . , uN1, . . . , uN TN N)

(15)

C = (C1, C2, C3)

C1 =

IT11 0 . . . 0

0 IT12 . . . 0

... ... . .. ...

0 0 . . . IT1N

MT21×T11 0 . . . 0 0 MT22×T12 . . . 0 ... ... . .. ... 0 0 . . . MT2N×T1N

... ... . .. ... MTN1×T11 0 . . . 0 0 MTN2×T12 . . . 0 ... ... . .. ... 0 0 . . . MTN N×T1N

C2 =

MT11×T21 0 . . . 0 . . . 0 MT12×T22 . . . 0 . . . ... ... . .. ... . . . 0 0 . . . MT1N×T2N . . .

IT21 0 . . . 0 . . .

0 IT22 . . . 0 . . .

... ... . .. ... . . .

0 0 . . . IT2N . . .

... ... . .. ... . . . MTN1×T21 0 . . . 0 . . . 0 MTN2×T22 . . . 0 . . . ... ... . .. ... . . . 0 0 . . . MTN N×T1N . . .

(16)

C3 =

MT11×TN1 0 . . . 0 0 MT12×TN2 . . . 0 ... ... . .. ... 0 0 . . . MT1N×TN N

MT21×TN1 0 . . . 0 0 MT22×TN2 . . . 0 ... ... . .. ... 0 0 . . . MT2N×TN N

... ... . .. ...

ITN1 0 . . . 0

0 ITN2 . . . 0

... ... . .. ...

0 0 . . . ITN N

Let us now turn to model (4). Following the same steps as above, we get for the covariance matrix (σv2D+σ2ǫIT) where

D=

D1 0 . . . 0 0 D2 . . . 0 0 0 . . . DN

Models (5) and (6) can be dealt with together using decomposition (9) uijij ⊗lT +uj+viij

E uijuij

=Eh

µij ⊗lTij

µij ⊗lTiji +E

ujuj

+E[vivi] +E ǫijǫij

µ2JTiju2ITijv2ITijǫ2ITij

ui = ˜µi+ ˜vi+u+ǫi E uiui

=E

˜ µiµ˜i

+E

˜ vii

+E[uu] +E[ǫiǫi]

µ2A+σ2uIPN

j=1Tij2vDiǫ2IPN j=1Tij

u = ˜µ+ ˜v+ ˜u+ǫ where v˜i

= (vi1, vi2, . . . , viTi1, vi1, vi2, . . . , viTi2, . . . , vi1, vi2, . . . , viTiN)

˜

v = ( ˜v1,v˜2, . . . ,v˜N,) E uu

=E[˜µ˜µ] +E[˜v˜v] +E[˜uu˜] +E[ǫǫ] =

µ2B+σu2C+σv2D+σ2ǫIT

(17)

For model (5) the appropriate covariance matrix is the same with B= 0.

Now that we derived the covariance matrices for unbalanced data it is time to turn to the estimation of the variance components. Using (10) and (11)

E

 1 N2

N

X

i=1 N

X

j=1

uijt−u¯ij

2

= 1 N2

N

X

i=1 N

X

j=1

Eh

ijt−¯ǫij)2i

= 1 N2

N

X

i=1 N

X

j=1

E

ǫ2ijt−2ǫijt

1 Tij

Tij

X

t=1

ǫijt+

 1 Tij

Tij

X

t=1

ǫijt

2

= 1 N2

N

X

i=1 N

X

j=1

E ǫ2ijt

−2E

ǫijt

1 Tij

Tij

X

t=1

ǫijt

+E

 1 Tij

Tij

X

t=1

ǫijt

2

= 1 N2

N

X

i=1 N

X

j=1

σ2ǫ − 2 Tij

σǫ2+ 1 Tij

σǫ2

ǫ2 1 N2

N

X

i=1 N

X

j=1

Tij −1 Tij

so for the variance components we get the following estimators ˆ

σǫ2 = N2 PN

i=1

PN j=1

Tij−1 Tij

ˆ

uwithinwithin

ˆ σµ2 = 1

T

N

X

i=1 N

X

j=1 Tij

X

t=1

2ijt−σˆǫ2

For model (3) (and similarly for model (4)), using (12) and (13) and using the same derivations as there we get

ˆ

σ2ǫ = N

N −1uˆwithinwithin ˆ

σu2 = 1 T

N

X

i=1 N

X

j=1 Tij

X

t=1

ˆ

u2ijt−σˆǫ2

Turning now to model (5), as (14) and (15) are the same in the unbalanced case we get

ˆ

σǫ2 = N2

(N −1)2withinwithin ˆ

σu2 = 1 N −1

N

X

i=1

1 PN

j=1Tij N

X

j=1 Tij

X

t=1

1 N

N

X

i=1

ijt

!2

− 1 T

N

X

i=1 N

X

j=1 Tij

X

t=1

ˆ uijt2

σˆv2 = 1 T

N

X

i=1 N

X

j=1 Tij

X

t=1

ˆ

uijt2 −σˆǫ2−σˆu2

Referenzen

ÄHNLICHE DOKUMENTE

12 While bilateral measures of effectively applied tariffs have previously been used to identify the trade elasticity in structural gravity frameworks (for example, de Sousa et al.

We will now introduce the Synthetic Aperture Focusing Technique (SAFT), which is a widely used defect imaging algorithm in ultrasonic nondestructive testing9. In related fields such

Club Member Develops EPROM Board Joel Miller 3 Computer Music Journal ... HOMEBREW COMPUTER CLUB

A random-effects panel logit model is proposed, in which the unmeasured attributes of an individual are represented by a descrete-valued random variable,

As these multidimensional panel data models are frequently used to deal with flow types of data like trade, capital movements (FDI), etc., it is important to have a closer look at

This paper considers the maximum likelihood estimation of panel data models with interactive effects.. Motivated by applications in eco- nomics and other social sciences, a

 Random: Draw new “treatment effects” and new random errors (!) Term Fixed effects model Random effects

Factors A and B are called nested if there are different levels of B within each level of A.. Moisture Content