• Keine Ergebnisse gefunden

Analysis and visual summarization of molecular dynamics simulation

N/A
N/A
Protected

Academic year: 2022

Aktie "Analysis and visual summarization of molecular dynamics simulation"

Copied!
2
0
0

Wird geladen.... (Jetzt Volltext ansehen)

Volltext

(1)

ORAL PRESENTATION Open Access

Analysis and visual summarization of molecular dynamics simulation

Fredrick Robin Devadoss

*

, Victor Paul Raj

From

9th German Conference on Chemoinformatics Fulda, Germany. 10-12 November 2013

Molecular dynamics (MD) simulation, a standard tech- nique used to study the dynamical properties of biomo- lecules, is very useful in collecting the trajectories, a series of snapshots–the coordinates of the system - of larger systems for longer simulation times. These MD generated trajectories are huge in size (many gigabytes) and the data analysis may take much longer time than the data generation. Managing the large amount of data and presenting them in a flexible and comprehensible manner are the major challenges. Analyzing these trajec- tories with standard parameter like root-mean square deviation (RMSD) may not reveal the most interesting properties of the dynamics.

To overcome these challenges, Catorsion angles [1] - torsion angles build by four consecutive Caatoms - are highly valuable as similarity measure on a substructure scale and to find major events - the information on the time at which a transition occurs (temporal domain) and the local structural changes (spatial domain) of it is combinedly called as“event”- occurring in the course of the MD simulation. By calculating the time series of the Ca torsion angles and their clustering it is possible to determine the mechanistic details on a residual length scale and find major events occurring in the simulation of large proteins or protein complexes. The main advan- tage of the Catorsion angle criterion is that it does not depend on a previous alignment of the structures, and that the direction of the change is also defined. Heat maps of Catorsion angle give nice graphical representa- tions of processes described by the MD simulations.

Clustering of snapshots according to the specific Cator- sion angles is used to automatically find the spatial domains of the structural changes. If all the snapshots are assigned to a single cluster, then those residues are considered as rigid core and the remaining residues are

considered as flexible parts. The temporal domain can be characterized in more detail by finding continuous time intervals assigned to a single cluster as (meta) stable structures and time intervals where the assign- ment jumps between two clusters as transitional periods.

Since the outliers can be removed from the fuzzy clus- ters, starts and ends of time patches now qualify as important events for the underlying substructure and structural changes of larger regions are caused by an accumulation of such substructure events.

DNA polymerase I–the open ternary complex of the large fragment of Thermus aquaticus DNA polymerase I (Klentaq1), which is used here as a practical application for Catorsion angle based analysis, shows a hand-like arrangement, including a thumb, a palm and a finger domain [2]. The catalytic cycle leading to nucleotide insertion comprises several steps including a large struc- tural rearrangement in the form of a movement of the finger domain towards the thumb domain, i.e. the transi- tion from the open to the closed form. Molecular dynamics simulation were performed using the AMBER 10 suite of programs [3]. To get the visual picture of the ongoing processes, the Catorsion angles with the differ- ences to the crystal structure of the open form were plotted as heat map. The rigid and the flexible parts were clearly seen with no or a large number of significant changes, respectively, from the heat map. Once the Ca torsion angles corresponding to the rigid parts are removed, the remaining regions change only in a specific time interval of the simulation. The spatial and temporal domains of the structural changes were identified auto- matically by clustering of snapshots (using KNIME [4]) and finding the continuous time intervals, respectively.

Published: 11 March 2014

* Correspondence: fredrick.devadoss@uni-konstanz.de

Department of Chemistry, University of Konstanz, 78457 Konstanz, Germany Devadoss and Paul RajJournal of Cheminformatics2014,6(Suppl 1):O16 http://www.jcheminf.com/content/6/S1/O16

© 2014 Paul Raj; licensee Chemistry Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The Creative Commons Public Domain Dedication waiver (http://

creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Erschienen in: Journal of Cheminformatics ; 6 (2014), suppl. 1. - O16

Konstanzer Online-Publikations-System (KOPS) URL: http://nbn-resolving.de/urn:nbn:de:bsz:352-280795

(2)

References

1. Flocco MM, Mowbray SL:C alpha-based torsion angles: a simple tool to analyze protein conformational changes.Protein Sci1995,4(10):2118-2122.

2. Li Y, Korolev S, Waksman G:Crystal structures of open and closed forms of binary and ternary complexes of the large fragment of Thermus aquaticus DNA polymerase I: structural basis for nucleotide incorporation.EMBO J1998,17:7514-7525.

3. AMBER:Assisted Model Building with Energy Refinement.[http://

ambermd.org].

4. KNIME:The Konstanz Information Miner.[http://www.knime.org/].

doi:10.1186/1758-2946-6-S1-O16

Cite this article as:Devadoss and Paul Raj:Analysis and visual summarization of molecular dynamics simulation.Journal of Cheminformatics20146(Suppl 1):O16.

Open access provides opportunities to our colleagues in other parts of the globe, by allowing

anyone to view the content free of charge.

Publish with Chemistry Central and every scientist can read your work free of charge

W. Jeffery Hurst, The Hershey Company.

available free of charge to the entire scientific community peer reviewed and published immediately upon acceptance cited in PubMed and archived on PubMed Central yours you keep the copyright

Submit your manuscript here:

http://www.chemistrycentral.com/manuscript/

Devadoss and Paul RajJournal of Cheminformatics2014,6(Suppl 1):O16 http://www.jcheminf.com/content/6/S1/O16

Page 2 of 2

Referenzen

ÄHNLICHE DOKUMENTE

Also, it can be used to identify states and events, i.e., the molecular parts of the protein involved in the structural changes and the times at which the changes

共 Received 11 December 2006; accepted 7 February 2007; published online 15 March 2007 兲 We present an approach to measure the angular dependence of the diffusely scattered intensity

Section 2 briefly reviews some related work; Section 3 introduces our new scheme to incorporate topic network for summarizing and visualizing large-scale image collections at a

We suggest expanding Buchanan’s spectrum with a second axis representing to what extent the exclusion criteria are under individual control. The latter obviously is most important

In this paper we present the calculation of the equivariant analytic torsion for all holomorphic bundles on P 1 C and for the trivial line bundle on P n C , where the projective

Furthermore, we study an example which is given on the one hand, by a holomorphic fibre bundle, consisting of a compact, connected, even-dimensional Lie group modded out by a

Eingehen auf alle Aufgaben, Nennung von 2 Kriterien und dem Hauptkriterium (Nr. 1); aus- führliche und nachvollziehbare Darstellung der Argumente der gelernten 4 Kategorien (Nr.

In the present work we study the influence of carbon doping (C-doping) on the 11 B and 14 N quadrupole cou- pling constants in the (6,0) single-walled BNNT with a tube length of 10 ˚